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Figure S1. Gene trees of unique conotoxin gene mRNA sequences recovered from venom
ducts of C. ebraeus individuals at three locations constructed using the Maximum-
Likelihood estimation and mid-point rooting. Major clades labeled with grey bars are of
putative single loci, and numbers on internal branches are bootstrap values of major clades
(except for [-superfamily).



(A) Gene tree of 30 A-superfamily sequences recovered from two individuals at American Samoa,
three at Guam and two at Hawaii, constructed with the Tajima 3-parameter [1] +G model. These
sequences occur in three major clades (‘EA1’, ‘EA4’ and ‘EAS5’) that we interpreted to represent
three distinct loci. Sequences within clades differed at between one and five nucleotides (nt) (out
of a total of 169-185 nt); sequences among clades differed at between 23 and 39 nt (out of a total
of 160 nt).

(B) Gene tree of 45 unique O-superfamily sequences obtained from two individuals at American
Samoa, five at Guam and two at Hawaii, constructed with the Tamura-Nei [2] +] model. These
sequences fell into four major clusters (‘ED4’, ‘ED6’°, ‘EDS8’ and ‘ED20’) that we interpreted to
represent four distinct loci. Sequences within clades differed at between one and ten nt (out of a
total of 266-278 nt); sequences among clades differed at between 21 and 61 nt (out of a total of
266 nt).

(C) Gene tree of 22 unique I-superfamily sequences from two individuals at American Samoa,
five at Guam and one at Hawaii, constructed with the HKY [3] model. These sequences are
grouped into two major clades (‘EI2” and ‘EI16’). Sequences within clade EI2 differed at
between one and 23 nt (out of a total of 229 nt); sequences between the two clades differed at
between 43 and 64 nt (out of a total of 226 nt).

(D) Gene tree of 67 M-superfamily sequences from three individuals at American Samoa, six at
Guam and two at Hawaii (amplified with the primer set MPr2 (Table S1)) constructed with the
Tamura-Nei+G model. These sequences fell into more than six major clades. Sequences within
clades (except clade ‘M1°) differed at between one and nine nt out of 217-233 nt while sequences
among the six clades differed at between 29 and 59 nt out of 214 nt. Sequences of clade ‘M1’
differ at maximum of 20 nt, indicating the possibility that these sequences represent two loci. Out
of the 37 colonies sequenced from two individuals at American Samoa, one at Guam and two at
Hawaii, we only recovered seven sequences with the primer set MPr1 (Table S1; GenBank
accession numbers JX177162 - JX177168). These sequences differed at a maximum of two nt
(out of a total of 233 nt) and represent one putative locus.
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Figure S2. Alignment of predicted amino acid sequences of alleles of five conotoxin loci of C.
ebraeus. The cysteine backbone of each predicted peptide is highlighted in bold; amino acid
replacements among alleles are highlighted in grey. *: stop codon. Because one of the locus-
specific primers of locus ED4 could only be designed in the region where this site occurs, we do
not have sequence data for all individuals at the first polymorphic site. The nucleotide
composition of the first three segregating sites are not known for allele ED6g because the allele-
specific primer for locus ED6 (Table S3) occurred in this region and allele ED6g is inferred from
the sequence chromatogram obtained with this primer set.
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Figure S3. Pairwise Ka vs Ks values estimated based on allelic compositions of four
conotoxin loci among populations of C. ebraeus at Hawaii, Guam and American Samoa. The
dashed line in (C) has a slope of 1 (i.e. Ka=Ks), and all data points in this panel are above the
dashed line. Ks of dots in the other panels are all 0.
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Figure S4. Bayesian consensus phylogenies constructed from sequences of a region of the
mitochondrial 16S gene recovered from fecal samples of C. ebraeus individuals at American
Samoa, Guam and Hawaii (GenBank accession numbers JX177300-JX177352, FJ804537-
FJ804572 and FJ907334-FJ907342) and downloaded from GenBank (GenBank accession
numbers included in the names of sequences).

Posterior probabilities are labeled at nodes of major clades. Sequences obtained from C. ebraeus
fecal samples are highlighted in bold. Names of fecal sequences include the location and the
number of identical samples from each location if identical sequences were obtained from more
than one individual. Putative Palola species (order Eunicida) were determined based on the
individual clades in the species tree and classifications proposed by Schulze [4]. Classification of
putative prey species are labeled in blue next to the clades. Am Sam: American Samoa.

(A) Phylogeny of sequences of Eunicida species constructed with the HKY+I+G model, rooted
with the outgroup Armandia bilobata.

(B) Phylogeny of sequences of Nereididae species constructed with the GTR+G model, rooted
with the outgroup Ctenodrilus serratus.
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Figure S5. Rarefaction curves of prey species richness versus sample size for Hawaii, Guam
and American Samoa populations. The vertical line is given to illustrate prey species richness
for the populations given the lowest sample size observed (N=19); the horizontal lines project to
expected species richness at size 19 for the three populations. AS: American Samoa.



Table S1. General primers for each conotoxin superfamily. 3’UTR: 3’ untranslated region.

Conotoxin Toxin type Primer Primer sequences
superfamily location
A s~conotoxin Prepro 5’ATGGGCATGCGGATGATGTTCAC 3’
3’UTR 5’ GTCGTGGTTCAGAGGGTCCTGG 3’
(0] S-conotoxin Prepro 5’CATCACCAAGATGAAACTGACGTG ¥’
3’UTR 5" GCGCCAATCAAAGATCAAGCC 3’
M (primer Prepro 5> CATGATGTCTAAACTGGGAGT 3’
set MPrl1) . 3’UTR 5" GCAAATCTGAAGGAGACTGCAATC 3°
M (primer | MEOMOOXIN T h 0 | 5° GTTGAAAATGGGAGTGGTGCT 3°
set MPr2) 3’UTR 5" ATGATATCAACAAACGCTGTCGTTG 3’
1 i Prepro 5> ATGATGTTTCGATTGACGTCAGTCAG 3’
3’UTR 5" ACGTCAGGCTTGAGTTATCTGCC 3’

Table S2. Locus-specific primers used to genotype each locus.

Locus | Location Primer Sequences
ED4 Forward | 5’>GTAAAACGACGGCCAGTATTGCACCAGAAAAGATGCGTACAG3’
Reverse | S’>CAGGAAACAGCTATGACCGCGCCAATCAAAGATCAAGCC3’
ED6 Forward | 5’>GTAAAACGACGGCCAGTAATTGCACCAGAAAAGATGCRTAAAC3’
Reverse | S’>CAGGAAACAGCTATGACCGCGCCAATCAAAGATCAAGCC3’
Forward | 5’>GTAAAACGACGGCCAGTTAAATTGCACGAGAAATCATGCATTAG3’
ED20 Reverse | S’>CAGGAAACAGCTATGACCGCGCCAATCAAAGATCAAGCC3’
A4 Forward | 5>GTAAAACGACGGCCAGTGATCGCTCTGATCGCCACACGC3’
E Reverse | S>CAGGAAACAGCTATGACCTGGAGTAGCAGCGTCTTCAACG3’

Table S3. Allelic-specific primers to verify and differentiate alleles.

Locus | Location Primer Sequences Purpose
5’"GTAAAACGACGGCCAGTCATCAG . .
Da Forward CAAGATGAAACTGACS’ dlffeifritw;te allgflie 3% from
Reverse | 3 CAGGAAACAGCTATGACCCGATG atle :e LZEZHC y
CVEISe | GACACGAACCACCCGTC3’ q g
5’"GTAAAACGACGGCCAGTGCACCA | . . .
pg | GAAMGCATGEGTARACAGY | Pilntate 112 e
Reverse | 3 CAGGAAACAGCTATGACCGCGCC sepuezéivn y
v AATCAAAGATCAAGCC3’ q g




Table S4. Results of hierarchical Analysis of Molecular Variance (AMOVA) for the highly
polymorphic loci (ED4, ED6 and E1) with the Tamura-Nei [2] model. Three types of
grouping were tested for each locus: H, (G, A) represents grouping of Guam with American
Samoa; G, (H, A) represents grouping of Hawaii and American Samoa; A, (H, G) represents
grouping of Hawaii and Guam. Significance of Fsc, Fst and Fcr values was evaluated by 10,100
random permutations. The negative percentage of covariance among groups may result from the
linear restriction of the model and large variations within groups. Results showed that levels of
variance among groups for the H, (G, A) grouping is much larger than levels of variance among
populations within groups, Fcr is large, and the P-value is the smallest among the three groupings.

Variation
V::;:z:ll;n a;)t:)(;)l;g Variation
Locus | Grouping groups within w1th1:1 Fsc Fsr Fer
(%) groups | POPs (%)
(%)
H, (G,A) 20.20 0.34 79.46 0.0047° 1 020570 | 020277033
ED4 G, (H,A) -1.75 18.58 83.17 01837 10168770 | -0.01770%
A, (H,G) -13.45 24.34 89.11 02157 1 0.1097° | -0.134™"
H, (G,A) 30.98 1.83 67.19 0.0377° 0.337° 031703
ED6 | G,(H,A) | -20.90 44.68 76.22 03770 | 02470 | 021
A,(HG) | -7.29 32.54 74.75 03070 | 02570 | -0.077%
H, (G,A) 17.53 -0.65 83.12 20.01770T [ 01770 | 01870
E1 G, (H,A) -7.01 18.81 88.20 0.187°° 0.1270 0,077
A, (H,G) -5.82 17.32 88.50 0167° | 0.127° | -0.067°%
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Table S5. Sample sizes, numbers of total (and unique) alleles, gene diversity, nucleotide
diversity and their standard errors (SE) of the five conotoxin loci at three locations. AS:

American Samoa.

Gene Nucleotide
Sample Alleles . . . .
Locus Location size (unique) Diversity Diversity
(SE) (SE)
AS 10 6 (0) 0.632 (0.113) 0.017 (0.010)
ED4 Guam 24 8(3) 0.714 (0.041) 0.028 (0.017)
Hawaii 28 4 (0) 0.201 (0.070)  0.005 (0.004)
AS 13 5(0) 0.785 (0.041) 0.053 (0.030)
ED6 Guam 24 6 (1) 0.638 (0.064) 0.041 (0.024)
Hawaii 30 3(1) 0.242 (0.070) 0.011 (0.009)
AS 21 7 (1) 0.678 (0.064) 0.025 (0.014)
El Guam 29 6 (0) 0.682 (0.041) 0.023 (0.013)
Hawaii 48 4(2) 0.620 (0.031) 0.022 (0.012)
AS 11 2(1) 0.091 (0.081) 0.001 (0.002)
ED20 Guam 25 2 (0) 0.040 (0.038) 0.001 (0.002)
Hawaii 20 2 (0) 0.050 (0.047) 0.001 (0.002)
AS 14 2 (0) 0.198 (0.092) 0.004 (0.004)
EA4 Guam 36 2 (0) 0.178 (0.056) 0.003 (0.004)
Hawaii 15 2 (0) 0.186 (0.088) 0.004 (0.004)
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Table S6. Posterior probabilities of the number of populations (K), assuming a uniform
prior of K=2, 3, and 4. Log probabilities of the data given K (i.e. log (P(data|K))) were
estimated with Structure 2.3.3.

K log(P(data|K)) Posterior Probability

=2 -332.3 1.0
=3 -352.4 0.0
=4 -367.7 0.0

Table S7. Tests of neutrality of conotoxin loci with Tajima’s D. Tajima’s D values were
estimated for each locus in each location and P-values were estimated by percentages of values in
10,000 simulations that were larger than or equal to observed values. *: P<0.05, **: P<0.001. D
values highlighted in bold are significantly different from zero after the strict Bonferroni

correction for multiple tests.

Locus | Population Tajima’s D
AS 0.466
ED4 Guam 2.205*
Hawaii -1.649*
AS 1.805%*
ED6 Guam 1.108
Hawaii -0.187
AS 0.837
E1l Guam 0.842
Hawaii 3.216%*
AS -1.162
ED20 Guam -1.103*
Hawaii -1.124*
AS -0.477
EA4 Guam -0.225
Hawaii -0.537
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Table S8. Coefficients of the slope of the fitted line in simple regression analyses of the
haplotype and nucleotide diversities of five conotoxin genes and the COI gene with the
diversities of prey (H’ and genetic distance). Haplotype diversities of the mitochondrial COI
gene for populations at Hawaii, Guam and American Samoa are nearly equivalent (0.963 at
Hawaii, 0.978 at Guam, 0.947 at American Samoa; retrieved from Duda and Lessios [5]). The
Guam population exhibits slightly higher nucleotide diversity (0.009 at Guam, 0.006 at American
Samoa and Hawaii; estimated with Tamura-Nei model from the COI gene sequences reported in
Duda and Lessios [5]).

Locus Haplotype Haplotype diversity Nucleotide Nucleotide diversity
diversity vs H’ | vs genetic distance | diversity vs H’ | vs genetic distance
ED4 0.423 2.597 0.016 0.079
ED6 0.422 3.069 0.032 0.237
E1 0.054 0.344 0.001 0.016
ED20 0.014 0.199 0 0
EA4 0.002 0.054 0 -0.001
Col -0.001 -0.069 0.001 0.002

Table S9. Pearson [6], Spearman [7] and Kendall [8] correlation coefficients of the pairwise
®st matrices of each of the three highly polymorphic conotoxin genes with the pairwise
divergence indices of prey (PS; and Dsr). Coefficients of @gt with Pianka’s overlap index are
identical to those with PS;.

Locus PSy Dst
Pearson Spearman Kendall Pearson Spearman Kendall
ED4 -0.999 -0.866 -0.817 0.727 1.000 1.000
ED6 -0.985 -0.866 -0.817 0.746 1.000 1.000
El -0.999 -0.866 -0.817 0.655 1.000 1.000
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Table S10. Gene and nucleotide diversities of two O-superfamily conotoxin genes MIL2 and

MIL3 and the mitochondrial COI gene of C. miliaris populations at Easter Island

(abbreviated as EI), Guam and American Samoa (abbreviated ‘AS’). Standard deviations of
indices are presented in parentheses. Distances among haplotypes are calculated with respective
models used in Duda and Lee [9]: K80 [10] model for locus MIL2, Jukes-Cantor [11] model for

locus MIL3, and Tamura-Nei model for the COI gene.

Gene Diversity

Nucleotide Diversity

Locus (Standard Deviation) (Standard Deviation)
El Guam AS El Guam AS
MIL2 0.635 0.271 0.381 0.015 0.010 0.014
(0.043) (0.084) (0.094) (0.009) (0.007) (0.009)
MIL3 0.747 0.594 0.631 0.021 0.017 0.017
(0.036) (0.070) (0.064) (0.001) (0.002) (0.001)
COI 0.961 1.000 0.979 0.008 0.010 0.010
(0.014) (0.017) (0.016) (0.004) (0.005) (0.005)

14
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