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Model Parameters and Sensitivity

Cell Cultures. Cells were isolated and cultured as described (1). Confluent multipotential

vascular mesenchymal cells (VMCs) were trypsinized, strained, and plated in tissue

culture dishes (2.5 × 104 cells per cm2) to achieve ≈75% confluency. Cells were

cytochemically stained for alkaline phosphatase or for calcium mineral deposits by using

the von Kossa silver nitrate method (1). In the von Kossa method, only the mineralized

central portion of the ridge is stained black, thus the black regions in Figs. 1d and 4 a, c,

e, and g do not reflect the full thickness of the ridges. The present studies were performed

by using the more rapidly mineralizing type of VMC (2, 3). Our findings may well also

apply to the slow-rapid populations to the extent that similar patterns emerge in both

types of VMC, differing only in rate of formation. Warfarin (4 nM) was added at day 2 of

culture and with each medium change (approximately every 3 days) through the time of

culture, another 27 days. Matrix carboxyglutamic acid protein (MGP) (40 nM) was also

added at the time of plating and with each medium change. Treatment was applied from

day 1 through the entire culture period.

Mathematical Model. We modeled the cell culture as a 2D medium, using Eqs. 1 and 2,

assuming that the small “pile-ups” of cells at the aggregation points do not essentially

change the biology. Our 2D spatial domain was discretized with a uniform mesh (100 ×

100; the results remained stable when finer meshes were used). The diffusion terms were

discretized by using explicit second-order finite differencing; we updated the

concentrations of U and V by explicit time marching using a second order Runge-Kutta

time integration scheme. In all simulations, we use no-flux boundary conditions and

initial concentrations of U and V that are uniformly distributed near their equilibrium

values, with a 2% random fluctuation.



Movies. We include two movies made from the simulations. Both show the evolution of

the initial pattern (i.e., Fig. 2). Movie 1 is from the simulation for Fig. 3, and Movie 2 is

from the simulation for Fig. 4.

Parameter Selection and Sensitivity. We follow the approach of a recent report by

Eldar et al. (4), which provides a good discussion of parameter selection and sensitivity

questions for modeling cell migration patterns in a model of embryonic pattern

formation.

Diffusion coefficients. To estimate the ratio of activator/inhibitor diffusivity, parameter D,

we first estimated the diffusivity of each molecule from experimental data. Diffusion of

the activator, bone morphogenetic protein-2 (BMP-2), was estimated from diffusivity of

its homologue, decapentaplegic (Dpp), which was directly measured by Entchev et al. (5)

Using GFP labeling and imaging, they found a rate in their assay corresponding to ≈1 ×

10-8 cm2/sec. Because Dpp can rescue BMP-2 deficiency in vivo, these proteins are likely

to have similar structure and diffusion behavior.

We also took into consideration the nonlinear slowing of diffusion of large molecules by

extracellular matrix. Papadopoulos et al. (6) found that diffusivity of larger molecules

(50-200 kDa) is reduced as much as 10- to 20-fold in muscle tissue. Similarly, Baxter et

al. (7) reported that the diffusion coefficient for 70-kDa dextran in cheek pouch tissue

was reduced to 2 × 10-9 cm2/sec. BMP-2 diffusion also may be reduced by its tendency to

dimerize (8) and to unfold in acid pH (9). These considerations would reduce the

estimated diffusivity of BMP-2 to ≈0.1 × 10-8 cm2/sec. Because tissue culture may

present less resistance to diffusion than muscle tissue, we estimated a final value of 0.15

× 10-8 cm2/sec for BMP-2 diffusivity. Thus we choose DU = 0.15 × 10-8 cm2/sec.

Diffusivity of the inhibitor, MGP, has not been directly measured. A theoretical

approximation can be made based on MGP’s 10-kDa molecular mass (10). Using

empirical formulas (11-14), the diffusivity of MGP can be estimated at ≈30 × 10−8

cm2/sec. This is realistic when compared with the known diffusion coefficient of 50 ×



10−8 cm2/sec for amyloid B, which has a molecular mass of 4 kDa (15). The small size of

MGP makes it less subject to the nonlinear slowing described by Papadopoulos et al. (6).

Thus we choose DV = 30 × 10-8 cm2/sec. This yields a value of ≈1/200 for the ratio of

BMP-2 to MGP diffusivity. This is the value of D = DU/DV we used in the simulation.

Length scale. The length of the domain is based on actual well sizes used in tissue

culture, with a diameter range of 1-4 cm. Thus we took L = 4 cm.

Autocatalysis. Ghosh-Choudhury et al. (16) previously showed that BMP-2 autoregulates

in a saturating manner. The value of k sets the saturating value for specific values of V;

however, because the level of V (i.e., MGP) was not known in those experiments, it is

difficult to define its precise value.

Degradation and production rates. The production rates for MGP and BMP-2 were

estimated experimentally to provide a time scale for the equation for the scaling factor, γ.

In unpublished work, we transfected a cell line of embryonic kidney cells (HEK-293)

with expression vectors for BMP-2 with a cytomegalovirus (CMV) promoter. By ELISA,

these cells release 20-125 ng/ml of BMP-2 into 7-8 ml of supernatant in 48 h, i.e., ≈3-20

ng/hr. This would be an upper limit of the production, because the CMV promoter is

known to have a relatively high transcription rate. In additional unpublished findings, we

assessed the production of BMP-2 in calcifying vascular cells and in endothelial cells.

Rates were ≈0.06-0.12 ng/hr for both cell types.

Using biological inactivation of BMP-2 by MGP, we are able to estimate by bioassay that

the production rates of BMP-2 and MGP are similar (17). These estimations have been

verified by using a FLAG-tagged MGP (18) and a newly developed ELISA (K.B.,

unpublished results). Altogether, these data yield production rate estimates ranging from

0.06 to 20 ng/hr for both BMP-2 and MGP. This production rate was used to establish a

value for the scaling parameter, γ



Although it was less successful, we also attempted to assess production using a promoter-

reporter construct. We transfected the U2-OS bone cell line with a construct consisting of

the MGP promoter and a luciferase reporter. Luciferase activity was measured at ≈3,000

activity units per day. However, the conversion from activity units to molecules of

luciferase could not be reliably determined due to reagent variation, and the results vary

excessively with transfection efficiency.

Degradation. Entchev et al. (5) estimated the upper limit of proteolytic degradation of the

BMP-2 homologue, Dpp, as 5% of production rate. Therefore, we conservatively

estimated BMP-2 degradation as 1% of production rate (thus we took c = 0.01). The

primary form of “degradation” expected for both BMP-2 and MGP is sequestration into

extracellular matrix (18). Based on unpublished work, we have found that MGP is taken

up more avidly by matrix than is BMP-2, with an approximate ratio of 2:1. Therefore, we

estimated MGP degradation to be 2% of production rate (e = 0.02).

Source term. The value of the source term, S, was chosen as follows. A typical

concentration of MGP in the supernatant of CVC is 120 ng/ml. This corresponds to 12

nM (10 kDa = 10,000 gm/mol). Exogenous MGP was added at 40 nM, thus

approximately tripling the concentration. For the model, the initial MGP concentration

was scaled as 2. The source term, S, was chosen as 0.006 per time step. This was applied

for 1,000 time steps, yielding a tripling of the concentration to 6. This tripling

corresponds to the actual tripling of the MGP concentration in the cell culture.

Scaling parameter (γ). The parameter γ is equal to (L2/DV )(1/TC ), where TC is the

characteristic time scale of the biological kinetics, based on the time required for BMP-2

synthesis, which we take to be ≈1 ng/hr (3.6 × 103 sec). Thus we estimated γ by

calculating
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which is the value of γ we used in the simulation.

Initial conditions. The model was run from initial conditions of U = U0 and V = Vo, where

U0 and Vo are the equilibrium values of the pure kinetics. To test the robustness of the

model to initial conditions, we also varied these initial conditions over a 10-fold range.

Validity of the Model. In this particular reaction-diffusion model, features of the patterns

are sensitive to changes in some of the parameters, such as k and γ, but not to others, such

as the diffusion coefficients (19). Significant changes (e.g., doublings) in γ generate the

mode-doubling as described, and significant changes in S or k can alter the pattern from

stripes to spots. For some of the parameters, the values do not influence the ultimate

predominant pattern, only the transitional stages leading to it. In the case of the diffusion

coefficients, the values may vary substantially without influencing the results, as long as

the inhibitor diffuses more rapidly. Within this inequality, the ratio can change by orders

of magnitude, and pattern formation is preserved in a robust manner. The significance of

the sensitivity of certain parameters is an interesting issue; one possibility is that it

represents a mechanism for limiting pattern formation to certain cell types and

conditions.

The patterns in this experimental system are also reproduced by other reaction-diffusion

models (19). The family of reaction-diffusion equations have in common rapid diffusion

of the inhibitor and nonlinear inhibition and activator autocatalysis. We selected this

particular reaction-diffusion model because the structure of the equations corresponded

best to known physiological variables and relationships in our experimental preparation.

Our finding that these cells self organize according to reaction-diffusion principles may

ultimately be modeled by other members of the family of reaction-diffusion models as

more is learned about the physiology of these cells. What is remarkable here is that our

experimental preparations have produced patterns that are strikingly like those produced

by an entire family of reaction-diffusion models.



The population we are modeling here is of a single cell type and two of its morphogens.

Other investigators have looked at systems that involve more than one cell type (see, for

example, ref. 20). Such heterogeneous systems of pattern forming cells are often found in

embryologic phenomena. Our homogeneous model may be more typical of the situation

in adult tissue.

It is important to note that the patterns we see in the culture dishes are patterns of cells,

but the patterns in our mathematical model are patterns of concentration of a chemical,

the “activator” morphogen. We focused on a two-variable model (activator U and

inhibitor V) on the grounds that this model predicted the spatial patterns correctly,

without requiring any assumptions about cell behavior. Arguably, the minimal model that

explains the patterns is the best model; following Occam’s razor, we choose the simpler

explanation.

In addition, we are following the excellent study by Kondo and Asai (21), which uses a

model that, like ours, is a two-variable reaction-diffusion equation, with a chemical

activator and inhibitor. And, as in our study, they compare an observed pattern of cells

with a simulated pattern of activator chemical, which they set in correspondence to each

other (“The striking similarity between the actual and simulated pattern rearrangement

strongly suggests that a reaction-diffusion wave is a viable mechanism for the stripe

pattern of Pomacanthus”).

Although we do not think a model including cells is necessary to explain the patterns, we

also studied a three-variable model, including cells, following Keller and Segel (22), and

more recently, the model of Painter, Maini, and Othmer (23). In addition to the activator

u and inhibitor v, we add a variable n representing cell density. A differential equation for

n was derived following Painter, Maini, and Othmer, which combines a tendency to

diffuse with a tendency to follow the activator chemical U. The full model would be:
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g(u,v) = γ (u2 − cv + s)

We carried out simulations using this three-variable model and found that the predictions

of this model are very similar to the predictions of the simplified two-variable model. Fig.

5 illustrates this similarity.

Rationale for model reduction. In retrospect, the correspondence between the patterns of

U and the patterns of n can be understood directly from the equations. Consider the

equations simplified to one spatial dimension x; at equilibrium, the steady-state solution

for n is

let the flux
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Because we assume that no cells leave the domain, J = 0. Therefore, by integrating

directly, we get

n = Cearctan(u), where C = eχ0

and so n is a monotonically increasing function of U. Hence the distribution of n at

equilibrium should parallel the distribution of U. In other words, the distribution of cells



follows the distribution of activator, hence the third equation adds little explanatory

value.

Additional Model Predictions. According to our model, the autocatalysis of U would be

predicted to saturate. Experimental data from ref. 16 support this prediction. As shown in

Fig. 6, Ghosh-Choudhury (16) report that BMP-2 autocatalysis saturates. In this

experiment, BMP-2 production is measured as the transcriptional activity of the BMP-2

promoter (“relative luciferase activity”), which levels off with increasing levels of BMP-

2.

In contrast, an important alternative model, also due to Gierer and Meinhardt (24),

predicts that U would increase autocatalytically without bound:

f (U,V ) = −bU +
U 2

V
 .

A second prediction of our kinetics is based on the observation by Koch and Meinhardt

(25) that the Gierer-Meinhardt kinetic scheme with saturation produces patterns only if

the degradation rate of the inhibitor exceeds that of the activator. Because patterns are

formed by our model, then it predicts that the inhibitor degrades more rapidly than the

activator. The experimental findings indicate the inhibitor is indeed eliminated more

rapidly, in our experiments about twice as fast. Koch and Meinhardt (25) give a

numerical criterion (in appendix A, ref. 25), which is met by our system. For our model

to produce patterns, the ratio of inhibitor degradation rate to activator degradation rate

would have to be >(2/a0 – 1). In the terminology of Koch and Meinhardt (25), a0 is the

equilibrium value of the activator (our U0), which is ≈1.1. The criterion then reduces to

requiring that 2 > (2/1.1 – 1), or 2 > 0.8, indicating that our model satisfies the criterion.

A third consideration that lends support to our kinetics is the observation of Murray (19)

that the model with saturation is more likely to support stable pattern formation than the

model without saturation in the region of our parameter estimates. Because the model



produces stable patterns, it predicts that the parameters fall into a certain region in

“Turing space.” The biologically determined parameters fall clearly into the pattern

formation region for the saturation model but not for the model without saturation (figure

7 in ref. 19). (In our case, a = 0, D = DV/DU ≈ 200, and b = µ/ν ≈0.5, with µ and ν being

the degradation rates of the activator and inhibitor.)

Refinement for case of homologous inhibitors. At very low levels of MGP, such as in the

MGP(−/−) mouse, some activity of its homologous genes, such as noggin and chordin, may

be induced. This could be accommodated by a minor revision of the model in which V is

replaced with V + C, where C is a constant representing compensatory inhibitory activity

of the homologous genes. Such a simulation was run by using C = 0.05; the resulting

pattern (shown below) is not significantly affected by the modification. A level of 5%

was chosen as an example, because the compensatory activity in the knockout mouse

should be significantly lower than normal, otherwise it would not have a phenotype.
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