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§1 Experimental Materials and Methods

1.1 Media and strains.

All experiments were conducted using Escherichia coli K12(AG100) and M9 minimal media (0.2% glucose and
0.1% casamino acids). We used two antibiotics with a synergistic interaction: doxycycline (DOX) and erythromycin
(ERY). Stock solutions of antibiotics were made from powder stocks (Sigma-Aldrich) at 5mg/ml in water for DOX
and 100mg/ml in ethanol for ERY and stored at −20◦C. All subsequent dilutions were made from these stocks and
kept at 4◦C. After testing, no measurable decay in the efficacy of the antibiotic has been observed when storing these
antibiotics in either of these conditions for one week, or less.

1.2 Batch-transfer protocol

For all the protocols consisting of multiple serial batch transfers referred to in the main text, with each transfer
conducted once per ‘season’, we used the same microtitre plate reader (BioTek) to measure optical densities every 20
minutes at 600nm as a proxy for bacterial population densities in different environments (written as OD600nm or just
OD). We used 96-well plates containing 150µL of liquid in each well incubated at 30◦C to culture bacteria, shaken in
a linear manner before each OD measurement was taken.

For an experiment exposing bacteria to antibiotics lasting several seasons (where each season lasts 12h or 24h) an
initial inoculation was performed using an isogenic population obtained from a single colony and cultured overnight
in M9 minimal media (0.2% glucose, 0.1% casamino acids) at 30◦ in a shaker-incubator. At the end of each season,
the same 96-pin plate replicator was used to sample the liquid volume (containing bacteria and spent medium) which
was then transferred to a new plate containing fresh growth medium and antibiotics, ensuring the same environment
for each replicate population was maintained. Every subsequent transfer to a fresh plate containing medium was
performed using the same 96-pin replicator, we estimated the volume transferred to be 1.5µL. The so-obtained, time-
dependent optical densities were then imported into Matlab in order to subtract the background (determined from
blank wells containing only medium) and compute the mean optical densities and other statistics.

N.B.: media-only wells testing for the presence of potential contamination were used on every 96-well microtitre plate.
If any showed turbidity above blank levels, the assay in question was repeated.

1.3 Live cell counts: optical density is a reasonable proxy for cell density
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Fig. S1 – Data showing that OD is positively correlated with a live cell count (CFU per ml) in the plate reading devices
that we use. (a) E. coli K12(AG100) was cultured in M9 and serially diluted to different OD values, these were then counted
to reveal CFU values (all error bars are 95% confidence intervals of the mean, three replicates). A linear regression (blue)
is shown next to data. A constrained linear regression that must pass through the datapoint (0, 0) is also shown (red). (b)
The latter indicates that OD has the potential to over-estimate live cell numbers at the lowest densities.

Many of the bacterial growth and inhibition experiments described in this article require the continual measurement
of bacterial population densities and this cannot be done with by-hand lab techniques, such as colony counting. We
therefore use devices for which proxies of population density can be rapidly produced using automated protocols that
read densities as light absorbance.

1



2 S1 TEXT: USING A SEQUENTIAL REGIMEN TO ELIMINATE BACTERIA AT SUB-LETHAL ANTIBIOTIC DOSAGES

No claim is made in the article on the basis of OD data alone that a zero population density has resulted under any
treatment conditions, the measurement error inherent to such devices is too great for that to be reliable. When any
claim is made that no cells are present, this is always deduced from first observing an OD600 value of below 10−2 units
after at least 12h growth, thereafter cells are counted manually following a spot test in order to determine whether
cells are present and, if so, how many. Fig. S1 shows that OD is a reasonable indicator of bacterial population density:
this measure correlates positively, and indeed linearly, with viable cell counts (measured in units of colony-forming
units per ml).

1.4 Dose-response curves

We determined dose-responses by measuring bacterial OD600nm dynamics at different dosages of both antibiotics,
the resulting growth data was used to estimate the drug concentration necessary to achieve x% inhibition with respect
to the null-antibiotic control (at drug concentrations hereafter denoted ICx). As illustrated inFig. S2, the approximate
IC50 values obtained for a 12h experiment were 0.04µg/ml for DOX and 6.13µg/ml for ERY. The degree of variation
in these measures is illustrated using a 95% confidence interval for each dose response curve in Fig. S2.
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Fig. S2 – 12h dose-response curves for E.coli K12(AG100) for both drugs used in this study: (a) erythromycin and (b)
doxycycline. Superimposed Hill function datafits are used to estimate the value of, and error in, x when computing ICx

values, the shaded region represents an estimated 95% confidence interval, Hill coefficients are stated in the top-right corner
of each datatfit (4 replicates). Red lines denote the 95% confidence intervals of IC50 and IC70, as the lines do not intersect
estimates of both parameters are significantly different.

1.5 Drug interaction curves

We say that synergy is exhibited by a drug pair, at a given time, if the following holds. If B(t,D,E) denotes the
time-series of bacterial densities as a function of time and dose, given two drugs denoted D and E, then when

(1) B(t0, D0, 0) = B(t0, 0, E0) (an equi-potency assumption on both drugs)
(2) i(θ) := B(t0, θD0, (1 − θ)E0) < B(t0, 0, E0) for all θ between 0 and 1, (note the later equals B(t0, D0, 0) by

assumption)

the drugs D and E are said to synergise at basal dosages D0, E0 at time t0. Under these assumptions, by fitting a
quadratic to the interaction function i(θ), so that αθ2 + βθ + γ ≈ i(θ), we can determine the numerical degree of
synergy from the value of α. When the inequality α > 0 holds for all E0, D0 and t0, a criterion that can be established
in practise using standard numerical fitting routines and a t-test, we then say D and E synergise. This procedure,
called the α-test, is detailed fully in [18]. The quadratic fits to bacterial density data in Fig. S3 establish that this
statistical test is passed for ERY, DOX in the experimental described conditions described above using the strain
E.coli K12(AG100).

1.6 The (n+ 1)-protocol: measuring collateral sensitivity and cross resistance

In order to quantify how acclimation (UK English equivalent ‘acclimatisation’) to one antibiotic impacts population
growth after a switch to another antibiotic occurs, and to measure this as a function of the duration of the acclimation
period, we evolved five replicates of an isogenic population of E. coli for n + 1 seasons at IC70 (see Fig. S4), where
each season lasts 24h, as follows.

Bacteria were exposed to a constant environment (DOX or ERY) for n ≥ 3 seasons before being transferred into
an environment containing the other drug: those growing in DOX were transferred into an environment containing
only ERY, those growing in ERY were then treated with DOX. We compared the optical densities of the population
that underwent a change in drug at the end of the n-th season to the corresponding optical density of the population
growing under constant conditions. This allows us to determine whether acclimation to one drug is associated with
increased sensitivity to the other.
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Fig. S3 – Establishing statistically significant synergy at both 12h and 24h using the α-test for synergy defined in [18]
(p-values indicated in the figure) with both erythromycin and doxycycline at their respective IC50 dosages. Superimposed
fits of a quadratic function is shown, the shaded region represents an estimated 95% confidence interval. The property that
the fit is a convex function (and not concave) establishes the ERY-DOX synergy because a 50-50 combination reduces the
optical density (indicated on the y-axis) relative to both ERY-only and DOX-only monotherapies.
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Fig. S4 – 24h dose-response curves for E.coli K12(AG100) for both drugs used in the (n+ 1)-protocol: (a) erythromycin
and (b) doxycycline. (To ensure stationary phase occurred beyond 12h, the M9 medium was supplemented here with a three
times greater concentration of glucose than Fig. S2.)

The treatments implemented using the (n+ 1)-protocol are illustrated in Fig. S5.

Fig. S5 – Treatments used in the (n + 1)-protocol. First, bacteria are grown under the effect of a single-drug (ERY in
green and DOX in blue) for n days until a switch is performed and the other antibiotic is used for one day.
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1.7 The sequential deployment of antibiotics.

Differences in population densities produced by different sequential treatments were measured as follows. An 8-
season batch transfer protocol was implemented, with each season having 12h duration. At the end of each season,
a 1% sample of the final population was transferred using a pin replicator into a fresh 96-well plate containing a
replenished environment (containing both fresh M9 media and antibiotic).

Drug treatments consisted of the sequential deployment of DOX and ERY whereby only one drug was used within
each season. The order in which the drugs were deployed defined each treatment and, in order to perform a like-with-
like comparison, we introduced the constraint that all treatments were balanced: by the end of an 8-season treatment,
each drug would be used for 4 seasons (ERY for 4, DOX for 4) and this is true for all treatments implemented. Thus,
these sequential treatments are illustrated using the schematic inFig. S6. Each such treatment was initially replicated
three times.

Fig. S6 – Sequential treatments and monotherapies implemented in an 8-season evolutionary assay (ERY in green, DOX
in blue). All treatments are balanced: they have an equal number of seasons for which each drug is deployed.

Different results are obtained in this protocol depending on the choices of dose for ERY and DOX. All treatments,
including monotherapies (ie. treatments that use one antibiotic for the entire duration), were implemented at IC50

and IC70 dosages. As a control, we also implemented the 50-50 combination treatments where, to clarify what this
means, if monotherapies used dosages of 3µg/ml for ERY and 0.1µg/ml of DOX, the 50-50 treatment would have
1
2 × 3µg/ml of ERY and 1

2 × 0.1µg/ml of DOX. By design, the 50-50 combination treatment must yield a lower OD
than the monotherapies in the first season to be consistent with previous studies reporting ERY and DOX (and our
prior data) as a synergistic drug pair [9, 18].
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§2 Typical growth data and the rate of adaptation

Typical raw data typical are shown in Fig. S7. If no drug is deployed (yellow data) the OD increases each day
with the bacterium entering stationary phase progressively earlier each transfer (a.k.a. season). Antibiotic use reduces
population growth and delays entry into stationary phase.

Fig. S7 – Mean optical density data (plotted as coloured areas) in an 8-season experiment with transfers performed every
12 hours. Each row represents a different treatment and the drug used each season is colour-coded (yellow areas represent
no drug, blue the use of DOX, green the deployment of ERY and red a 50-50 combination of DOX and ERY). Solid coloured
lines denote s.e., n = 5.

Calculating the phenotypic rates of adaptation using the measure defined in [9] for the data presented in Fig. S7
produces Fig. S8. This shows that growth rate adaption to treatment is different for each condition, being fastest
for the 50-50 antibiotic treatment and slowest for the DOX monotherapy. Interestingly, the rate of adaptation for
populations cultured in no-drug conditions are between these two extremes. This data shows that antibiotic inhibitory
effect and the rate of adaptation are not necessarily correlated and that adaptation to a media-only environment (i.e.
no drug) can be just as rapid as adaptation to antibiotic-inhibited growth.
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Fig. S8 – (a) The rate of adaptation for each of the treatments shown in Fig. S7. There is a positive correlation between
rate of adaptation and final growth rate in the treated populations. The no-drug conditions produce higher growth rates
than the drug-treated conditions and adaptation is just as rapid as in drug-treated conditions. (b) Adaptation is fastest to
the synergistic 50-50 combination treatment. Importantly, the rate of adaptation to the no drug control environment is not
the lowest of all the conditions tested. This data indicates no positive correlation between rate of growth adaptation and the
inhibitory effect of the antibiotics because adaptation can be just as fast in the absence, as in the presence, of antibiotics.
(c) Growth rate is, of course, greatest in the last season in the populations with no antibiotic. Moreover, growth rate is not
lowest on the last season in the 50-50 combination treatment, despite the ERY-DOX synergy (vertical bars are s.e., n = 6).
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§3 Additional Data

3.1 The combination treatment eventually loses out to all sequential treatments at IC50

The data presented in the figures of this section (Fig. S9, Fig. S10) demonstrate that a treatment producing
the greatest inhibitory effect when measured over a single season need not continue to inhibit growth maximally as
treatment proceeds. At these dosages, the 50-50 combination treatment is optimal at reducing population growth in
season 1, but it is close in performance to the worst treatment of all by season 8.
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dotted lines represent the mean OD taken over all the sequential treatments and the coloured dots show the deviation of the
OD of each sequential treatment from the 50-50 combination (blue dots: DOX, green dots: ERY). The histograms represent
the distributions of performances of all sequential treatments relative to the combination treatment in each season. This
series of so-called forest plots show how at the beginning of the experiment all dots are to the right-hand side of the 50-50 line:
their performance is worse than the multidrug combination. However, as the number of seasons increases, more treatments
cross the vertical line and thus achieve higher inhibition than the 50-50 combination. By the end of the experiment all
sequential treatments outperform the multidrug combination.
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3.2 No correlation between drug switching and inhibitory effect at IC50 and IC70 dosages

We first determined the ODs produced by all the balanced sequential treatments at IC70 dosages and, as shown in
Fig. S11, we sought a negative correlation between the number of switches in an 8-season treatment and the number
of bacteria it produces. This was done in two ways: we measured the total number of bacteria produced by each
treatment (using OD as the proxy) and we measured the final OD produced, namely at 96h. We then compared the
number of drug switches with these population density measures produced by each treatment. This figure shows no
evidence of the correlation we sought.

(a)
1 2 3 4 5 6 7

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Σ
 O

D
(T

)

no. of switches

 

 
sequential treatments

0 cells in 3 replicates

0 cells in 1 or 2 replicates

regression (R
2
 ≈ 0.00022, p ≈0.91)

(b)
1 2 3 4 5 6 7

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

no. of switches

Σ
 O

D
(T

)

 

 

sequential treatments

Fig. S11 – (a) At IC70 there is no correlation between the number of drug switches and the mean total number of bacteria
produced per sequential treatment. Here the 16 best performing IC70 treatments, those with lowest population densities at
96h in Figure 2A of the main text, are highlighted with red and black squares (error bars are s.e., n = 3). The black line is a
linear regression between the number of drug switches and the (cumulative) OD data, showing no evidence of a correlation.
The data in (b) is analogous to (a) but it was produced at IC50 dosages.
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Fig. S12 – H0: effecting a change of drug correlates with a measurable change in OD. (a) This boxplot of relative change
in OD from one season to the next (namely (y−x)/(x+ y) where x is OD at 12h on day n and y is OD at 12h on day n+ 1,
expressed as a percentage) provides no evidence to reject H0 using the same dataset as used inFig. S10. Here (y−x)/(x+y)
(that, note, necessarily lies between −1 and +1) is computed for two treatment classes: ‘twist’ treatments occur when ERY
follows DOX or DOX follows ERY from day n to day n+ 1, ‘stick’ treatments occur when DOX follows DOX or ERY follows
ERY. (b) Stratifying the same treatments further is not sufficient to reject H0.
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3.3 Some sequential treatments, but not the combination, clear the bacterium at IC70 dosages

0.001

0.01

0.1

O
D

6
0

0

 

 
no drug

sequential

0.001

0.01

0.1

O
D

6
0

0

0.001

0.01

0.1

O
D

6
0

0

12 24 36 48 60 72 84 96
0.001

0.01

0.1

time (h)

O
D

6
0

0

12 24 36 48 60 72 84 96

time (h)
12 24 36 48 60 72 84 96

time (h)
12 24 36 48 60 72 84 96

time (h)

Fig. S13 – Sixteen different sequential ERY-DOX treatments were replicated at IC70 three times, each of these replicates is
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red squares in the legend, a spot test indicated no live cells in the growth medium after 96h of treatment. Of the remaining
11, in 4 there were no live cells found in 2 replicates and 7 treatments in which a single replicate had no live cells at 96h.
Thus, a total of 48 sequential treatments were trialled at sub-lethal dosages, 30 of which lead to complete elimination of
the bacterium by 96h. By way of contrast, and as expected, Fig. S14 shows that monotherapies and the 50-50 combination
treatment do not eliminate bacteria at these dosages. The drugs used for each treatment are indicated in each panel, with
a blue dot for DOX and a green dot for ERY.
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Fig. S15 – Dynamics of replicates of the sequential treatments at IC70 shown in Fig. S13 that indicated a zero population
density in at least one replicate. These were replicated and cell densities counted each season, thus colony forming units
(CFUs) are now used on the y-axis (in fact, log10(1 + C) is shown where C is cell density measured in CFUs per ml which
is zero if C = 0.) The antibiotic treatments are indicated as a legend in each figure. Note how the population density of
one replicate can eventually collapse for a given treatment whilst a different replicate can recover, leading to large between-
replicate variations. Note also that this replicated dataset has 21 successful treatments from the full set of 48 replicates.
This is a different outcome to the first set of replicates shown in Fig. S13, however the so-called ‘red square’ treatments
behave consistently in all replicates by producing a zero CFU count at some time.
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§4 A whole genome sequencing analysis

In order to investigate antibiotic resistance adaptation based on prior and de novo mechanisms, we performed the
following analysis. We cultured bacteria with 12h seasons using a batch transfer protocol implemented in a shaken
flask with 5ml of M9 liquid medium, implementing one environmental condition without drugs (called the ‘no drug
control’) and two different antibiotic conditions. All were replicated three times. The two antibiotic treatments were
the 50-50 combination at IC50 dosages and the sequential treatment of the from ‘EDEDEDED’. Measuring a 150µL
sample from the flask in a plate reader at 600nm, the cumulative optical densities produced were similar for both
these drug treatments as shown inFig. S16. All replicate populations from 24h and 96h were then sequenced using the
paired end technology on a Illumina 7500 machine at the Exeter sequencing service. Both single-drug monotherapies
and the ‘DEDEDEDE’ treatments were implemented as controls, but were not sequenced (see Fig. S16).
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Fig. S16 – Cumulative optical density at the end of each season for five different treatments: two single-drug treatments
(DOX in blue and ERY in green), a 50-50 multidrug combination (in red) and sequential treatment protocols based on a
daily antibiotic switch. Note how the treatment with the highest cumulative optical density is the 50-50 combination, despite
it being the most effective drug at the beginning of the experiment. The label WGS indicates the densities and timings of
sequenced populations (3 replicates each).

4.1 Library preparation method

DNA was fragmented by sonication using a Biorupter for 30s on, 90s off, using low power for 10 minutes on ice.
Libraries were prepared using SPRIworks cartridges for Illumina (Beckman Coulter) and Nextflex indexed adapters,
with 300-600 bp size selection, amplified with 8 cycles PCR using Kapa HiFi DNA polymerase and purified using
GeneRead kit (Qiagen). Concentrations were determined using a Bioanalyser 7500 DNA chip. Libraries were pooled
in equimolar amounts, denatured, diluted to 6.5 pMol and clustered on a flowcell using a cBot (Illumina). 100 paired
end sequencing with a custom barcode read was completed on a HiSeq 2500 using Truseq SBS v3 reagents (Illumina).

4.2 Construction of a Local Reference

To facilitate the genomic analysis we first constructed a local reference genome of E. coli K12 (AG100), constructed
by modifying the publicly available annotated genome of strain MG16551 [19]. This choice was motivated by its close
relation with AG100 and the quality of the existing annotation.

Reads were processed with fastq-mcf [2] to remove adapters from the sequencing data and to trim and filter low-
quality reads. In particular, cycles with at least 1% of ‘N’s were removed (command-line parameter: -x 0.01). The
remaining reads were mapped to MG1655 using the Burrows-Wheeler aligner BWA [13] with standard parameters. The
resulting alignments were processed with Samtools 1.0 [14], with pair/trio calling enabled (command-line parameter:
-T). Subsequently, alignments were sorted, artifacts and duplicates were removed, and finally the alignments was
indexed. Unaligned reads were stored separately.

Structural Variations (SVs) were detected using Pindel [25]. Its pattern-growth algorithm detects breakpoints of
large deletions and medium-sized insertions by identifying paired reads for which only one of the reads can be mapped
to the reference. It then attempts to break the unmapped read into two and maps both shorter fragments to the
reference. If successful, the breakpoints of deletions or insertions can thus be determined. We restricted the detection
to SVs of maximum 2,071,552bp (command-line parameter: -x 8). The detected SVs were visually inspected with
IGV [21, 23]. We validated 5 deleted regions, 9 putative breakpoints and 9 indels, nucleotide polymorphisms were
intentionally ignored at this step.

1MG1655 genome and its annotation files are available at ftp://ftp.ncbi.nih.gov/genomes/Bacteria/Escherichia_coli_K_12_

substr__MG1655_uid57779/; version NC 000913.2 of 22 July 20013 was used.

ftp://ftp.ncbi.nih.gov/genomes/Bacteria/Escherichia_coli_K_12_substr__MG1655_uid57779/
ftp://ftp.ncbi.nih.gov/genomes/Bacteria/Escherichia_coli_K_12_substr__MG1655_uid57779/
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Using a Python script, we removed deleted regions and putative breakpoints detected by Pindel, resulting in a set
of 15 non-overlapping sequences free of major SVs. Detected indels were subsequently applied to these sequences.
With Samtools we extracted the reads previously mapped to removed regions or within 2/3 of the library insert size
from their borders. These and the reads without a feasible alignment were assembled with Velvet [26] resulting in
a set of contigs. The union of this set and the set of the 15 sequences was used to generate a set of scaffolds using
SSPACE [3]. This software uses the distance information of paired-ends to assess the order, distance and orientation
of the submitted contigs and combines them into scaffolds. The resulting scaffolds were extended with GAPFILLER
[4] that attempts to close gaps between scaffolds using the distance information of paired-read data; 21,942 scaffolds
were thus obtained.

These scaffolds were aligned to MG1655 using Mauve [20]. This software can align a set of sequences to one genome
from a related one that differs from the former for the presence of SVs and only the 13 longest sequences (the shortest
was 109,280 bp) could be aligned to the reference. The remaining sequences, not more than 2,375 bp each, were
discarded. The 13 scaffolds were concatenated into one sequence, here called the ‘intermediate’ reference according to
an order and orientation given by Mauve.

We used Pindel to verify if SVs were still present in the intermediate reference and to validate the multiple nu-
cleotide polymorphisms detected in the previous execution of Pindel. No SV was observed visually with IGV, while 6
polymorphisms of 2 consecutive nucleotides each, detected even before by Pindel, were still present. We applied these
polymorphisms to the intermediate reference using the script vcf-consensus of the vcf-tools utility [6]. Finally, SNPs
were detected using the software VarScan.

VarScan uses both heuristic and statistical methods to call SNPs based on read depth, base quality, significance
and variant frequency. We used VarScan with the following parameters: p-value threshold of 0.05 for calling variants,
minimum read depth of 20 to make a call at a position, at least 8 supporting reads at a position to call variants,
base quality not less than 20 at a position to count a read, minimum variant allele frequency of 0.03; frequency
to call homozygote of at least 0.9 (command-line parameters: --p-value 0.05 --min-coverage 20 --min-reads2

8 --min-avg-qual 20 --min-var-freq 0.03 --min-freq-for-hom 0.9) The detected SNPs were applied to the
intermediate reference with vcf-consensus and the resulting sequence was our local reference. The local reference was
mostly annotated using RATT [17], transferring the annotation from MG1655 to this sequence for regions with high
synteny. Using the RAST annotation server, we annotated the two longest regions with low synteny (37,193 bp and
7,166 bp, respectively).

4.3 Mapping onto local reference

All 18 replicates of three drug treatments were mapped to the local AG100 reference genome using the same method
adopted for mapping the control replicate to the MG1655. As above, reads were processed with fastq-mcf and mapped
to the local reference with BWA. Again, SNPs and SVs were called with VarScan and Pindel, respectively, using the
same parameters previously adopted. Additionally, we used CNVnator [1] to discover copy number variations (CNVs).
This software detects CNVs through an analysis of read mapping density (coverage) within different bins along the
genome. A bin size of 60 was chosen for all CNVnator analyses.

4.4 SNP-detection heuristic

Let ‘0’ denote a known wild-type allele at a given locus and suppose that Illumina sequencing produces n aligned
reads covering this locus that is denoted by a sequence of alleles, {Xj}nj=1, where each Xj is a Bernoulli random value
that only takes the values ‘0’ or ‘1’, the latter symbol (taking a numerical of unity) denoting any synonymous or
non-synonymous mutation. Now define Yn = 1

n

∑n
j=1Xj . Suppose that the systemic per-nucleotide error rate at each

locus is ε, this is the probability that one Illumina read reports an incorrect allele following alignment.
A putative SNP acceptance rate of α per read (expressed as a value between 0 and 1) is here said to produce a

false positive rate p that is defined to be the probability that n aligned reads reports at least α×n occurrences of the
allele ‘1’ due to Illumina read error. This is the value p := P(nYn > nα) = P(Yn > α). As each Xj can be modelled as
a Bernoulli trial with parameter ε, for sufficiently large n the probability distribution of Yn can be approximated by
a normal distribution with the following mean and variance parameters (following standard notation) µ := E(Yn) = ε
and σ2 := var(Yn) = ε(1− ε)/n. Thus

p = P(Yn > α) ≈ 1

σ
√

2π

∫ ∞
α

e−(x−µ)
2/2σ2

dx =
1√
π

∫ ∞
q

e−x
2

dx =
1

2
erfc(q),

following the change of variable, q = (α− µ)/(σ
√

2). Using

erfc(q) ≈ e−q
2

q
√
π

(
1− 1

2q2
+O(q−4)

)
,

we deduce the following approximation for the false positive SNP acceptance rate for given α:

p ≈ e−n(α−ε)
2/2ε(1−ε)

(α− ε)

(
2ε(1− ε)

nπ

)1/2

(1 +O(n−1)),
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where α > ε. Using a value ε = 10−2 [16, 15] and a mean observed value for coverage of n ≈ 200 (this is representative
of values given in Fig. S17), with this calculation, shows a putative variant frequency of α = 2% yields the value
p ≈ 0.0776 whereas using α = 3% yields p ≈ 2.24 × 10−3. The requirement that p < 0.05 thus permits us only to
report SNPs with an estimated frequency of 3% or greater.

4.5 WGS Results

Our analysis indicated a 412,380bp duplication (from 273,601 to 685,980) in all 6 drug treatment replicates at 96h.
After a list of putative SNPs was first generated in the manner detailed above, Table S1,Table S3 and Table S4 then
summarise only those SNPs for which significant longitudinal or between-treatment differences are observed using a
one or two-way anova with a threshold of p < 0.1. Putative SNPs that do not pass this acceptance criterion have not
been reported. Genes annotated using red font are contained within the duplicated region. For completeness, Table
S5 contains basic statistics used in the whole-genome analysis.

(a) (b)

Fig. S17 – (a) Mean coverage (three replicates) of the different drug-treated and drug-free sequenced populations, ± s.e.,
n = 3. (b) Evidence for a duplicated genomic region given by the ratio of mean coverage in two contiguous regions: inside
and outside addresses 273,601bp to 685,980bp. There is no evidence of the duplication (where this ratio equals 2) in the
absence of drug treatment, but there is evidence that it is duplicated in all drug-treated populations by 96h. The indicates
p-values are for t-tests seeking differences in mean coverage between 24h and 96h.

Comments regarding SNPs:

(1) The Ribosomal Mutation Database filtered by position for ‘595’ (http://goo.gl/sbFIFd) only shows 16S
(not 23S) SNPs in this location. The database indicates that none of the rrn SNPs in Table S1 are known
tetracycline or erythromycin resistance mutations.

23S erythromycin resistance mutations in the database: http://goo.gl/f7WrCH

The database has a tetracycline resistance mutation but we do not observe it here: http://goo.gl/0NsnJf

(2) atoB is a short-chain fatty acid degradation enzyme (thiolase II) [11] in the ato operon.
(3) tauA is required for sulphur utilisation ‘expressed only under conditions of sulfate or cysteine starvation’ [7];

cysteine is an α-amino acid in the casamino acids supplied at 0.1%.
(4) mdtG (yceE) is a putative efflux protein that confers resistance to fosfomycin and deoxycholate, also the

quinolone norfloxacin (see http://goo.gl/9pLxZ1), it is a member of the marA-soxS-rob stress regulon that
mediates expression of the acrAB-tolC pump [8].

(5) yqhC regulates yqhD where the latter is ‘a scavenger of toxic aldehydes produced by lipid peroxidation’ [10] (see
also ‘we propose that YqhC is a transcriptional activator of YqhD, which acts as an aldehyde reductase’ [12]),
as does paoC of Table S3.

(6) ubiD catalyses the synthesis of the antioxidant ubiquinone (http://goo.gl/2Al4fS) that ‘can prevent or
control chain lipid peroxidation in biomembranes’ [5].

(7) slt ‘degrades the murein polymer of the bacterial cell wall to 1,6-anhydromuropeptides’ [22].
(8) E.coli prophage (including DLP12) can aid survival in ‘adverse environments’ including osmotic, oxidative

and acid stresses [24].

http://goo.gl/sbFIFd
http://goo.gl/f7WrCH
http://goo.gl/0NsnJf
http://goo.gl/9pLxZ1
http://goo.gl/2Al4fS
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4.6 Tables of SNPs (Table S1,Table S3 and Table S4)

These summarise significant SNPs observed at 24h and 96h under the different treatment conditions. The mean
frequency in the populations where the SNP was detected is indicated and a superscript denotes the number of
replicates in which the SNP was observed. A blank entry denotes it was not detected.

Table S1 – Ribosomal SNPs: all belong to 23S.

% mean variant frequency(replicates, if not all)
50%-50% Dox/Ery Control

operon position relative posn 24h 96h 24h 96h 24h 96h

rrnH 226,521 595 5(2)

227,791 1,865 3(1) 17
rrnG 2,723,624 1,865 3(1) 9

2,724,894 595 8
rrnD 3,421,431 1,865 4(1) 13

3,422,701 595 8
rrnC 3,940,810 595 4(1) 17
rrnA 4,034,586 555 7
rrnB 4,165,708 595 4(1) 8

4,166,978 1,865 10
rrnE 4,207,110 595 3(1) 9

4,208,380 1,865 5(1) 7

Table S2 contains a list of genes within the duplicated genomic region that are known to interact with antibiotics
in some way, whether through drug binding or efflux, or else are implicated in the regulation of stress pathways that
may be associated with increased resistance.

Table S2 – Several antibiotic-binding and resistance genes are found in the duplicated genomic region, including their
annotations. note (1): emrE provides resistance against positively charged compounds including ethidium bromide and
erythromycin; note (2): nfsB reduces a broad range of nitroaromatic compounds, including antibiotics nitrofurazone and
nitrofurantoin.

start pos end pos. gene annotation

394,429 b.p. 395,586 b.p. ampH penicillin-binding protein
395,938 397,158 sbmA peptide antibiotic transporter
444,601 445,965 yajR YajR MFS transporter
451,369 452,844 ampG muropeptide transporter
458,187 460,541 lon DNA-binding ATP-dependent protease La
468,170 469,942 mdlA predicted multidrug transporter subunit; ATP-binding component
469,935 471,716 mdlB fused predicted multidrug transporter; ATP-binding components
480,553 483,702 acrB multidrug efflux system
483,725 484,918 acrA multidrug efflux system
485,060 485,707 acrR regulates the acrAB operon
502,775 503,995 fsr fosmidomycin efflux transporter
515,882 516,661 ybbM putative transport; drug/analog sensitivity
567,614 567,946 emrE member of the SMR family of transporters (see note (1))
592,541 593,914 cusC copper/silver efflux system, outer membrane component
594,420 595,643 cusB copper/silver efflux transport system - membrane fusion protein
595,655 598,798 cusA copper/silver efflux system, membrane component
601,712 602,416 nfsB oxygen-insensitive NAD(P)H nitroreductase (see note (2))
659,693 660,976 dacA penicillin-binding protein
662,142 663,254 mrdB rod shape-determining membrane protein
663,257 665,158 mrdA penicillin-binding protein
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Table S3 – SNPs located neither in prophage nor ribosomal genes.

% mean variant frequency(replicates, if not all)
50%-50% Dox/Ery Control

gene position 24h 96h 24h 96h 24h 96h annotation

ampE 119,553 b.p. 8(2) 6(1) 6(1) 13(1) regulator; ampicillin resistance inner membrane protein
duplicated region (red text denotes duplicated genes)

paoC 298,353 9(1) 7(2) 5(2) aldehyde oxidoreductase, moco-containing subunit
tauA 384,897 19(1) 68 taurine transport system periplasmic protein
ybbJ 513,924 4(2) inner membrane protein, stimulates mutant suppression

mdtG 1,157,546 21 24 25 19 17(1) 24 multidrug resistance efflux transporter
atoB 2,329,327 8(1) 7(1) 8 9(1) acetyl-CoA acetyltransferase
yqhC 3,151,384 45 putative ARAC-type regulatory protein
rng 3,394,063 6(2) endoribonuclease involved in 16S rRNA processing
ubiD 4,022,772 20(1) 10(2) 3-octaprenyl-4-hydroxybenzoate decarboxylase
rhaM 4,089,608 8(2) 7(2) 9(1) 7(2) 7(2) L-rhamnose mutarotase
slt 4,628,265 9(1) 10 7(1) 9 6(1) 11 soluble lytic murein transglycosylase

Table S4 – Prophage-related SNPs.

% mean variant frequency(replicates, if not all)
50%-50% Dox/Ery Control

gene position 24h 96h 24h 96h 24h 96h annotation

ybcV 576,213 b.p. 37(2) 58(1) 35(1) 41(1) DUF1398 family protein
ybcW 576,962 47 64 49 68 48 51 phage or prophage related, unclear function
ylcI 577,244 51 68 52 69 49 52 DUF3950 family protein
rzoD 577,639 9 3 9(2) 5(2) 11(2) 7 DLP12 prophage protein
rzpD 577,772 14 20(2) 12(1) 17 17 over-expression causes abnormal biofilm architecture (prophage DLP12)
nohD 577,984 54 37 49 36 50 55 DNA packaging (DLP12 prophage protein)
nohQ 1,639,729 14 8 12 9 13 10 DNA packaging
ydfJ 1,640,037 49 46 45 42 45 42 prophage related, putative transport protein
insH1 3,126,511 7(1) 7(1) 10(1) 9(1) transposon related
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Table S5 – Basic statistics for Illumina reads: statistics of the reads averaged over 3 replicates.

(a)

DOX/ERY sequential mean (st. error)
24h 96h

Number of reads 13,289k (1,161k) 15,028k (429k)
Read max length 99.0 (0.0) 99.0 (0.0)
Read mean length 74.2 (0.8) 74.2 (0.8)
Read min length 15.0 (0.0) 15.0 (0.0)
Mapped reads (%) 98.8 (0.2) 99.3 (0.1)
Mean Mapping Quality 58.8 (0.01) 58.8 (0.0)

(b)

50-50% combination mean (st. error)
24h 96h

Number of reads 11,420k (669k) 15,831k (821k)
Read max length 99.0 (0.0) 99.0 (0.0)
Read mean length 73.3 (0.8) 74.3 (0.8)
Read min length 15.0 (0.0) 15.0 (0.0)
Mapped reads (%) 99.5 (0.03) 99.2 (0.1)
Mean Mapping Quality 58.8 (0.01) 58.8 (0.0)

(c)

No-drug control mean (st. error)
24h 96h

Number of reads 11,691k (3,091k) 13,249k (552k)
Read max length 99.0 (0.0) 99.3 (0.3)
Read mean length 71.1 (0.9) 75.3 (0.07)
Read min length 15.0 (0.0) 15.0 (0.0)
Mapped reads (%) 96.6 (0.4) 98.5 (0.04)
Mean Mapping Quality 58.8 (0.01) 58.8 (0.0)
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§5 An Additional Simulation of the Mathematical Model

The mathematical model featured in the main text and implemented using the parameter values in Table S6 shows
that an asymmetric collateral sensitivity between ERY and DOX can arise for the following reason. The efflux pump
is predicted to have different affinities for ERY and DOX, this causes different rates of selection for cells that express
the pump and, also, for cells that duplicate the pump. This means different population structures are supported by
the use of either drug in monotherapy.

To show this can be the basis of an ACS using the model, we first choose antibiotic supply concentrations for both
drugs at their IC50 (measured at 24h) in the model (main text, third column in Fig. 5A). This same figure from the
main text then shows that the population of bacteria adapts during five days of treatment with ERY, with increases
in the number of cells both expressing the efflux pump and having duplications of the pump genes.

In the mutation-selection equilibrium indicated by this figure, the population converges to a stable configuration
with population densities below ones that are achieved under no drug conditions. However, a switch to DOX in the
model sees a change in the relative frequency of pump duplications but, for instance, because the pump in the model
has different efficiencies at removing the two drugs from within the cell, this exchange in drug sees population densities
rapidly increase. In the figure, after the switch the population soon achieves densities close to those observed without
the drug. The third column, bottom plot of Fig. 5A and then Fig. 5B show analogous, but opposite, effects when the
drugs are exchanged in the opposite sense.

Thus there are a number of factors that can contribute to an asymmetric collateral sensitivity: different efficiencies
of the pumps at effluxing the drugs, the different affinities of the drug for their targets, the different reductions in
absolute fitness attributable to each drug, the mutation rates associated with the duplications and the selection for
each of those mutations resulting from these factors that control the rate of sweep of the duplications. Given such
physical and evolutionary asymmetries, the model exhibits both a cross resistance and a collateral sensitivity, as the
terms are defined in the text.

Fig. S18 shows that the population densities produced by each treatment depends, even in this theoretical model, on
the way in which drugs are sequenced. Although both drugs are calibrated in the figure to an IC50 dose with respect to
a population consisting almost of entirely of wild-type cells that do not carry duplications of the pump, as treatments
progress the population structures do change. This can mean, as inFig. S18, that some sequential treatments produce
more bacteria than the 50-50 combination, whereas some produce fewer. Indeed, of the treatments shown in Fig. S18,
it is a sequential treatment that produces fewest cells of all.
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Fig. S18 – A Manhattan plot computed using the theoretical model from the main text as determined at IC50 dosages. Note
how the sequential treatments (here of four seasons’ duration) can be either better, or worse, than the 50-50 combination
treatment depending on the orders in which the drugs are switched. Note the sequential treatment that produces fewest
cells of all is the unbalanced ‘DEEE’ treatment.

Remark 1. The parameter values given in Table S6 give rise to optical densities in the mathematical model (at 0.2%
glucose) that are substantially larger than those reported in the experimental data throughout this article. This is not
an error, rather the stated parameters were determined by calibrating the mathematical model in the main text against
optical density data read at 600nm in 384 well plates [18]. With similar liquid volumes as the 96 well plates we use here,
the path length taken for the absorbance measurement is necessarily larger and, therefore, similar population densities
will result in very different optical densities between that article and this. Therefore, an optical density conversion
factor of approximately 1

4OD units is required to compare data from this article and the mathematical model defined
in [18] that we use here.
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Table S6 – All parameters used in the mathematical model are defined in [18, Supplementary Information]. Units
are defined as follows: [S0] = [E0] = [D0] = µg/ml, [c] =OD/µg, [V ] = µg/OD/h, [K] = µg/ml, [κe] = [κd] =
ml/µg, [κed] = (ml/µg)2, [ve] = [vd] = ml/OD/h, [ke] = [kd] = dimensionless, [ϕe] = [ϕd] = ml/OD/h, [δ] = per
genome/h, [∆] = dimensionless = [g], [dD] = [dE ] = per day.

Description Parameters Value (source [18])

glucose supply at 0.2% S0 2,000
antibiotic supply (model IC50 @ 24h) for (ERY,DOX) (E0, D0) (13,0.138)
growth kinetics (c, V,K) (0.000315,1140,0.54)
inhibitory responses to antibiotics (κe, κd, κed) (0.2, 300, 4,000)
antibiotic uptake and efflux kinetics (ERY) (ve, ke, φe) (4000, 19.7, 93.1)
antibiotic uptake and efflux kinetics (DOX) (vd, kd, φd) (4000,0.8,0.041)
duplication rate, Poisson loss rate (δ,∆) (10−4,18)
drug decay parameters dD, dE in the interval [ 1

24 ln(0.8), 0]
diminishing rate of returns of new pumps per duplication g 0.5
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