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Supplementary methods 

Support vector machine (SVM) analysis 

We performed a ‘one-vs-one’ classification analysis of the five emotion 

categories using a series of nonlinear SVM analyses (e.g., (1)) with parameters chosen 

a priori (slack parameter C = 1, radial basis function kernel with standard deviation = 15 

mm) as implemented in the Spider machine learning toolbox for Matlab. We used 

stratified 10-fold cross-validation to assess accuracy in classifying the emotion categorie 

associated with each study activation map.  In each fold, approximately 90% of the maps 

were used to train the SVM algorithm (‘training set’), and the remaining 10% were used 

to assess classification accuracy (‘test set’).  For each fold, we selected maps from the 

training set associated with each pairwise comparison of emotion categories (e.g., anger 

vs. sadness, etc.), and trained an SVM to discriminate that pair (i.e., 10 separate SVMs 

were trained for each fold). In each SVM, foci from the training set were individually 

labeled with the associated activation map’s emotion category and used to identify a 

separating hyperplane; combined with the radial kernel, this produces regions of the 

brain discriminative of one emotion category vs. the other member of each pair. To 

predict the emotion category on the test set, foci from each test-set study map were 

aggregated by averaging the distance from the SVM hyperplane across foci, to derive a 

single predicted class for each map.  Then, information across the separate pairwise 

SVMs was aggregated using a voting method, with the map’s final predicted class being 

the emotion category with the most votes. 

 

Bayesian spatial point processes (BSPP)  

Model Assumptions 
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1. Study level foci are realizations of independent cluster processes, i.e., instances 

drawn from a population with spatial coordinates surrounding a set of fixed 

population centers (i.e., ‘true’ activation centers). 

2. The intensity functions of all the latent independent cluster processes in the 

model take the form of mixtures of Gaussian kernels. In other words, all the point 

pattern clusters in the model have a Gaussian shape, though the parameters of 

those Gaussians may vary.  

3. For a given activation area in the brain, some studies only report a single focus, 

while others report multiple foci. The number of study foci reported is unknown in 

the model and is estimated, given reasonable prior assumptions. 

4. Some estimates based on prior knowledge is needed for posterior inference in 

the Bayesian framework: the expected number of population centers, the 

expected number of multiply reported peaks per study, and the expected number 

of activation centers cluster about population centers. 

Notation 

Denote by 𝑃𝑃(𝛽) a homogeneous Poisson point process on brain region 𝐵 with 

intensity 𝛽. Denote by 𝐼𝐶𝑃(𝜖,𝜃,𝐮,𝛀) an independent cluster process on brain region 𝐵 

driven by random intensity function 𝜆 𝑥 𝜖,𝜃,𝐮,𝛀 = 𝜖 + 𝜃𝜙!(𝑥;𝑢,𝛺!)!,!! ∈(𝐮,𝛀) , 

where 𝜙!(𝑥;𝑢,𝛺!) represents a three-dimensional Gaussian density function with mean 

𝑢 and covariance 𝛺!; (𝐮,𝛀) is a marked latent point process with 𝑢 ∈ 𝐮 representing the 

location of the cluster center and the mark 𝛺! ∈ 𝛀 charactering the shape of the cluster; 

the parameter 𝜖 represents the intensity of a latent homogeneous Poisson process of 

“background noise level”; and 𝜃 controls the expected number of points clustering about 

each center.  Denote by 𝑋! foci (data) for study 𝑐, 𝑐 = 1,… ,𝐶,  The study level foci are 

made up of two types of foci: singly reported foci (Type 0 foci) and multiply reported 

foci (Type 1 foci), denoted 𝑋!! and 𝑋!!, respectively. Denote by (𝑌! ,𝛹!) the marked latent 

activation center process for study 𝑐 and  (𝑍,𝛴) the marked latent population center 

process. 
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Model Description 

The BSPP model involves three levels of hierarchy:  

At level 1, we assume that multiply reported foci cluster about a latent study activation 

center, while the singly reported foci can either cluster about a latent population center, 

or are uniformly distributed in the brain. That is 

𝑋!! ∣ 𝜖!! , 𝜃!! ,𝑍,𝛴 ∼ 𝐼𝐶𝑃 𝜖!! , 𝜃!! ,𝑍,𝛴  

𝑋!! ∣ 𝜂! ,𝑌! ,𝛹! ∼ 𝐼𝐶𝑃 0, 𝜂! ,𝑌! ,𝛹!  

where 𝜃!! controls the expected number of Type 0 foci that cluster about a population 

center; parameter 𝜖!! is the intensity of the Type 0 foci that do not cluster about a 

population center; parameter 𝜂! controls the expected number of Type 1 foci that cluster 

about a study activation center.   

At level 2, we assume that the latent study activation centers can either cluster about the 

latent population center or are uniformly distributed in the brain.  That is 

𝑌! ∣ 𝜖!! , 𝜃!! ,𝑍,𝛴 ∼ 𝐼𝐶𝑃 𝜖!! , 𝜃!! ,𝑍,𝛴  

where 𝜃!! controls the expected number of Type 1 foci that cluster about a population 

center; parameter 𝜖!! is the intensity of the Type 1 foci that do not cluster about a 

population center; 

At level 3, we assume that the latent population center process driven by a 

homogeneous random intensity (a homogeneous Poisson process).  

𝑍 ∣ 𝛽 ∼ 𝑃𝑃(𝛽) 

where 𝛽 controls the expected number of population centers. 

 

BSPP classification model 

Suppose we consider 𝑚 emotion category. Let 𝐸! ∈ {1,… ,𝑚} denote the emotion 

category for study 𝑐. For all the studies of emotion category 𝑒, 𝑒 = 1,… ,𝑚,  we can fit the 
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BSPP model to make inference on the probability π  (𝑋! ∣ 𝐸! = 𝑒,𝛩!), where 𝛩! 

represents a collection of all the parameters in the BSPP model for emotion 𝑒. Denote by 

𝛩 = (𝛩!,… ,𝛩!) all the parameters across different emotions.  The posterior predictive 

probability of emotion category for a new study with foci 𝑋!"# is given by 

Pr 𝐸!"# = 𝑒 ∣ (𝑋! ,𝐸!)!!!! ,𝑋!"# ∝

                                                    Pr(𝐸!"# = 𝑒) ∫ π   𝑋! 𝐸! ,𝛩!
!!! π 𝑋!"# 𝐸!"# = 𝑒,𝛩 𝜋(𝛩) 𝑑𝛩,  

for 𝑒 = 1,… ,𝑚, where Pr(𝐸!"# = 𝑒) represents the prior probability of emotion category 𝑒 

and 𝜋(𝛩) is the prior of parameters.  

 

Permutation Test  

We performed a permutation test to validate classification results under the null 

hypothesis that the emotion categories are independent of the study foci in order to 

confirm the BSSP based classification model did not over-fit the data. Specifically, we 

permuted the emotion labels of studies and created 100 permuted datasets. Then we 

applied the BSSP classification model for each permuted dataset and obtained the null 

distribution of the confusion matrix. We summarize the mean, standard deviation (Sd) 

and lower (LCL) and upper (UCL) 95% confidence intervals in the table below.  

 

For the mean, which reflects overall classification accuracy in permuted data, the 

expected value is 0.2 if the test is unbiased. As the Table shows, all tests were 

unbiased, with 0.2 well within the margin of error based on the number of permutations. 

The upper confidence bound for accuracy in any condition was approximately 0.3, so 

values above this in actual classification may be considered significant at p < .05 family-

wise error rate corrected across categories. 
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Permutation test: Null hypothesis classification table 
 

Mean	
   Anger	
   Disgust	
   Fear	
   Happy	
   Sad	
  
Anger	
   0.195	
   0.201	
   0.208	
   0.19	
   0.206	
  
Disgust	
   0.202	
   0.194	
   0.2	
   0.199	
   0.204	
  
Fear	
   0.193	
   0.196	
   0.207	
   0.204	
   0.199	
  
Happy	
   0.201	
   0.204	
   0.202	
   0.196	
   0.197	
  
Sad	
   0.204	
   0.2	
   0.193	
   0.197	
   0.207	
  

 
 

Sd	
   Anger	
   Disgust	
   Fear	
   Happy	
   Sad	
  
Anger	
   0.039	
   0.04	
   0.042	
   0.039	
   0.043	
  
Disgust	
   0.045	
   0.046	
   0.049	
   0.045	
   0.046	
  
Fear	
   0.04	
   0.04	
   0.046	
   0.046	
   0.044	
  
Happy	
   0.04	
   0.046	
   0.048	
   0.042	
   0.043	
  
Sad	
   0.041	
   0.042	
   0.04	
   0.046	
   0.045	
  

 
 

UCL	
   Anger	
   Disgust	
   Fear	
   Happy	
   Sad	
  
Anger	
   0.261	
   0.269	
   0.278	
   0.265	
   0.295	
  
Disgust	
   0.304	
   0.286	
   0.298	
   0.295	
   0.296	
  
Fear	
   0.264	
   0.267	
   0.302	
   0.303	
   0.283	
  
Happy	
   0.286	
   0.297	
   0.299	
   0.279	
   0.3	
  
Sad	
   0.273	
   0.267	
   0.274	
   0.282	
   0.292	
  

 
 

LCL	
   Anger	
   Disgust	
   Fear	
   Happy	
   Sad	
  
Anger	
   0.119	
   0.132	
   0.139	
   0.131	
   0.129	
  
Disgust	
   0.128	
   0.112	
   0.115	
   0.117	
   0.125	
  
Fear	
   0.098	
   0.124	
   0.108	
   0.13	
   0.126	
  
Happy	
   0.122	
   0.119	
   0.122	
   0.123	
   0.125	
  
Sad	
   0.128	
   0.131	
   0.115	
   0.112	
   0.121	
  

 
 
 
Non-negative matrix factorization 

Non-negative matrix factorization (NNMF) is a way of decomposing a complex data set 

into simpler, additive components.  It is similar to principal components analysis (PCA) 

and independent components analysis (ICA) in this respect, but with a major advantage: 

The non-negativity constraint causes the recovery of hidden features (components) that 
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are more compact and interpretable than PCA or ICA ((2). It is particularly appropriate 

for cases in which the data distribution is non-negative; for example, in the coordinate-

based meta-analysis data we analyze here, study activation counts (and thus density) 

can never be negative.  Thus, meta-analysis is a natural application, and previous 

approaches have used NNMF successfully (3, 4) 

 

NNMF decomposes the n-by-m matrix A, here an [n x 5] matrix of average intensity for 5 

emotions (m = 5) in each of n regions or networks, into two component matrices W (n x 

k) and H (k x m) whose elements are non-negative, such that A = WH.  k is the number 

of components retained, usually up to nm / (n + m) components. The component 

matrices are chosen such that WH most closely approximates the original matrix A (i.e., 

with minimal error variance). This additive decomposition permits the combination of 

multiple basis vectors (here, profiles of activation intensity across regions) to represent 

an emotion category. Because interpretability is an explicit goal, we decomposed profiles 

of activity across emotion types (e.g., n x 5 matrices, where n is the number of networks 

in cortex, basal ganglia, or cerebellum, or regions in amygdala, hippocampus, or 

thalamus) into two components (k = 2), so that emotion-specific activation intensity 

values could be plotted in the 2-dimensional space of the two canonical activation 

profiles. 

 

The non-negativity constraint provides a natural way of increasing the interpretability of 

the resulting component vectors (or profiles across regions/networks).  PCA 

eigenvectors usually involve complex cancellations between positive and negative 

loadings on regions/networks, making the components hard to interpret individually.  

NNMF, by contrast, recovers solutions that are more compatible with human intuitions 

about how to interpret patterns. The components represent parts that can be combined 
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additively into a whole (2, 5)  Here, the "parts" are canonical activation profiles across 

individual regions/networks, which can be combined additively into a model of the profile 

of activation intensity for a given emotion. 

 

The implementation of NNMF we used (Matlab R2013b) uses an iterative alternating 

least squares method to optimize W and H (see (6)). It starts with random initial values 

for W and H; because the solution can sometimes vary across starting points, we ran all 

NNMF analyses with 100 replications and averaged their values. The algorithm never 

converged on solutions of less than two components. 

 

Once the two canonical profiles were obtained for each grouping of regions/networks 

(e.g., cortex, thalamus, etc.), the profiles of observed activation intensity for each 

emotion (ym) were regressed on the component values (e.g., ym ~ H'), yielding an 

overall expression (slope) of the two canonical profiles for that emotion.  These 

regressions were performed for all 10,000 MCMC iterations, yielding a posterior loading 

distribution for each emotion in the canonical NNMF profile space.  These are plotted in 

Figure 2C (for cortex) and Supplementary Figure 3C (for other groups). The axes of 

these plots represent canonical profiles discovered across all emotions (i.e., the two 

rows of H), and the posterior density for each emotion is depicted in an emotion-specific 

color, with the lightest shading approximately at the 95% credibility region boundary for 

the emotion.  The plots thus show how different the emotions are in some cases in the 

canonical profile space defined by NNMF.  
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