

Conserved RNA-Binding Proteins Required for Dendrite Morphogenesis in *Caenorhabditis elegans* Sensory Neurons

Simona Antonacci*, Daniel Forand[#], Margaret Wolf*, Courtney Tyus*, Julia Barney*, Leah Kellogg*, Margo A. Simon*, Genevieve Kerr*, Kristen L. Wells*, Serena Younes[#], Nathan T. Mortimer[§], Eugenia C. Olesnicky[#], Darrell J. Killian*

* Department of Molecular Biology, Colorado College, Colorado Springs, CO, 80903

[#] Department of Biology, University of Colorado Colorado Springs, Colorado Springs,

CO, 80918

[§] Department of Biological Sciences, University of Denver, Denver, CO, 80208

Corresponding authors: Eugenia C. Olesnicky, Department of Biology, University of Colorado Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO 80918. Email: <u>eolesnic@uccs.edu</u>; Darrell J. Killian, Department of Molecular Biology, Colorado College, 14 East Cache La Poudre Street, Colorado Springs, CO 80903. Email: <u>darrell.killian@coloradocollege.edu</u>

DOI: 10.1534/g3.115.017327

Table S1 List of RBP genes screened

C. elegans	Drosophila	BLASTP E			
RBP	RBP	value	Allele	Reference	RNAi
B0336.3	Swm	3.00E-16	gk910	UBC	III-3A15
B0511.6	Pit	1.00E-175	ok2948	UBC	This study
C25A1.4	Rump	1.00E-46	none		I-5G19
C30B5.4	CG10466	2.00E-48	gk3082	UBC	II-4J09
C44B7.2	Sm	3.00E-69	none		This study
C46F11.4	CG6418	0.00E+00	none		III-1H08
C56G2.1	Spoon/Yu	3.00E-30	tm3447	NBRP	
CGH-1	Gem3	6.00E-61	ok492	UBC	
CPB-3	Orb	7.00E-64	bt17	Hasegawa <i>et al.</i> 2006	
CYN-13	Сур33	5.00E-124	none		This study
D1037.1	Loq	6.00E-09	ok1746	OMRF	
DDX-17	CG10777	5.00E-160	tm3202	NBRP	This study
DCR-1	Dcr-1	3.00E-124	ok247	OMRF	
DRSH-1	Drosha	0.00E+00	ok369	UBC	
ETR-1	Aret/Bru	9.00E-118	tm6221		II-1G15
EXC-7	Ssx	1.00E-47	ok370		
F13E9.1	CG5439	2.00E-08	tm1886	NBRP	
F26B1.2	BI	2.00E-39	tm5522	NBRP	
F57B10.8	CG32706	3.00E-11	none		I-3M23
FUST-1	CG14718	2.00E-08	tm4439	NBRP	
HEL-1	Hel25E	0.00E+00	ok3698		II-6I01
HRPF-1	CG11726	8.00E-06	tm3406	NBRP	
K08F4.2	Rin	3.00E-10	none		IV-5G18
LARP-5	CG11505	8.00E-33	gk939577/463873*	Thompson <i>et al.</i> 2013	I-1H07

MBL-1	Mbl	5.00E-45	tm1563	NBRP	
MTR-4	L(2)35Df	0.00E+00	ok2642	OMRF	
NCL-1	Brat	2.00E-172	e1942	Frank & Roth 1998	
NOS-1	Nos	1.00E-07	ok250	OMRF	
PUF-9	Pum	6.00E-128	ok1136	UBC	
R05D11.4	CG5589	6.00E-112	none		I-4A04
R11A8.7	MASK	2.00E-154	tm5136	NBRP	
RNP-3	Snf	5.00E-70	ok1424	OMRF	
RPS-3	RpS3	6.00E-124	none		III-3C02
RSP-3	SF2	4.00E-59	ok2927	UBC	
RSP-6	X16	3.00E-22	ok798	UBC	
RSP-7	Srp54	8.00E-45	ok2079	UBC	II-7008
SAP-49	CG11454	5.00E-10	none		II-5N14
SET-2	Set1	4.00E-68	n4589	Andersen & Horvitz 2007	
SQD-1	Sqd	3.00E-41	ok1582	UBC	
STAU-1	Stau	1.00E-42	tm2266	NBRP	
SUP-26	Shep	6.00E-52	gk426	UBC	
SYM-2	Glo	3.00E-32	mn617	Yochem <i>et al.</i> 2004	
T08B2.5	CG4887	2.00E-23	gk721	UBC	I-2P02
T28D6.4	Mib2	7.00E-23	tm926	NBRP	
TIAR-1	CG34354	1.00E-77	tm361	NBRP	
UAF-2	U2AF38	9.00E-90	gk3159	UBC	IV-8I21
W04D2.6	CG4119	8.00E-28	tm2681	NBRP	
WDFY-2	CG5168	2.00E-98	tm3806	NBRP	
Y23H5B.6	CG5800	1.00E-172	none		This study
Y55F3AM.3	CG11266	1.00E-97	gk454899**	Thompson <i>et al.</i> 2013	IV-8L05
Y55F3BR.1	Ddx1	0.00E+00	none		IV-1G20
ZC190.4	Smg	7.00E-17	none		This study

ZC434.3	CG9107	1.00E-11	none		This study
ZK686.2	Dbp73D	4.00E-59	tm5978	NBRP	

C. elegans RBPs are the best homologs of *Drosophila* RBPs reported by Olesnicky *et al.* (2014) by BLASTp search (E values are given). Sources of alleles are indicated above. Abbreviations: (NBRP) the Mitani Lab through the *C. elegans* National Bioresource Project of Japan; (UBC) *C. elegans* Reverse Genetics Core Facility at the University of British Columbia, (OMRF) *C. elegans* Reverse Genetics Core Facility at the University of British Columbia, (OMRF) *C. elegans* Reverse Genetics Core Facility at the Oklahoma Medical Research Foundation. UBC and OMRF are part of the international *C. elegans* Gene Knockout Consortium. RNAi clones (clone location given) are from the Ahringer library (Geneservice LTD; Fraser *et al.* 2000; Kamath *et al.* 2003) or were constructed for this study (plasmid construction described in Table S2).

**gk939577/gk463873* results in a conceptual translation of the first 436 amino acids unchanged followed by 3 missense changes and a stop codon. There are 308 codons after the stop. The LA domain and the LARP4/5-like domain are within the first 436 amino acids.

***gk454899* is a single missense change R251C in a residue conserved in flies, fish, and mammals. The residue does not fall within anRNA recognition motif (RRM) but falls in a region between two RRMs.

Table S2 List of sequences and sources for transgene construction

Regulatory	Forward primer (5' to 3')	Reverse primer (5' to 3')
region		
cgh-1	Sphl - tatcacagatttctggttgaatatgagg	KpnI - tttccgatgtcgtagtaggtttgatttc
cpb-3	SphI - accggaggaagcttggtgaagcaatg	KpnI - ggtgaatgcttttatcaacggc
dcr-1	Sphl - aggattaaaatcttgaacatattgcccg	KpnI - tattggtctgaaaacagggaaaattgat
ddx-17	attB1 - gtatttcgtgacgtcactgcg	attB2 - tatcctctgtctcccattgtc
larp-5	attB1 - tccactcttccattacgttcgggc	attB2 - ctccgaaaagggacgtcgacgccg
mbl-1	attB1 - tttgggattacttcggtgctc	attB2 - ccgatcgtgcgcattgtcc
mtr-4	Sphl - tcgccacgaaaccacaccaaacggcgag	KpnI - ttagtctgaaaaatgtgccacaataaaa
rsp-3	attB1 - gccctatcttaaatggccgg	attB2 - gtttagtacactgaaaatgaag
rsp-6	attB1 - gtgtaaatgtgatgcattcgag	attB2 - actgaaaaatcaaattaatttatg
set-2	attB1 - tgaatagcaaacttcatatcc	attB2 - ttcccatcaattatttattgatgc
Y55F3AM.3	attB1 - tcaaattgatgtttctattcgc	attB2 - ggagctgaccccgcttcaaa

A. Primer sequences for GFP transcriptional fusions

For *sup-26*, an existing transgene, *smls259*[*P*_{*sup-26*}::*sup-26 cDNA*::*GFP*], was used (Mapes *et al.* 2010).

cDNA	Forward primer (5' to 3')	Reverse primer (5' to 3')
(source)		
cgh-1	attB1 - atgagtggagcggagcaacaacag	attB2 - agcagtggtctcatcggcggc
(yk85e1, yk1658a03)		
cpb-3	attB1 - atgaacctgaatgaccgagtggaag	attB2 - accggaggaagcttggtgaagcaatg
(this study)		
ddx-17	<i>att</i> B1 - atgggagacagaggatacggagg	attB2 - ccatcggccacctccaccgctgc
(this study)		
larp-5	attB1 - atggacacgttcgagctcgactcg	attB2 - cctgaacgtcggtttttgtggcgg
(yk1291c05, yk400c5)		
mbl-1	attB1 - atgttcgacgaaaacagtaatgccg	attB2 - gaatggtggtggctgcatgtac
(this study)		
mtr-4	attB1 - atggccgatcttttcgacgaattc	<i>att</i> B2 - tagatagagagatgcagcgaaaac
(yk506b7, yk430a11)		
rsp-3	attB1 - atgccacgcggcggctcagagg	attB2 - ttgtggagatggtgagcgagatgg
(yk1100h10, yk1195c10)		

B. Primer sequences for GFP translational fusions to GFP

rsp-6	attB1 - atggacgccaaggtgtacgtcg	attB2 - gtgcggagaagcagaacggctgc
(this study)		
set-2	attB1 - atgtccacacatgatatgaacc	attB2 - attaagatatccacgacacgtc
(yk21g8, yk320e10)		
sup-26	attB1 - atgaacgcatcttcggctccac	attB2 - ttgtggattcatcggctggaaatac
(D. Xue, J. Mapes)		
Y55F3AM.3	attB1 - atgaccgacggatcgatgg	attB2 - atatctgccatatccaccatattg
(this study)		

C. Primer sequences for RNAi vectors

RNAi target	Forward primer (5' to 3')	Reverse primer (5' to 3')
B0511.6	attB1 - gcattgacgtcaagaagaaggtgc	attB2 - ccacccatcactaatccatacg
C44B7.2	attB1 - atgcaaggaagaggcggatatcatcacg	attB2 - atctggaagagtgaagtctcgttgatc
cyn-13	attB1 - aatttccagctccgccacacaatgcccg	attB2 - taagtctccatagcctgcggaagcggc
ddx-17	attB1 - tggtctgccgagaacctta	attB2 - caattcacgagttggaagca
rps-3	attB1 - cgtgaccaagaagaagaaggccg	attB2 - gatgtagtcgttgactgggtgtcc
Y23H5B.6	attB1 - tatgcctcacacaaacggaaaaggcggcg	attB2 - atttgtgcaaactctgcacaaatccttg
ZC190.4	attB1 - tatcttggatactggctgaaaaagttgcg	attB2 - tacacaactgggtatgatgaagggcac
ZC434.3	attB1 - tatgcgtctcgtgaaaccactgatagtgg	attB2 - ctagttatttctgagttgtcttcgaaaatc

Genomic fragments PCR-amplified with primers sequences given were cloned into pDONR221 with a BP reaction and then cloned into a double-T7 plasmid with a Gateway entry site (modified from pPD129.36) using an LR reaction (Invitrogen).