Gene	primer name	sequence
RAD6	C1205	TGCCCCACCGGGTGTA
	C1166	GCGTTCCATACCATGACGTTATC
RAD18	C1167	GTTCAGGTTCAGTGGGACATTCT
	C1168	GGTTCCCTGGTCACTTTGAACT
UBC13	C1171	TGACGTCGCTGAAGATTGGA
	C1172	CATTCGCGAGCCTTAGCTTT
REV3	C1177	CCATCGCACGGTGAAAGC
	C1178	AAGCACCAAACACCCTGATGT
RNR2	C1197	CCATTCACACCATCCCAGAAA
	C1198	CTTGAATCCATCTTAAAGCCCATT
ALG9	C1215	CTGTGGAATTATTGCCTTC
	C1216	GCCTAGTATACTAGCCAGG

Table S1: qPCR primers used in this study

Table S2: Strains used in supplemental material	1
---	---

Strain	Genotype	Source	
JC2257	W303 <i>MAT</i> a rev1∆::HIS3	Xiao lab (WXY29-36)	
JC2283	W303 MATa yng2 Δ ::URA3, mms2 Δ ::HIS3	this study	
JC2290	W303 MATa mms2∆::HIS3	this study	
JC2619	W303 MATa yng2∆::URA3, rev1∆::HIS3	this study	
JC2769	W303 MATa esa1-L254P::NatRMX4, rev1∆::HIS3	this study	
JC2773	W303 MATa esa1-L254P::NatRMX4, mms2∆::HIS3	this study	
JC3119	W303 <i>MAT</i> a eaf1∆::URA3, ubc13∆::HIS3	this study	
JC3220	W303 <i>MAT</i> a <i>eaf1</i> ∆::URA3, rev3∆::LEU2	this study	
JC3430	W303 MATa eaf1∆::URA3	this study	

eaf1∆/rev3∆

Figure S1 Similar to other NuA4 components, the loss of EAF1 interacts genetically with the DNA damage tolerance (DDT) pathway. (A) Drop assays (1:10 serial dilutions) from exponentially growing cultures were performed on YPAD +/- media containing the indicated concentrations of MMS at 30°C for wild type (JC470), *esa1*-L254P (JC2767), *ubc13*\Delta (JC2291), *esa1*-L254P/*ubc13*\Delta (JC2775), *mms2*\Delta (JC2290), *esa1*-L254P/*mms2*\Delta (JC2773), *rev3*\Delta (JC2289), and *esa1*-L254P/*rev3*\Delta (JC2771), *rev1*\Delta (JC2257), and *esa1*-L254P/*rev1*\Delta (JC2769). (B) *yng2*\Delta (JC2036), *yng2*\u03c4 */ubc13*\u03c4 (JC2285), *yng2*\u03c4 */mms2*\u03c4 (JC2283), *yng2*\u03c4 */rev3*\u03c4 (JC2281) and *yng2*\u03c4 */rev1*\u03c4 (JC2289), and *eaf1*\u03c4 */rev3*\u03c4 (JC2291), *eaf1*\u03c4 */ubc13*\u03c4 (JC2289), and *eaf1*\u03c4 */rev3*\u03c4 (JC3220). (E) Cell survival was measured after transient exposure to increasing concentrations of MMS for 1 hr. with the same strains in D.

eaf1∆/ubc13∆

0

.05 .10 .20

% MMS

0.001

Figure S2 Pulse Field Gel Electrophoresis (PFGE) was performed on cells disrupted for DDT factors. (A) Cells were arrested in α -factor for 2 hours followed by release into YPAD media containing bromodeoxyuridine (BrdU; 400µg/ml) and either nocodazole (7.5µg/ml) for 2.5 hours or 0.01% MMS for 1 hour. Following MMS treatment, cells were released into YPAD and samples were collected at the indicated time points. (B) Pulse Field Gel Electrophoresis (PFGE) was performed, followed by a Southern transfer to nitrocellulose, and blotted with α -BrdU antibodies in wild type (JC604) and *rev3∆/ubc13∆* (JC3009), (C) The cell cycle stage was monitored by flow cytometry. All data shown here follows the same protocols as in Figs. 2 and 3.

Figure S3 Pulse Field Gel Electrophoresis (PFGE) was performed on cells disrupted for the error prone bypass factor rev3A in combination with esa1-L254P. Cells were arrested in a-factor for 2 hours followed by release into YPAD media containing bromodeoxyuridine (BrdU; 400µg/ml) and either nocodazole (7.5µg/ml) for 2.5 hours or 0.01% MMS for 1 hour. Following MMS treatment, cells were released into YPAD + BrdU and samples were collected at the indicated time points. Pulse Field Gel Electrophoresis (PFGE) was performed, followed by a Southern transfer to nitrocellulose, and blotted with α -BrdU antibodies in wild type (JC604), esa1-L254P (JC3060), rev3 Δ (JC2978) and esa1-L254P / $rev3\Delta$ (JC3053) - (A) pictures of one representative gel for wild type and the double mutant demonstrates that in the absence of MMS, replication and chromosome integrity is indistinguishable between wild type and the double mutant (150* on gel). (B) The cell cycle stage was monitored by flow cytometry. (C) The BrdU signal at the 0 min (blue) and 60 min (green) time points were quantified by Image J with the migration distance of chromosomes vs the intensity of BrdU plotted, giving a measure of newly synthesized chromosomes during one round of DNA replication. All data shown here follows the same protocols as in Figs. 2 and 3.

Figure S4 Pulse Field Gel Electrophoresis (PFGE) was performed on cells disrupted for the error free bypass factor $ubc13\Delta$ in combination with *esa1*-L254P. Cells were arrested in a-factor for 2 hours followed by release into YPAD media containing bromodeoxyuridine (BrdU; 400µg/ml) and either nocodazole (7.5µg/ml) for 2.5 hours or 0.01% MMS for 1 hour. Following MMS treatment, cells were released into YPAD + BrdU and samples were collected at the indicated time points. Pulse Field Gel Electrophoresis (PFGE) was performed, followed by a Southern transfer to nitrocellulose, and blotted with α -BrdU antibodies in wild type (JC604), esal-L254P (JC3060), ubc13A (JC2979) and esal-L254P / $ubc13\Delta$ (JC3054) - (A) pictures of one representative gel for wild type and the double mutant demonstrates that in the absence of MMS, replication and chromosome integrity is indistinguishable between wild type and the double mutant (150* on gel). (B) The cell cycle stage was monitored by flow cytometry. (C) The BrdU signal at the 0 min (blue) and 60 min (green) time points were quantified by Image J with the migration distance of chromosomes vs the intensity of BrdU plotted, giving a measure of newly synthesized chromosomes during one round of DNA replication. All data shown here follows the same protocols as in Figs. 2 and 3.

Figure S5 NuA4 target histone H4 shows genetic interactions with the DDT pathway (A) Drop assays (1:10 serial dilutions) from exponentially growing cultures were performed on YPAD +/- media containing the indicated concentrations of MMS at 30°C for wild type (JC470), $hhf2^{K \rightarrow R}$ (JC3178), $rev3\Delta$ (JC2289), $hhf2^{K \rightarrow R}/rev3\Delta$ (JC3195) $ubc13\Delta$ (JC2291), $hhf2^{K \rightarrow R}/ubc13\Delta$ (JC3179), and (B) $htz1\Delta$ (JC2090), $htz1\Delta/rev3\Delta$ (JC2762) and $htz1\Delta/ubc13\Delta$ (JC2764)

В

С	Chromatin	D	DSB Repair			
WT _O	9474105)/WTS 8471-25405/WTS 6827-25405 6827-25405 8005	WT S(+MMS) / WT S ⁶⁵³⁷¹²⁵⁴⁹ S(+MMS) ⁶⁵³⁷¹²⁵⁴⁹ S(+MMS)	WT S(+MMS) /		WT S(+MMS)/12	1254P S WT S 1254P S (+1MMS) 1254P S MS)
	ACT1	RVB1		RAD54		DNA2
	HTA1	EAF7		RFA2		MRE11
	HTA2	YKU80		SMC6		PIF1
	HAT2	LCD1		RAD27		LIF1
	NHP6A	RVB2		RFA1		RAD1
	SIR2	SWC4		RAD52		MUS81
	EAF1	BDF2		RAD10		EXO1
	ESA1	INO80		MMS21		RAD5
	EPL1	SPT16		RAD55		RAD59
	SPT10	HAT1		SAF2		SMC1
	MEC1	YAF9		DADE 7		RAD50
	TRA1	IES2		KAD57		XRS2
	TEL1	RAD26		MEID		SLX4
	ARP4	YKU70		FUN30		NEJ1
	ABF1	HHT1		SMC5		RTT107
	BDF1	NHP6B		RAD6		DNL4
	EAF5	EAF 3		POL4		DSO2
	EAF6	HHTZ DOB3		YKU80		F502
	FUN30	POB3		MMS22		1K070
	RAD6	RAD34		TRM2		SAWI
	ARP5	KIIIO		SRS2		TPP1
	YNGZ			TEL1		RAD51
				SCC2		RAD17

CTF4

RFA3 RTT109 ECO1

SGS1

Figure S6 Transcriptional comparison of Gene Upregulation in MMS vs. Untreated S phase samples . Cells arrested in α-factor were released into normal YPAD or YPAD/0.05% MMS for 1hr. RNA was extracted followed by microarray. (A) Transcriptome analysis was performed as described in the Materials and Methods. Heat maps of the genome-wide expression profile of 0.05% MMS vs. untreated samples of wild type and *esa1*-L254P in S phase. Sample genes from the DNA damage tolerance pathway and genes upregulated as part of the transcriptional DNA damage response from derepression of Crt1/Rfx1 and Nrm1. (B) Heat map of the genome-wide expression profile of 0.05% MMS vs. untreated samples indicated that the NuA4 allele, *esa1*-L254P, had a similar transcriptional profile compared to wild type cells. Data looking at specific subsets of genes associated with (C) Chromatin Organization and (D) Double-Strand Break Repair shows few differences between strains.

Figure S7 G2-Yng2 expression after Nocodazole release. Degradation of G2-Yng2 after Sphase follows the same pattern as Clb2. During a normal cell cycle Clb2 is rapidly degraded at mitosis. Wild type (JC470) and G2-Yng2 (JC3387) were arrested in nocodazole for 3 hours following release into YPAD media with α -factor with samples taken at indicated times. Immunblots were performed with antibodies α -Clb2 and α -Flag (to visualize G2-Yng2-Flag, and α -Pgk1 used as a loading control. Degradation of G2-Yng2 follows the same kinetics as degradation of Clb2 in both G2-Yng2 and wild type cells.

Figure S8 Chromatin association of H2A.Z. H2A.Z (Htz1) levels are the same between wild type (JC470) and *esa1*-L254P (JC2767), independent of cell cycle phase and treatment with MMS. Chromatin association experiment where cells arrested in α -factor are released into normal YPAD or YPAD/0.01% MMS. Cell cycle progression was monitored using flow cytometry (A). Samples were subjected to chromatin association followed by 18% gel SDS-PAGE and immunoblot with anti-H2A.Z (B). Histone H3 immunoblot was used as both a loading control and control for fractionation.