Supplementary Figure Legends

Supplementary Figure 1

¹H NMR spectrum of MCC950

Representative ¹H NMR spectrum of MCC950 in DMSO-*d6* (600 Mhz)

Supplementary Figure 2

¹³C NMR spectrum of MCC950

Representative ¹³C NMR spectrum of MCC950 in DMSO-d6 (150 Mhz)

Supplementary Figure 3

COSY NMR spectrum of MCC950

Representative COSY NMR spectrum of MCC950 in DMSO-d6

Supplementary Figure 4

HSQC NMR spectrum of MCC950

Representative HSQC NMR spectrum of MCC950 in DMSO-d6

Supplementary Figure 5

HMBC NMR spectrum of MCC950

Representative HMBC NMR spectrum of MCC950 in DMSO-d6

Supplementary Figure 6

MCC950 inhibits NLRP3 activation in HMDM and PBMC and in BMDM in response to MSU

(a) Production of IL-1 β and TNF- α from HMDM stimulated with LPS and ATP and treated with MCC950 (1–1,000 nM) measured by ELISA. Cytokine level is normalized to DMSO control treated cells. Data are expressed as mean ± S.E.M of twelve independent experiments carried out in triplicate. Non-linear regression analysis was performed and Log [M] MCC950 vs. normalized response (variable slope) curve is presented. (b) Production of IL-1 β and TNF- α from PBMC stimulated with LPS and ATP and treated with MCC950 and glyburide measured by ELISA. Cytokine level is normalized to DMSO control treated cells. Data are expressed as mean ± S.E.M of three independent experiments carried out in triplicate. (c) Western blots of cell lysates and supernatants from PBMC stimulated with LPS and ATP and treated with MCC950 or glyburide. (**d**–g) Production of IL-1 β , LDH, IL-1 α and TNF- α from BMDM stimulated with LPS and MSU and treated with MCC950 as measured by ELISA (d,f,g) and LDH assay (e). Data are expressed as mean ± S.E.M of three independent experiments carried out in triplicate. (h,i) Production of IL-1 β (h) and TNF- α (i) from PBMC treated with MCC950 and

stimulated with LPS for 24 h in full medium. Data are expressed as mean \pm S.D and are representative of two independent experiments.

Supplementary Figure 7

MCC950 blocks NLRP3-dependent ASC speck formation

Representative images of ASC-cerulean cells treated with MCC950 and stimulated with nigericin, LeuLeu-Ome and lethal toxin. DRAQ5 nuclear stain (red), ASC-cerulean (green).

Supplementary Figure 8

MCC950 inhibits NLRP3 activation in PBMC from individuals with MWS *ex vivo*

Western blots of cell lysates and supernatants from PBMC isolated from individuals with MWS (with the indicated mutations) stimulated with LPS and treated with MCC950.

Supplementary Figure 9

Pharmacokinetics of MCC950

Mean plasma concentration of MCC950 after single dose i.v. and p.o. delivery as determined by LC-MS/MS n=3.

Supplementary Table 1

MCC950 structural assignments

Structural assignments from NMR Data of MCC950 recorded in DMSO-d6

Supplementary Table 2

Microsomal stability of MCC950

The half-life (T1/2) and % compound remaining after 60 min of MCC950, Testosterone, Diclofenac and Propafenone after incubation with human and mouse liver microsomes.

Supplementary Table 3

CYP substrate preparation

Details of preparation of substrates for 5 major CYP isozymes.

Supplementary Table 4

Effect of MCC950 on CYP

The % inhibition of 5 major CYP isozymes by MCC950 and known substrates after incubation with human liver microsomes.

Supplementary Table 5

Effect of MCC950 on the hERG channel

The IC₅₀ of MCC950 (n=3) and amitriptyline (n=2) on whole cell hERG currents determined by automated patch clamp method (QPatch^{HTX}).

Supplementary Figure 1 ¹H NMR spectrum of MCC950

Supplementary Figure 2 ¹³C NMR spectrum of MCC950

NAME MCC950_004 EXPNO 2 PROCNO 1 Date_ 20141021 Time 15.22 INSTRUM spect PROBHD 5 mm CPTCI 1H/ PULPROG zgpg TD 65536 SOLVENT DMSO NS 275 DS 4 SWH 39062.500 Hz FIDRES 0.596046 Hz AQ 0.8389236 sec RG 3649.1 DW 12.800 usec DE 21.96 usec TE 298.0 K D1 1.00000000 sec D11 0.03000000 sec TD0 4
===== CHANNEL f1 ===== NUC1 13C P1 12.00 usec PL1 -2.40 dB PL1W 120.04185486 W SF01 150.9194078 MHz
CHANNEL f2 CPDPRG2 waltz16 NUC2 1H PCPD2 70.00 usec PL2 2.00 dB PL12 21.06 dB PL13 120.00 dB PL2W 9.65199947 W PL12W 0.11984429 W PL13W 0.0000000 W SFO2 600.1330006 MHz SI 65536 SF 150.9028756 MHz WDW no SSB 0 LB 0.00 Hz

Supplementary Figure 3 COSY NMR spectrum of MCC950

Supplementary Figure 4 HSQC NMR spectrum of MCC950

Supplementary Figure 5 HMBC NMR spectrum of MCC950

Supplementary Figure 7 MCC950 blocks NLRP3-dependent ASC speck formation

No stimulation

LeuLeu-Ome stimulation

Nigericin stimulation

Lethal toxin stimulation

Supplementary Figure 8 MCC950 inhibits NLRP3 activation in PBMC from individuals with MWS *ex vivo*

Supplementary Table 1. MCC950 structural assignments

¹³ C δ _c (ppm)	¹ Η δ _H (mult., <i>J</i> (Hz))	HMBC (H to C) (w = weak)
155.7		
137.3	7.37 (d, 0.9)	C2, C4, C5,
135.7		
109.3	6.58 (d, 0.9)	C2, C3, C4, C6 (w),
66.6		
31.1	1.34 (s)	C4, C6, C7/C8
157.4		
nexahydro- <i>s</i> -ind	lacene	
30.6	2 65 (t 7 3)	C2'/C6' C3'/C5'(w) C3a'/C4a' C7a'/C8a' C8'
25.1	1.89 (tt. 7.3. 7.3)	C1'/C7', C3'/C5', C2a'/C6a' (w), C7a'/C8a'(w)
32.6	2.74 (t, 7.3)	C2'/C6', C1'/C7'(w), C3a'/C4a', C7a'/C8a', C4'(w)
142.2		
115.7	6.77 (s)	C3a'/C4a', C3'/C5'
136.7		
132.4		
	7.61 (br s)	C7a'/C8a' (w)
	¹³ C δ _c (ppm) 155.7 137.3 135.7 109.3 66.6 31.1 157.4 nexahydro- <i>s</i> -inc 30.6 25.1 32.6 142.2 115.7 136.7 132.4	$\begin{array}{c} {}^{13}\text{C}\ \boldsymbol{\delta}_{\text{C}}\ (\text{ppm}) & {}^{1}\text{H}\ \boldsymbol{\delta}_{\text{H}}\ (\text{mult.},\ J\ (\text{Hz})) \\ \\ 155.7 \\ 137.3 & 7.37\ (\text{d},\ 0.9) \\ 135.7 \\ 109.3 & 6.58\ (\text{d},\ 0.9) \\ 66.6 \\ 31.1 & 1.34\ (\text{s}) \\ 157.4 \\ \end{array}$

Structural assignments from NMR Data of MCC950 recorded in DMSO-*d6*

	Human liver microsomes		Mouse liver microsomes	
	T1/2 (min)	Remaining (T=60min)	T1/2 (min)	Remaining (T=60min)
MCC950	108.3	70.8%	>145	79.1%
Testosterone	9.7	1.3%	2.3	0.5%
Diclofenac	7.2	0.4%	39.6	39.1%
Propafenone	3.9	0.0%	1.0	0.0%

Supplementary Table 2 Microsomal stability of MCC950

Supplementary Table 3 CYP substrate preparation

СҮР	Substrate	Methanol Stock Conc.	Working Conc.	Final Assay Conc.	Vol.
1A2	Phenacetin	20 mM	100 µM	10 µM	15 µL
2C9	Diclofenac	10 mM	50 µM	5 µM	15 µL
2C19	S-mephenytoin	30 mM	300 µM	30 µM	30 µL
2D6	Dextromethorphan	10 mM	50 µM	5 µM	15 µL
3A4	Midazolam	10 mM	20 µM	2 µM	6 µL
2919 μ L Phosphate buffer added to give total volume of 3 mL					

Supplementary Table 4 Effect of MCC950 on CYP

СҮР	Metabolite	control cpd (3 µM) % inhibition		MCC950 (10 µM) %inhibition
1A2	Acetominophen	a-Naphthoflavone	93.8	5.2
2C9	4'-hydroxydiclofenac	Sulfaphenazole	87.4	14.7
2C19	4'-hydroxymephenytoin	N-3-benzylnirvanol	93.5	5.0
2D6	Dextrorphan	Quinidine	96.1	4.2
3A4	1'-hydroxymidazolam	Ketoconazole	98.8	3.0

Supplementary Table 5 Effect of MCC950 on the hERG channel

Sample	IC50(µM)	SD (µM)	HillSlope	Ν
Amitriptyline	3.55	0.028	0.81	2
MCC950	>30		0.21	3

Supplementary Methods

Microsomal stability

MCC950 or control compound DMSO stock solution (10 mM) was diluted with 50% aq methanol to a concentration of 100 μ M. A 50 μ L aliquot of this solution was diluted using potassium phosphate buffer to a concentration of 10 μ M. MCC950, compound control or blank solution (10 μ L) was incubated at 37 °C with human or mouse liver microsomes (80 μ L of 0.7 mg protein/mL phosphate buffer) for 10 min before addition of NADPH regenerating system (10 μ L) to start the reaction. Reactions were stopped at 0, 5, 10, 20, 30 and 60 min time-points by addition of 300 μ L cold acetonitrile (containing tolbutamide as internal standard at 100 ng/mL) and centrifuged at 4,000 rpm for 20 min. The supernatant (100 μ L) was added to water (300 μ L) and analyzed by LC/MS/MS. The ratio of peak area of test compound remaining/internal standard was used to determine reduction in concentration of test compound over time. The half-life (T1/2) and % compound remaining after 60 min were then calculated.

Cytochrome P450 inhibition

A working stock solution of MCC950 (10 mM in DMSO) was diluted using phosphate buffer to a concentration of 100 µM. Five inhibitor stock solutions were prepared at a concentration of 3 mM in DMSO: anaphthoflavone, sulfaphenazole, N-3-benzylnirvanol, guinidine and ketoconazole. The inhibitor stocks were diluted using phosphate buffer to a concentration of 30 µM. A cocktail of substrates (phenacetin, diclofenac, S-mephenytoin, dextromethorphan and midazolam) for 5 major CYP isozymes (1A2, 2C9, 2C19, 2D6 and 3A4) was prepared by dilution of methanol stock solutions using phosphate buffer as shown in Supplementary Table 3. MCC950, known inhibitor or blank solution (20 µL of working stock solution) and substrate cocktail solution (20 µL) were incubated at 37 °C with human liver microsomes (140 µL of 0.286 mg/mL in phosphate buffer) for 10 min prior to addition of the co-factor NADPH (20 uL of 10 mM solution in 33 mM MgCl₂). Incubation was continued and aliquots were removed at 0, 5, 10, 20, 30 and 60 min then mixed with cold acetonitrile (containing tolbutamide as internal MS standard at 200 ng/mL) and centrifuged at 4,000 rpm for 20 min. The supernatant was analyzed by LC/MS/MS to determine the peak area of metabolite and internal standard. Peak areas determined in the presence and absence of test compound were used to determine % inhibition.

hERG channel assay

Automated patch clamp method (QPatch^{HTX}) was used at WuXi AppTech to evaluate the effects of MCC950 on the hERG potassium channel. CHO cells that stably express hERG potassium channels from Aviva Biosciences were used. The IC₅₀ of MCC950 and amitriptyline as positive control on whole cell hERG currents were determined.

Pharmacokinetics

Single dose pharmacokinetic parameters were determined at WuXi AppTech using fasted male C57BL/6 mice (3 mice per group, 2 groups). Groups were dosed i.v. (3 mg/kg) or p.o. (20 mg/kg) and blood samples taken *via* submandibular or saphenous vein at the following time points post dosing: 0.083 (i.v. only), 0.25, 0.5, 1, 2, 4, 8 and 24 h. An aliquot of 7 μ L of blood plasma was protein precipitated with 70 μ L internal standard solution (100 ng/mL diclofenac & 100 ng/mL tolbutamide in MeOH), the mixture was vortex-mixed for 1 min and centrifuged at 13,000 rpm for 15 min. The supernatant (70 μ L) was then mixed with 210 μ L water/methanol (v:v, 50:50), vortex-mixed for 15 min and centrifuged at 4,000 rpm for 10 min at 4 °C. The concentration of MCC950 in the plasma samples was determined using LC-MS/MS with the peak areas compared to a calibration curve determined using 3-3,000 ng/mL MCC950 in male C57BL/6 mouse plasma.