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ABSTRACT An alg ithm described to assemble the
three-dimensional fold of a protein starting from Its secondary
strucure. A reduced reprenation of the polypeptide chain is
used together with a crude potentil based on pair hydropho-
bicides. The method Is shown to be s ful in locating the
native topology for two 4-a-hex budes, myohemerythrin
and cytochrome b-562.

The native fold ofprotein molecules is the result of a delicate
balance offorces involving intramolecular as well as protein-
solvent interactions. Over the last 15 years, empirical force
fields have been developed to describe relative molecular
energies as a function of atomic positions. The prediction of
the three-dimensional structure of a protein by using such
force fields would require the global optimization of an
extremely large number of interdependent variables and is at
present an unattainable task. In recent years several protein
models based on simplified chain geometries and energetics
have been explored, leaving unresolved though the question
whether a simplified description can be effective in predicting
protein structure. Here we show that a very simple model can
identify the native conformation at low resolution when
protein secondary structure is specified. We describe our
methodology for two 4-a-helix bundles, myohemerythrin and
cytochrome b-562, and discuss the implications for protein
folding prediction.
The search for the native structure in protein models em-

ploying empiric force fields is hindered by the multiple-minima
problem (1), i.e., the existence of an astronomically large
number of local minima that reduces tremendously the effec-
tiveness of any of the searching algorithms available today.
Scheraga and coworkers (ref. 2 and references therein) have
considered several strategies to attack the multiple-minima
problem. One possibility to get around this problem is to try
to reduce its complexity by designing simplified models where
coarse representations of the protein chain are used together
with primitive interaction potentials encoding information
about known protein structures [such as profile Hamiltonians
(3), contact potentials (4), or associative-memory Hamilto-
nians (5)]. Obviously, simplified models can be expected only
to produce low-resolution structures, which could then be
refined using more detailed descriptions.

In the spirit of such a hierarchical description of protein
folding, we investigated the question whether it is possible to
locate the native structure by employing a reduced represen-
tation and by specifying secondary structure. Our working
hypothesis is that ifone assigns secondary structure, a simple
interaction energy can be chosen such that the potential
surface ofthe simplified representation ofthe protein with its
secondary structure frozen in place has relatively few min-
ima, one of which corresponds to the native structure.
Computer simulations (employing minimization or simulated

annealing) of a model of this type should then be relieved
from the multiple-minima problem and be able to find the
native fold.

Several previous workers have investigated the idea that
protein structure can be understood by packing secondary-
structure elements (6-8). Reasonable (although generally
rather qualitative) results have been obtained in most ofthese
studies, which have encouraged us to pursue the research
described here. Ourwork differs from the papers cited above,
however, in the details of the model and the computational
algorithms; as is shown below, we have been able to obtain
relatively accurate structures with an algorithm that is en-
tirely automated, i.e., would function in the same way in the
absence of any prior knowledge of the tertiary structure.
We use backbone atoms N, Ca, and C to represent the

polypeptide chain and internal dihedral angles to describe
protein conformations. Side chains are identified by the Cp
atom position. In secondary-structure regions, the dihedral
angles are kept fixed to their x-ray structure values. A
discrete set of six pairs of 0, i angles with w = 1800 is used
for residues located in loop regions (9). The interaction
between residues is described by a simple hydrophobic pair
potential, derived from the analysis of the protein data base
by Casari and Sippl (10). Each pair interaction depends
linearly on the Cp-Cp distance between residues, with a
prefactor given by the sum of the structure-derived hydro-
phobicities for the two residues. The van der Waals core
repulsion is modeled by requiring that the C.-Ca distance
between residues be larger than rami (set equal to 3.8 A in our
calculations).
An algorithm to assemble a three-dimensional folded struc-

ture was optimized by implementing the following scheme.
Given a protein conformation, a new one is obtained by
randomly choosing one of the loops and 4, Tangles for each
of its residues from the set of six dihedral angle states. An
approximate radius of gyration (based on the centers of the
secondary structure and loop regions) is calculated and the
new conformation is rejected if it is more than 25% less
compact than the present one. If the new configuration is
accepted, first its energy is evaluated and then, if the Me-
tropolis test is satisfied, the chain is checked to be self-
avoiding.
We applied our methodology to myohemerythrin (11) and

cytochrome b-562 (12), two 4-a-helix bundles consisting of
118 and 106 residues, respectively. In a typical run, we start
with each ofthe interhelix loops in an extended conformation
and samplefrom300,000to 1,000,000 configurations. Quench-
ing or simulated annealing is used to find low-energy struc-
tures. Our results indicate that in a batch of 20 runs typically
four or five final structures are very close in energy to the
native one, and their Ca rms deviation is between 4 and 5 A
(Table 1). The low-energy-generated structures are similar to
each other, with rms deviations among them at 4-5 A. Figs.
1 and 2 show an example of such structures for myohem-
erythrin and for cytochrome b-562, respectively. As can be
observed, the basic topology of the 4-a-helix bundle is
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Table 1. Results of a batch of 20 runs for myohemerythrin
Final energy,

IR arbitrary units
Final RG, RMS,

A A
01 I
02 I
03 I
04 I
05 I
06 1
07 I
08 I
09 1
10 I
11 I
12 I
13 I
14 I
15 I
01 C
02 C
03 C
04C
05 C

-121.88
-95.64
-110.54
-119.13
-117.52
-121.98
-146.60
-109.16
-130.82
-141.14
-106.38
-149.46
-110.80
-146.94
-119.82
-152.65
-95.51
-149.20
-109.25
-96.25

15.43
15.76
15.16
15.06
14.41
14.57
14.25
14.99
14.68
13.53
14.88
14.12
14.69
13.68
15.06
13.83
14.80
13.83
15.39
15.42

14.97
9.18
14.59
9.46
8.04
8.20
4.71
11.16
9.04
8.50

13.06
4.83
9.92
4.12
13.78
5.01

10.38
4.48
8.89

12.44

IR is a run identifier (I and C correspond to runs on an IBM 550
and on a Convex C210, respectively), RG is the radius of gyration,
and RMS is the Ca rms deviation from the native structure. The
native energy (in arbitrary units) is -157.02 and the radius ofgyration
is 13.77 A. Similar results were obtained for cytochrome b-562.

recovered, with deviations mainly due to a tilted helix or to
a twisted pair of helices (as in the case shown here). These
deviations are reflected in Ca distance plots, which for the
most part though show similar features to the native one.
Our ability to recover a low-resolution native structure for

the two 4-a-helix bundles considered here is related to the
fact that the potential surface of our model does not have a
large number of local minima. In fact, the results shown in
Table 1 were obtained by pure Monte Carlo quenching and
did not require simulated annealing. Indirect evidence that
the potential surface has relatively few minima is given by the
results obtained using a biased potential, with favorable

FiG. 1. Overlap of the x-ray structure of myohemerythrin, in
blue, and one of the low-energy structures produced by our algo-
rithm, in yellow. The Ca rms deviation between the two structures
is 4.12 A (if only the helical regions are considered, the Ca rms
deviation is 3.87 A).

FIG. 2. Overlap of the x-ray structure of cytochrome b-562, in
red, and one ofthe low-energy structures produced by our algorithm,
in yellow. The Ca rms deviation between the two structures is 4.09
A (if only the helical regions are considered, the Ca rms deviation is
3.37 A).

contributions for pair interactions corresponding to native
interhelix contacts. In this case the occurrence of native
contacts in nonnative conformations is responsible for the
appearance of deeper local minima, and the native structure
is found only if a simulated annealing scheme is used.
An obvious limitation of the methodology we have de-

scribed is that only low-resolution structures can be gener-
ated since the description of the protein chain is very coarse
and specific interactions (such as hydrogen bonds) are not
modeled by the simple potential used. Nonetheless, our
results indicate that a potential based on relative hydropho-
bicities can successfully distinguish the native fold. The
essential role of hydrophobic interactions in our folding
procedure is demonstrated by the results of simple experi-
ments where we randomly shuffled the sequence of myohe-
merythrin, maintaining the same amino acid composition. In
this case, the native state is no longer the lowest-energy one,
and our minimization procedure identifies structures with no
resemblance to the native one that are significantly less
compact. We also turned all the residues hydrophobic and
observed that many local minima appear, corresponding to
compact structures with a large number of hydrophobic
contacts. As far as the potential is concerned, our present
assumption is that the effect of the solvent can be described
implicitly and that protein interactions can be expressed by
an effective residue-residue force field. Such interactions can
also be represented by a potential that is a sum of terms
depending on the identity ofeach residue and its environment
(3).
We recognize that the 4-a-helix bundle structure is one of

the easier ones to recover for an approach such as ours and
that a demonstration of generality of our algorithm will
require obtaining results of similar quality for more complex
topologies (e.g., including different arrangements of helices
and a-sheets). However, it should be noted that the two helix
bundles considered here are quite different (the rms deviation
obtained from the comparison of the two native structures is
7.45 A) and there is a large number of alternative structures
that one could separate with regard to the details of helix
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packing. Our methodology is able to reproduce these details
quite reliably, as Figs. 1 and 2 indicate.

Simplified models for protein folding have been presented
in the past by several authors. These models fall into a
number of different categories. For example, Covell and
Jernigan (13), Hinds and Levitt (14), Chan and Dill (15, 16),
and Shakhnovich and coworkers (17) have investigated lat-
tice models of small proteins (both actual and hypothetical)
by using exact enumeration techniques and energy screening
via various potential functions (e.g., contact potentials).
They have demonstrated that simple potentials are capable of
producing high rankings for native-like structures. While
such methods have provided substantial insight into the
energetic and topological basis of protein folding (although
there are a number of technical difficulties, e.g., mapping
lattice models onto detailed protein conformations), the
computational scaling of enumeration algorithms with pro-
tein size eventually becomes exponential, rendering the
study of larger proteins (including the 4-a-helix bundles
considered here) impractical.
Sun (18) has investigated a reduced representation model

similar to the one described in this paper, employing an
explicit representation of the backbone atoms with a simpli-
fied side-chain description; the potential is also based on
data-base statistics but differs in its details from the one
presented herein. He uses a genetic algorithm to determine
minimized structures for three small proteins, ranging from
18 to 36 residues. With the additional constraint of fixing the
radius of gyration to the native value, reasonable agreement
with the experimental structures is obtained in all cases. The
radius of gyration constraint is certainly quite efficacious for
the small proteins considered, particularly when the number
of conformations satisfying the constraint is limited. How-
ever, a comparison between this approach and our strategy
of fixing secondary structure needs to be made, at least from
the standpoint of our objectives, in the context of larger
proteins.

Skolnick and coworkers have carried out a significant
number of studies of folding of small and medium size
proteins (=100 residues) using both lattice (19, 20) and
off-lattice (21) models (although the backbone contains only
Ca atoms explicitly) via dynamical Monte Carlo methods and
simulated annealing. These studies are probably closest to
our own in spirit. However, the details of the models are very
different. In particular these workers use biasing potentials in
the turn regions, taken from the native structure, to drive the
system into the correct folded state. They also adjust numer-
ous parameters in their potential to render the simulations
tractable computationally and to generate reasonable final
structures. Our view is that fixing secondary structure is a
much more straightforward methodology conceptually, is
substantially easier to connect with other sources of infor-
mation like NMR data and secondary-structure prediction
algorithms, and is computationally more efficient. However,
this will have to be determined by the test of time and it may
turn out that both approaches are valuable.

Despite the obvious similarities to the diffusion-collision
model (22, 23), the simulations reported here have no direct
implications for protein folding kinetics, as the simulation
algorithm is not intended to be representative of real-time
dynamics. Moreover, the locking in of secondary structure in
any case precludes consideration of the time scale for helix
formation as compared to that for assembling the hydropho-
bic core.

In conclusion, we have shown that it is possible to locate
the native structure of a protein at low resolution by using a
model in which secondary structure is assigned and a very
crude potential is used. We have demonstrated this for
myohemerythrin and cytochrome b-562, by using a simple
and efficient algorithm (the central processing unit time for

sampling 300,000 configurations was 12 min on a Convex
C210, --30 min on an IBM 550, and -35 min on an SGI Indigo
R4000). Concerning our approach of fixing secondary struc-
ture, it should be pointed out that although a significant
reduction of the configuration space is obtained in our
algorithm by fixing the helical regions, the study of self-
avoiding random walks with preset helices by Cohen and
Sternberg (24) has shown that the knowledge of the location
of helical regions alone does not significantly facilitate the
generation of the tertiary structure. What is most striking
about the results in the present paper, as compared to the
work of other authors described above (13-21), is the ease
with which two fairly large proteins were folded into rela-
tively high-quality structures. The computation time is min-
imal and the algorithm used to carry out minimization is quite
primitive. All of this suggests that with more effort, folding of
larger and more complex proteins will be possible using our
methodology. Ultimately, the procedure described here
could be applied to proteins of unknown structure when
secondary-structure assignments and other distance con-
straints are imposed using data obtained by CD, NMR,
and/or other experimental techniques.
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