

Fig. S1 Titration of WNT3A, BMP4 and RA and their effect on epicardial gene expression. (A) High expression of *TBX18*, *WT1* and *TCF21* was noted with increasing doses of WNT3A. Highest expression of all three epicardial genes was observed at a final concentration of 25 ng/ml. Enhanced epicardial gene expression was noted in cultures supplemented with 4 μ M and 6 μ M of all trans retinoic acid (RA). Enriched expression of epicardial markers was noted with increasing doses of BMP4 which plateaued at higher concentrations (50, 100 and 200 ng/ml). (B) Analysis of epicardial markers in LM cells differentiated with two different concentrations of FGF2. No significant induction in the expression of *TBX18* and *WT1* was observed.

Fig. S2. Flow cytometric analysis of WT1 expression in cells differentiated using WNT3A and RA treated cells. Lateral plate mesoderm cells differentiated with WNT3A, WNT3A+BMP4 and WNT3A+BMP4+FGF2 failed to induce any WT1 expression in the differentiated cells after 10 days of differentiation. Addition of RA promoted expression of WT1 in the differentiated cells. A higher concentration of RA (4 μ M) resulted in a larger percentage of WT1⁺ cells compared to cells differentiated with a lower concentration of RA (1 μ M). H9-derived neuroectoderm (NE) cells were used as a negative control.

Fig. S3. HESC-derived epicardial cells express SMC and cardiomyocyte markers at longer periods of differentiation. (A) Analysis of SMC (*CNN1*) and cardiomyocyte (*TNNT2*) markers in the LM-derived day 10 (EPI D10) and day15 (EPI D15) epicardial cells by qRT-PCR. ***P<0.001, **P<0.01. (B) Immunocytochemical analysis of TNNT2 in EPI D10 and H9-derived cardiomyocytes (CM). (C) Analysis of pluripotency (*NANOG*, and *POU5F1*) and LM (*NKX2.5* and *ISL1*) markers in H9, LM and epicardial cells after 5 (EPI D5) and 10 (EPI D10) days of differentiation. Significant differences compared to H9 are indicated in black, whereas differences between groups are indicated in red. ***P<0.001, *P<0.05.

Fig. S4. HESC-derived epicardial cells are similar to human fetal epicardium. Human fetal epicardial outgrowths (FETAL EPI) and H9-derived epicardial cells (EPI D10) displayed similar WT1 expression. Scale bar, 100 μm.

Fig. S5. Epicardium differentiation from flow sorted lateral plate mesoderm (LM). (A) Sort plot demonstrating 56% KDR⁺ (blue) and 20% KDR⁻ (purple) LM cells. (B) Analysis of epicardial genes by qRT-PCR in epicardium-like cells derived from flow sorted and unsorted LM. Comparisons between the sorted and unsorted groups were made using Two-Way ANOVA.

Fig. S6. Localisation of human epicardial cells in the subepicardial/epicardial region *in vivo*. A chicken heart at HH34 reconstructed from confocal sections. GFP⁺ or mStrawb⁺ epicardial cells were mostly seen in the subepicardial space between the epicardium and myocardium at the base of the heart (indicated by red +). WT1 expressing epicardial cells were spotted at the apex of the heart (indicated by green*) where the epicardial/subepicardial region was relatively thinner. The scale bar represents 285 mm in the large panel and 100 mm in the two small inserted panels.

Fig. S7. HPSC-derived epicardial cells differentiate into mature vascular SMCs. (A) Analysis of SMC markers in epicardium-derived SMCs (EPI-SMC) generated from H9 HESCs and BHX HiPSCs and their comparison with human coronary artery SMCs (HCASMCs) by qRT-PCR. Significant differences compared to day 10 epicardium (EPI D10) are indicated in black, whereas differences between groups are indicated in red. ***P<0.001, **P<0.01, *P<0.05. (B) Western Blot analysis of mature SMC protein MYH11 in human umbilical vein endothelial cells (HUVECs), EPI-SMCs and HCASMCs. β -actin was used as loading control.

Movie 1 : This movie shows beating cardiomyocytes that were derived from human embryonic stem cells. These cells were used as a positive control in figure S3 to examine the expression of myocardial marker TNNT2.

Table S1

Gene	Sequence		
NKX2.5	AGCCGAAAAGAAGAGCTGTGCG		
	GACCTGCGCCTGCGAGAAGAG		
ISL1	GCAAATGGCAGCGGAGCCCA		
	AGCAGGTCCGCAAGGTGTGC		
FOXF1	GTACCCGCACCACGACAGCTC		
	ATACCGCGGGGATGCCTTGCAG		
PITX2	GCGTGTGTGCAATTAGGCG		
	AAAGTGAGTCCGCTGCCGCC		
PBGD	GGAGCCATGTCTGGTAACGG		
	CCACGCGAATCACTCTCATCT		
TBX18	ACTCCGGGCGCAACAGAATGG		
	TGGGCCCCAGATGGAAGGCA		
WT1	TCCGGCCCAGTTTGTAGTAGA		
	AGCAGGGCTCGCTGGGTGAG		
TCF21	GAAGTGGTGACCGCGAGCCG		
	AGTGTTCTCGCGGGGTGGGA		
BNC1	GGGAACTGTGAAGGGTCGAG		
	TCGACTGCGAACAGACGAAA		
UPK1B	AGGACAATTGCTGTGGCGTA		
	GGAGAACCCAAAAAGTCCAGC		
ANXA8	ACACGAATCCATCCCAACCGAGAT		
	AACACAGTGTCCTTGGGTCAGGAA		
ACTA2	CACTGTCAGGAATCCTGTGA		
	CAAAGCCGGCCTTACAGA		
CNN1	GTCCACCCTCCTGGCTTT		
	AAACTTGTTGGTGCCCATCT		
TAGLN	TCTTTGAAGGCAAAGACATGG		
	TTATGCTCCTGCGCTTTCTT		
MYH11	AGATGGTTCTGAGGAGGAAACG		
	AAAACTGTAGAAAGTTGCTTATTCACT		
CDH1	GGCTGGACCGAGAGAGTTTC		
	CGACGTTAGCCTCGTTCTCA		

VIM	GAAGGCGAGGAGAGCAGGATT			
	CAAGGTCATCGTGATGCTGAG			
OCLN	CGGCGAGCGGATTGGTT			
	TAGGCTGGCTGAGAGAGCATT			
ZEB1	CATATTGAGCTGTTGCCGCTG			
	TCTTGCCCTTCCTTTCCTGTGT			
NANOG	TCCTGAACCTCAGCTACAAACA			
	GGTAGGTGCTGAGGCCTTCT			
POU5F1	GTGGGGGGCAGGGGAGTTTGG			
	AGTGTGTCTATCTACTGTGTCCCAGGC			
CD34	CACAGGAGAAAGGCTGGGCGA			
	TGGCCGTTTCTGGAGGTGGC			
POSTN	CCCGTGACTGTCTATAAGCCAA			
	GTGTGTCTCCCTGAAGCAGT			
DDR2	TTCTTTTTGGGTTGGGGAAACG			
	TGGGTCCTGGGAGGCATATCA			
NOS3	AAGGCTTTTGATCCCCGGGTCCT			
	TCTCCATCAGGGCAGCTGCAAAG			
PDGFRA	ATCGGAGGAGAAGTTTCCCAGAG			
	GGTACTGCCAGCTCACTTCA			

Table S2

Marker	Application	Concentration	Manufacturer
ISL1	Flow cytometry	1:200	Abcam (ab26122)
	Immunocytochemistry	1:250	
KDR-PerCP	Flow cytometry	10µl added to 100µl of	R&D Systems
		10^6 cells	(FAB357C)
NKX2-5	Immunocytochemistry	1:200	Santa Cruz (SC-14033)
WT1	Flow cytometry	1:100	
	Immunocytochemistry	1:50	Abcam (ab89901)
	Western Blot	1:1000	
BNC1	Immunocytochemistry	1:50	Dr Shiro Luchi and
			Professor Howard
			Green
TCF21	Western Blot	1:250	Abcam (ab170395)
ACTA2-FITC	Flow cytometry	1:400	Sigma (F3777)
	Immunocytochemistry	1:400	
CNN1	Flow cytometry	1: 15000	Sigma (C2687)
	Immunocytochemistry	1: 15000	
TAGLN	Immunocytochemistry	1:1000	Abcam (ab14106)
ACTA2	Whole mount	1:200	Dako (M0851)
	Immunofluorescence		
MYH11	Western blot	1:5000	Sigma (M7786)
DDR2	Immunocytochemistry	1:200	Santa Cruz (sc7555)
POSTN	Flow cytometry	1:500	Abcam (ab14041)

Development 142: doi:10.1242/dev.119271: Supplementary Material

HOECHST 33342	Whole mount	1:250	Sigma (14533)
	immunofluorescence		
β-ACTIN	Western blot	1:5000	Sigma (A1978)