Supplementary methods

Field sites

Glenrock and Bogo woodlands were relatively open and Glenrock had scattered individuals *of A. dealbata*, whilst at Bogo there were no acacias present. At Glenrock and Bogo patches of native Australian grasses were more frequent than at Talmo, whilst still not being extensive, and some exotic grasses were also present at the Bogo woodland plot. The sites were chosen within 15 km of each other to minimise variability in microclimate. The distances between pairs of pasture and woodland plots were: Talmo, 160 m; Glenrock, 200 m; and Bogo, 440 m. At each site, woodland plots were located at slightly higher elevation than pastures and flux of fertilisers and minerals to the woodlands was therefore minimised. The close proximity between plots also minimised differences in parent soil type. Each plot (100 x 100 m) was gridded by 25 m intervals, and samples were taken at all grid intersections (see appendix Fig. S1). For three of the 25 m² subplots within each plot, additional samples were taken at 12.5 m intervals.

Soil biogeochemistry analysis

Soil organic C fractions (particulate-, humus- and resistant-organic carbon (POC, HOC and ROC) and clay composition were determined using diffuse reflectance mid-infra red (MIR) spectra (Nicolet 6700 FTIR spectrometer equipped with a KBr beam-splitter and a DTGS detector, Thermo Fisher Scientific Inc, MA, USA) acquired over 8000 - 4000 cm⁻¹ (resolution of 8 cm⁻¹). Organic C fractions were determined as described in Baldock *et al.* (1) and clay content was estimated using the prediction algorithms of Janik and Skjemstad (2). The level of confidence in the predicted data was deemed appropriate after assessment of the associated error statistics which were below the respective thresholds (inlier/outlier ratio <1)

for Baldock *et al.* (1); F-statistic <3 for Janik and Skjemstad (2) indicating that the overall spectral characteristics of the soils were represented within the wider calibration dataset. However, it is acknowledged that the calibration datasets are largely representative of Australian agricultural soils and not woodland soils.

GH48 primer design

The primer pair (GH48_F1: 5'-RRCATBTACGGBATGCACTGGCT-3' and GH48_R1: 5'-VCCGCCCCABGMGTARTACC-3') amplified a region of the GH48 catalytic region varying from 483 bp to 513 bp. Primer specificity was tested using MFE-primer 2.0 (3), using a wide range of in-silico PCR conditions (Tm from 47 to 80°C, product size from 400 to 600 bp and a PPC cut off of 30%) which allowed the detection of non-specific amplification products even if these are unlikely under the PCR conditions used in the laboratory. We further confirmed specificity by cloning and sequencing PCR products.

The inclusion of GH48 sequences from Cellulomonas spp., Jonesia denitrificans and Xylanimonas cellulosilytica led to a high number of degenerate bases in the primers and increased mismatches between primers and target sequences. Therefore the sequences from those species were removed from the alignment and a second primer pair was designed specifically for these species. The second primer pair (GH48 F1 cell: 5'-AYGTCGACAACRTSTACGGMTWCG-3' 5' and GH48 R1 cell: CCGCCCCASGCSWWRTACC-3') was also used for cloning and T-RFLP analysis, however the diversity recovered with both primer pairs was similar and in-silico analysis of primer specificity indicated that primer pair 1 (GH48_F1 and GH48_R1) would also amplify the GH48 gene from Jonesia denitrificans and Xylanimonas cellulosilytica.

GH48 qPCR primer design

The primer sequences were qPCR_GH48_F8: 5'-GCCADGHTBGGCGACTACCT-3' and qPCR_GH48_R5: 5'- CGCCCCABGMSWWGTACCA-3'. The pair designed here has similar lengths (19 or 20 bp), melting temperatures (55-60°C) and amplify a region of 150 bp. In-silico specificity was assessed using MFEprimer 2.0 (Tm from 47 to 80°C, product size from 100 to 300 bp and a PPC cut off of 30%) (3). Amplification was tested using DNA from soil, GH48 clones obtained with the PCR primers described above (GH48_F1 and GH48_R1) and DNA from a local soil actinomycete isolate. Following amplification of soil DNA, visual inspection of PCR products revealed the presence of expected sizes, and sequencing of 8 soil clones showed that all high quality sequence clones obtained had top BLASTn hits to actinobacterial GH48 sequences.

Supplementary methods references

- Baldock JA, Hawke B, Sanderman J, Macdonald LM. 2013. Predicting contents of carbon and its component fractions in Australian soils from diffuse reflectance midinfrared spectra. Soil Res 51:577-583.
- Janik LJ, Skjemstad JO. 1995. Characterization and analysis of soils using midinfrared partial least-squares 2. Correlations with some laboratory data. Australian Journal of Soil Research 33:637-650.
- Qu W, Zhou Y, Zhang Y, Lu Y, Wang X, Zhao D, Yang Y, Zhang C. 2012. MFEprimer-2.0: a fast thermodynamics-based program for checking PCR primer specificity. Nucleic Acids Res 40:W205-W208.

Supplementary tables

Table S1: Results of in-silico analysis of GH48 primer specificity using MFEprimer. Primer specificity using a wide range of in-silico PCR conditions (Tm from 47 to 80°C, product size from 100 to 300 bp (qPCR primers) and 400 to 600 bp (standard PCR primers) and a PPC cut off of 30%).

qPCR_GH48_F8 - qPCR_GI	148_R5	
	highest	РРС
Sequence name	score	Species name
CP000481	96.4	4 Acidothermus cellulolyticus
CP006259	96.4	4 Streptomyces collinus
FR845719	96.4	4 Streptomyces venezuelae
CP000667	96.4	4 Salinispora tropica CNB-440
CP000850	96.4	4 Salinispora arenicola CNS-205
CP001630	96.4	4 Actinosynnema mirum
CP001814	96.4	4 Streptosporangium roseum
CP002162	96.4	4 Micromonospora aurantiaca
CP002399	96.4	4 Micromonospora sp. L5
L38827	96.4	4 Cellulomonas fimi
CP002047	96.4	4 Streptomyces bingchenggensis
CP003720	96.4	4 Streptomyces hygroscopicus
CP003170	96.4	4 Actinoplanes sp. SE50/110
AP012319	96.4	4 Actinoplanes missouriensis
CP000088	9	5 Thermobifida fusca
CP001964	9	5 Cellulomonas flavigena
AP010968	86.4	4 Kitasatospora setae
AL939128	78.3	3 Streptomyces coelicolor
CP002993	78.3	3 Streptomyces sp. SirexAA-E
FN554889	78.3	3 Streptomyces scabiei
CP001874	78.3	3 Thermobispora bispora
CP002040	78.3	3 Nocardiopsis dassonvillei
CP003729	78.3	3 Amycolatopsis mediterranei
CP002665	76.3	1 Cellvibrio gilvus

GH48_F1-GH48_R1

highest PPC	
score	Species name
90.1	Acidothermus cellulolyticus
90.1	Actinoplanes missouriensis
90.1	Actinoplanes sp. N902-109
90.1	Actinoplanes friuliensis
90.1	Actinosynnema mirum
	highest PPC score 90.1 90.1 90.1 90.1 90.1

CP001700	90.1	Catenulispora acidiphila
NC_007645.1	90.1	Hahella chejuensis
CP001706	90.1	Jonesia denitrificans
CP000850	90.1	Salinispora arenicola CNS-205
CP000667	90.1	Salinispora tropica CNB-440
BA000030	90.1	Streptomyces avermitilis
AL939128	90.1	Streptomyces coelicolor
FN554889	90.1	Streptomyces scabiei
CP001814	90.1	Streptosporangium roseum
CP000088	90.1	Thermobifida fusca
CP001874	90.1	Thermobispora bispora
CP001821	90.1	Xylanimonas cellulosilytica
CP002040	87	Nocardiopsis dassonvillei
CP003170	79.6	Actinoplanes sp. SE50/110
HE971709	79.6	Streptomyces davawensis
CP009124	79.6	Streptomyces lividans
CP009438	79.6	Streptomyces glaucescens
CP003729	79.6	Amycolatopsis mediterranei
AP010968	79.6	Kitasatospora setae
CP002162	79.6	Micromonospora aurantiaca
CP002399	79.6	Micromonospora sp. L5
CP002638	79.6	Verrucosispora maris

GH48_F1_cell-GH48_R1_cell

	highest	PPC	
Sequence name	score		Species name
BA000030	8	3.6	Streptomyces avermitilis
CP005929	8	3.6	Actinoplanes sp. N902-109
LK022848	8	3.6	Streptomyces iranensis
CP009124	8	3.6	Streptomyces lividans
CP009438	8	3.6	Streptomyces glaucescens
CP006567	8	3.6	Streptomyces rapamycinicus
CP006259	8	3.6	Streptomyces collinus
FR845719	8	3.6	Streptomyces venezuelae
CP001630	8	3.6	Actinosynnema mirum
CP001706	8	3.6	Jonesia denitrificans
CP001821	8	3.6	Xylanimonas cellulosilytica
FN554889	8	3.6	Streptomyces scabiei 87.22
CP001964	8	3.6	Cellulomonas flavigena
CP002638	8	3.6	Verrucosispora maris
L38827	8	3.6	Cellulomonas fimi
CP002993	8	3.6	Streptomyces sp. SirexAA-E
AP010968	8	3.6	Kitasatospora setae
CP002047	8	3.6	Streptomyces bingchenggensis
CP003720	8	3.6	Streptomyces hygroscopicus
CP006272	8	2.2	Actinoplanes friuliensis
CP000481	7	9.2	Acidothermus cellulolyticus

HE971709	79.2	Streptomyces davawensis
CP001874	79.2	Thermobispora bispora
CP002399	79.2	Micromonospora sp. L5
CP003170	79.2	Actinoplanes sp. SE50/110
CP002665	58.6	Cellvibrio gilvus

Table S2: Summary of actinobacterial GH48 genes amplified by each primer pair according

to MFEprimer analysis.

	aPCR GH48 F8		
	-	GH48 F1-	GH48 F1 cell-
Species	qPCR_GH48 R5	GH48_R1	GH48_R1_cell
CP001630 Actinosynnema mirum	X	X	X
CP002040 Nocardiopsis dassonvillei	Х	Х	
CP000481 Acidothermus cellulolyticus	Х	Х	
CP000850 Salinispora arenicola	X	Х	
CP000667 Salinispora tropica	X	Х	
CP001874 Thermobispora bispora	Х	Х	Х
CP001821 Xylanimonas cellulosilytica		Х	Х
AP012319 Actinoplanes missouriensis	Х	Х	
CP005929 Actinoplanes sp. N902-109		Х	Х
CP003170 Actinoplanes sp. SE50/110	X	Х	Х
CP006272 Actinoplanes friuliensis		Х	Х
CP001700 Catenulispora acidiphila		Х	
L38827 Cellulomonas fimi	X		Х
CP001964 Cellulomonas flavigena	Х		Х
CP001706 Jonesia denitrificans		Х	Х
AP010968 Kitasatospora setae	X	Х	Х
CP002399 Micromonospora sp. L5	Х	Х	Х
CP002162 <i>Micromonospora</i>			
aurantiaca	Х	Х	Х
AL939128 Streptomyces coelicolor	X	Х	
HE971709 Streptomyces davawensis		Х	Х
BA000030 Streptomyces avermitilis		Х	Х
CP003720 <i>Streptomyces</i>			
hygroscopicus	Х		Х
CP002047 <i>Streptomyces</i>			
bingchenggensis	Х		Х
CP003990 Streptomyces sp.			
PAMC26508			
CP002475 Streptomyces pratensis			
LK022848 Streptomyces iranensis			Х
CP009124 Streptomyces lividans		Х	Х
CP009438 Streptomyces glaucescens		Х	Х
CP006567 Streptomyces			
rapamycinicus			Х
CP006259 Streptomyces collinus	X		Х
FR845719 Streptomyces venezuelae	Х		Х
CP002993 Streptomyces sp. SirexAA-	X		Х
FN554889 Streptomyces scabiei			
(C9ZEQ0)	Х	Х	Х
FN554889 Streptomyces scabiei			
(C9Z9L6)			
CP001814 Streptosporangium roseum	Х	Х	

CP000088 Thermobifida fusca		Х	
CP002638 Verrucosispora maris		Х	Х
CP003729 Amycolatopsi	5		
mediterranei	Х	Х	
CP002665 Cellvibrio gilvus	Х		Х

Table S3: Percentage of GH48 clones showing the presence of conserved residues with known function in cellobiohydrolase function. Residues numbers are according to the Cel48F gene from *Clostridium cellulolyticum* H10.

	Clones		Broconco in T fucca
Residue	with	Function	GH18 protoin
	residue (%)		0146 protein
N178	100	Hydrogen bonding	yes
F180	57%	Hydrophobic stacking interactions	no
Q181	100	Hydrogen bonding	yes
G183	100	Hydrogen bonding	yes
Q185	47%	Calcium coordination	no
E186	100	Hydrogen bonding	yes
E190	71%	Calcium coordination	yes
Q222	100	Hydrogen bonding	yes
T226	88.7%	Hydrogen bonding	yes
K274	98.7%	Hydrogen bonding	yes
Y275	96%	Hydrogen bonding	yes
W298	98.7%	Hydrogen bonding	yes

Supplementary figures

Figure S1. Sampling grid used in this study. The 1 hectare plots were gridded by 25 m intervals, and samples were taken at all grid intersections . For three of the 25 m^2 subplots within each plot, additional samples were taken at 12.5 m intervals.

Figure S2. Maximum likelihood tree (PhyML) constructed with GH48 sequences from soil clones and cultured strains from Actinobacteria, Firmicutes, Neocallimastigales (anaerobic fungi), Proteobacteria, Chloroflexi and Insecta. Nodes in tree branches indicate bootstrap support > 0.8. Sequences from *Bacillus* spp. and *Paenibacillus* spp. were used as outgroups. Sequence accessions are indicated following strain name. Colours indicate sequence taxonomy or soil clone provenance. TW, Talmo woodland; GW, Glenrock woodland; BW, Bogo woodland; TP, Talmo pasture; GP, Glenrock pasture; BP, Bogo pasture.