SUPPLEMENTAL MATERIAL

TABLE S1 Red soil sampling locations in this study.

TABLE S2 Compositions of media used in this study for isolation and fermentation of red soil actinomycetes.

TABLE S3 Distribution of the sequenced isolates at family and genus levels in different sampling locations.

TABLE S4 OTUs and isolates that share <99% 16S rRNA gene sequence similarity with the nearest type strain.

TABLE S5 Antimicrobial activities detected in representatives from different families and genera.

TABLE S6 Information of the 107 selected isolates for secondary metabolite analysis.

TABLE S7 Known secondary metabolites from the selected isolates.

FIG S1 Maximum-likelihood trees based on 16S rRNA gene sequences, showing the phylogenetic positions of 13 'ambiguous' *Streptomyces* OTUs sharing > 99% 16S rRNA gene sequence similarity with the nearest type strain. Bootstrap proportions of NJ (NJ-BP) and ML (ML-BP) analyses are shown above internodes before and after the backslash, respectively; posterior probabilities (PP) of Bayesian analyses (≥ 0.95) are shown below internodes; only values above 50% are given. Bar, 0.01 substitutions per site. OTU13 and OTU9 each may represent two new lineages. * indicated moderately acidophilic strains; ** indicated obligately acidophilic strains.

APPENDIX S1 Chemical data and detailed structure elucidation of the novel secondary metabolites.

	1 8	2		
Sampling location	GPS	pH value	Collection time	Soil sample ID
AU	28°45′N; 115°49′E	4.2-6.6	2007.08;	C1-C3;
			2009.09	D1-D3
LJZ	28°15′N; 116°55′E	4.9-5.2	2009.09	L1-L5
РҮН	29°07′N; 115°55′E	4.8-6.2	2007.08	P1-P5
WS	29°44′N; 115°37′E	2.6-6.4	2007.08;	B1-B3;
			2009.09	W1-W3
XS	28°57′N; 115°58′E	4.7-5.0	2007.08	X1-X5
YL	29°30′N; 117°33′E	4.1-4.8	2007.08	A1-A5

TABLE S1 Red soil sampling locations in this study

TABLE S2 Composition of media used in this study for isolation and fermentation of red soil actinomycetes

Medium	Composition
M1	HV agar (Humic acid 1.0 g, NaH ₂ PO ₄ 0.5 g, MgSO ₄ 7H ₂ O 0.5 g, CaCO ₃ 0.02 g, KCl 1.7 g, FeSO ₄ 7H ₂ O 0.018 g, B-vitamin solution 1 ml, agar 15.0 g distilled water 1000 ml, pH 5.0-5.5)
M2	HVG (Humic acid 1.0 g, NaH ₂ PO ₄ 0.5 g, MgSO ₄ 7H ₂ O 0.5 g, CaCO ₃ 0.02 g, KCl 1.7 g, FeSO ₄ 7H ₂ O 0.018 g, B-vitamin solution 1 ml, gellan gum 15.0 g distilled water 1000 ml, pH 5.0-5.5)
M3	C agar (D-sucrose 10.0 g, L-glutamic acid 1.0 g, L-asparagines 1.0 g, $MgSO_4$ 7 H_2O 0.05 g, $FeSO_4$ 7 H_2O 0.01 g, $CaCO_3$ 0.02 g, K_2HPO_4 2.0 g, agar 20.0 g distilled water 1000 ml, pH 5.0-5.5)
M4	Modified ISP9 (xylose 10.0 g, FeSO ₄ .7H ₂ O 0.001 g, MnCl ₂ .4H ₂ O 0.001 g, ZnSO ₄ 0.001 g, agar 15.0 g, distilled water 1000 ml, pH 5.0-5.5)
M5	Minimal medium (L-asparagine 0.5 g, K_2HPO_4 0.5 g, $MgSO_4$ $^{7}H_2O$ 0.2 g, $FeSO_4$ $^{7}H_2O$ 0.01 g, glucose 10.0 g, agar 15.0 g, distilled water 1000 ml, pl 5.0-5.5)
M6	GTV (soil extract 500 ml, CaCl ₂ 0.33 g, gellan gum 15.0 g, distilled water 1000 ml, pH 5.0-5.5)
M7	Modified starch casein agar (soluble starch 10.0 g, mannose 0.3 g, casein 0.3 g, KNO_3 2.0 g, $MgSO_4$ 7H ₂ O 0.05 g, $FeSO_4$ 7H ₂ O 0.01 g, K_2HPO_4 2.0 g, CaCO 0.02 g, NaCl 2.0 g, agar 15.0 g, distilled water 1000 ml, pH 5.0-5.5)
M8	A+B mixed medium [(Solutions A: glucose 4.0 g, Difcoyeast extract 2.0 g and 18.0 g agar, distilled water 500 ml; Solution B: (NH ₄) ₂ SO ₄ 2.0 g, K ₂ HPO ₄ 0. g, MgSO ₄ .7H ₂ O 0.5 g, KCl 0.1 g, distilled water 500 ml, pH 5.0-5.5]
M9	Modified mineral-medium (sorbitol 5.0 g, K ₂ HPO ₄ 1.0 g, KH ₂ PO ₄ 0.7 g, NH ₄ Cl 0.2 g, MgSO ₄ 7H ₂ O 0.03 g, CaCl ₂ · H ₂ O 0.067 g, NaHCO ₃ 0.3 g, CuCl ₂ · H ₂ O 55 μg, ZnCl ₂ 150 μg, NiCl ₂ 6 H ₂ O 20 μg, FeSO ₄ 7 H ₂ O 880 μg, MnCl ₂ 4 H ₂ O 280 μg, Al ₂ (SO ₄) ₃ 18 H ₂ O 135 μg, CoCl ₂ 6 H ₂ O 55 μg, NaMoO ₄ 2H ₂ O 30 μg, H ₃ BO ₃ 50 μg, agar 15.0 g, distilled water 1000 ml, pH 5.0-5.5)
M10	Chitin medium (KH ₂ PO ₄ 0.3 g, K ₂ HPO ₄ 0.7 g, FeSO ₄ ·7H ₂ O 0.015 g, MgSO ₄ 7H ₂ O 0.5 g, ZnSO ₄ 7H ₂ O 0.002 g, 40 ml 5% colloidal chitin, agar 15.0 g, distilled water 960 ml, pH 5.0-5.5)
M11	GYM (yeast extract 4.0 g, malt extract 10.0 g, glucose 4.0 g, CaCO ₃ 2.0 g, agar 15.0-20.0 g, distilled water 1000 ml, pH 5.0-5.5)
M12	MOSY (mannitol 10.0 g, oatmeal 5.0 g, soy peptone 5.0 g, yeast extract 2.0 g, NaCl 2.0 g, KH ₂ PO ₄ 0.5 g, MgSO ₄ 7H ₂ O 0.5 g, trace element solution 2.0 m agar 20.0 g, distilled water 1000 ml, pH 7.2, pH 5.0-5.5)
	Trace element solution: $ZnSO_4$ 7H ₂ O 1.0 g, FeSO ₄ 7H ₂ O 1.0 g, MnCl ₂ 4H ₂ O 1.0 g, CuSO ₄ 5H ₂ O 1.0 g, Na ₂ B ₄ O ₇ 10H ₂ O 1.0 g, (NH ₄) ₆ Mo ₇ O ₂₄ 4H ₂ O 1.0 g, distilled water 1000 ml, pH 5.0-5.5)
M13	SGG (potato starch 10 g, glucose 10 g, glycerol 10 g, corn steep powder 2.5 g, peptone 5 g, yeast extract 2 g, NaCl 1 g, CaCO ₃ 3 g, agar 20.0 g, tap water 1000 ml, pH 5.0-5.5)

		No. of isolates						
Orders ^{<i>a</i>}	Family/Genus ^a	AU	LJZ	РҮН	WS	XS	YL	Total
Catenulisporales	Catenulisporaceae							5
	Catenulispora		3		2			5
Corynebacteriales	Mycobacteriaceae							2
	Mycobacterium		2					2
	Nocardiaceae							20
	Nocardia	2	7				10	19
	Williamsia		1					1
	Tsukamurellaceae							1
	Tsukamurella		1					1
Micromonosporales	Micromonosporaceae							27
	Dactylosporangium		1			1		2
	Micromonospora	12	8		3	2		25
Propionibacteriales	Nocardioidaceae							4
	Kribella		1	2				3
	Marmoricola		1					1
Pseudonocardiales	Pseudonocardiaceae							20
	Actinomycetospora		1		2			3
	Actinosynnema		1					1
	Amycolatopsis		3	2	2		1	8
	Pseudonocardia		1		1			2
	Lentzea	1	1	1				3
	Saccharothrix		2		1			3
Streptomycetales	Streptomycetaceae							213

TABLE S3 Distribution of the sequenced isolates at family and genus levels in different sampling locations

	Streptacidiphilus Streptomuses	46	77	28	4 29	7	21	5 208
	Streptomyces	40	11	28	29	1	21	
Streptosporangiales	Streptosporangiaceae							42
	Microbispora	3	5		2			10
	Microtetraspora		1				1	1
	Nonomuraea	2	10		3			15
	Plantotraspora	1						1
	Sphaerisporangium		1					1
	Streptosporangium		12		1			13
	Thermomonosporaceae							24
	Actinoallomurus		13					13
	Actinocorallia		1					1
	Actinomadura		8		2			10
	Total	67	162	33	52	10	34	358

^{*a*} The assignment of strains to orders and families is based on the hierarchical classification of the phylum *Actinobacteria* in the second edition of *Bergey's Manual of Systematic Bacteriology* (Ludwig *et al.*, 2012).

No.	OTU serial number	No. of lineages	No. of isolates	No. of antagonistic isolates	Representative isolate ID ^{a, b}	The most closely related species	16S rRNA gene sequence similarity
1	Singleton	1	1	0	FXJ1.1129 [*]	Actinomadura madurae	96.20%
2	Singleton	1	1	0	FXJ1.556 [*]	Actinomycetospora lutea	98.64%
3	Singleton	1	1	0	GTVL4-6 [*]	Actinosynnema pretiosum subsp. auranticum; Lechevalieria atacamensis	97.52%
4	Singleton	1	1	0	FXJ1.244*	Amycolatopsis bartoniae	97.14%
5	Singleton	1	1	0	FXJ1.274 [*]	Amycolatopsis niigatensis	98.37%
6	OTU53	1	2	0	FXJ1.974	Dactylosporangium darangshiense	98.89%
7	OTU57	1	2	1	FXJ1.034 ^{T*}	Lentzea kentuckyensis	98.50%
8	OTU37	3	2	2	FXJ1.457 [*]	Microbispora hainanensis	98.83%
			1	0	FXJ1.1062	Microbispora amethystogenes	98.83%
			4	1	FXJ1.541 [*]	Microbispora amethystogenes	98.50%
9	OTU30	1	1	0	FXJ1.477 [*]	Microbispora rosea subsp. rosea	98.84%
10	OTU11	1	2	1	FXJ1.347*	Micromonospora eburnea	98.90%
11	OTU24	1	3	0	FXJ1.353 [*]	Micromonospora rhizosphaerae	98.88%
12	Singleton	1	1	0	FXJ1.1164 [*]	Mycobacterium duvalii	98.75%
13	Singleton	1	1	0	FXJ1.077 [*]	Nocardia jiangxiensis	98.17%
14	OTU25	1	2	0	FXJ1.258 [*]	Nocardia jiangxiensis	98.81%
15	OTU66	1	3	1	FXJ1.011 [*]	Nocardia ninae	98.41%
16	OTU27	1	2	1	FXJ1.242*	Nocardia nova	98.24%
17	Singleton	1	1	0	FXJ1.368 [*]	Nonomuraea candida	98.86%
18	Singleton	1	1	0	FXJ1.102 ^{T*}	Nonomuraea candida	98.86%
19	OTU26	2	1	0	FXJ1.958 [*]	Nonomuraea spiralis	98.89%
			1	0	FXJ1.998 [*]	Nonomuraea candida	98.90%

TABLE S4 OTUs and isolates that share < 99% 16S rRNA gene sequence similarity with the nearest type strain</th>

20	Singleton	1	1	0	FXJ1.482*	Pseudonocardia alaniniphila	98.68%
21	Singleton	1	1	0	FXJ1.271 [*]	Streptacidiphilus anmyonensis	98.60%
22	OTU6	1	11	11	FXJ1.725*	Streptomyces ferralitis	98.90%
23	Singleton	1	1	0	FXJ1.042	Streptomyces aureus	98.84%
24	OTU16	1	5	1	FXJ1.238 [*]	Streptomyces caeruleatus	98.75%
25	OTU15	1	3	1	FXJ1.451*	Streptomyces caeruleatus	98.78%
26	Singleton	1	1	0	FXJ1.197	Streptomyces chromofuscus	97.73%
27	Singleton	1	1	0	FXJ1.139 [*]	Streptomyces cocklensis	97.65%
28	Singleton	1	1	0	FXJ1.124**	Streptomyces cocklensis	98.97%
29	Singleton	1	1	0	FXJ1.250	Streptomyces muensis	97.88%
30	OTU21	1	1	0	FXJ1.467*	Streptomyces corchorusii	98.83%
31	OTU63	1	2	2	$FXJ1.978^*$	Streptomyces cuspidosporu	98.32%
32	OTU33	1	2	1	FXJ1.460 [*]	Streptomyces diastaticus subsp. ardesiacus	98.16%
33	Singleton	1	1	1	FXJ1.194	Streptomyces durhamensis	98.09%
34	Singleton	1	1	0	FXJ1.038	Streptomyces filipinensis	98.38%
35	Singleton	1	1	0	FXJ1.257**	Streptomyces griseorubiginosus	98.62%
36	Singleton	1	1	0	FXJ1.255	Streptomyces caeruleatus	98.83%
37	Singleton	1	1	0	FXJ1.300**	Streptomyces guanduensis	98.67%
38	OTU50	1	6	1	FXJ1.1116	Streptomyces malachitofuscus	98.66%
39	OTU55	1	3	1	FXJ1.517 [*]	Streptomyces psammoticus	98.53%
40	Singleton	1	1	0	FXJ1.1162 [*]	Streptomyces psammoticus	98.69%
41	Singleton	1	1	0	FXJ1.056*	Streptomyces psammoticus	98.96%
42	Singleton	1	1	0	FXJ1.069 [*]	Streptomyces rubidus	98.39%
43	Singleton	1	1	1	FXJ1.701	Streptomyces sanglieri	98.83%
44	OTU64	1	3	3	FXJ1.434*	Streptomyces graminisoli	98.97%
45	OTU31	1	4	1	FXJ1.470 [*]	Streptomyces somaliensis	98.32%

Total	49	54	101	32			
			1	0	FXJ1.986 [*]	Streptosporangium carneum	98.89%
			2	1	FXJ1.1117*	Streptosporangium pseudovulgare	98.38%
49	OTU23	3	4	0	FXJ 1.973 [*]	Streptosporangium album	98.60%
48	Singleton	1	1	0	GTVWS6G17 [*]	Streptomyces scopuliridis	98.33%
47	Singleton	1	1	0	FXJ1.461*	FXJ1.461 [*] Streptomyces yanglinensis	
46	Singleton	1	1	0	FXJ1.193 [*]	Streptomyces viridobrunneus	98.46%

^{a*}, moderately acidophilic strains; ^{**}, obligately acidophilic strains.
 ^b FXJ1.034^T and FXJ1.102^T have been proposed as type strains of *Lentzea jiangxiensis* sp. nov. and *Nonomuraea jiangxiensis* sp. nov., respectively (see Li *et al.*, 2012a,b).

Family	Genus	No. of isolates	No. of active isolates	Percentage of active isolates
Catenulisporaceae	Catenulispora	5 ^{<i>a</i>}	1 ^{<i>a</i>}	20.0%
Mycobacteriaceae	Mycobacterium	2 ^{<i>a</i>}	0	0.0%
Nocardiaceae	Nocardia	19 ^{<i>a</i>}	2 ^{<i>a</i>}	10.5%
	Williamsia	1^{a}	0	0.0%
Tsukamurellaceae	Tsukamurella	1^{a}	0	0.0%
Micromonosporaceae	Dactylosporangium	2 ^{<i>b</i>}	0	0.0%
	Micromonospora	$25^{(23a+2b)}$	$5^{(4a+1b)}$	20.0%
Nocardioidaceae	Kribella	3 ^{<i>a</i>}	0	0.0%
	Marmoricola	1 ^{<i>a</i>}	0	0.0%
Pseudonocardiaceae	Actinomycetospora	3 ^{<i>a</i>}	0	0.0%
	Actinosynnema	1 ^{<i>a</i>}	0	0.0%
	Amycolatopsis	8 ^{<i>a</i>}	3 ^{<i>a</i>}	37.5%
	Pseudonocardia	2^{a}	0	0.0%
	Lentzea	$3^{(2a+1b)}$	1 ^{<i>a</i>}	33.3%
	Saccharothrix	3 ^{<i>a</i>}	1 ^{<i>a</i>}	33.3%
Streptomycetaceae	Streptacidiphilus	5 ^{<i>a</i>}	0	0.0%
	Streptomyces	208 ^(127<i>a</i>+81<i>b</i>)	$112^{(70a+42b)}$	53.8%
Streptosporangiaceae	Microbispora	$10^{(9a+1b)}$	3 ^{<i>a</i>}	30.0%
	Microtetraspora	2 ^{<i>b</i>}	0	0.0%
	Nonomuraea	$15^{(9a+6b)}$	$2^{(1a+1b)}$	13.3%
	Plantotraspora	1^{a}	0	0.0%
	Sphaerisporangium	1^{a}	0	0.0%
	Streptosporangium	13 ^{<i>a</i>}	7 ^a	53.8%
Thermomonosporaceae	Actinoallomurus	13 ^{<i>a</i>}	0	0.0%
	Actinocorallia	1 ^{<i>b</i>}	0	0.0%
	Actinomadura	$10^{(8a+2b)}$	$4^{(3a+1b)}$	40.0%
Total		358	141	39.4%

TABLE S5 Antimicrobial activities detected in representatives from different families and genera

^{*a*} Strains assigned to the acidophilic group.

^b Strains assigned to the acidotolerant group.

^c Figures indicate the number of strains.

Family	Strain ^{a, b}	Location	Bioactivity ^c
Catenulisporaceae	Catenulispora sp. AL4G16 ^a	LJZ	Vc
	Catenulispora sp. SCAWS2A ^a	WS	Ν
Micromonosporaceae	Dactylosporangium sp. FXJ1.262 [†]	XS	Ν
	Micromonospora sp. FXJ1.144 ^a	AU	Ν
	Micromonospora sp. FXJ1.347 ^{a, †}	AU	Af, Kp
	Micromonospora sp. FXJ1.351 ^{a,†}	AU	Ν
	Micromonospora sp. FXJ1.361 ^a	AU	Pa
	Micromonospora sp. FXJ1.507 ^a	LJZ	Ν
Nocardiaceae	Nocardia sp. FXJ1.009 ^a	YL	Ν
	<i>Nocardia</i> sp. FXJ1.010 ^{<i>a</i>,†}	YL	Ν
	Nocardia sp. FXJ1.016 ^{a,†}	YL	Ν
	Nocardia sp. FXJ1.516 ^a	LJZ	Ν
	Williamsia sp. FXJ1.547 ^a	LJZ	Ν
Pseudonocardiaceae	Actinosynnema sp. GTVL4-6 ^{a,†}	LJZ	Ν
	Amycolatopsis sp. FXJ1.244 ^{a,†}	YL	Ν
	Amycolatopsis sp. FXJ1.274 ^{a,†}	PYH	Кр
	Amycolatopsis sp. FXJ1.406 ^a	LJZ	Sa
	Amycolatopsis sp. FXJ1.428 ^a	WS	Ν
	Amycolatopsis sp. FXJ1.444 ^a	WS	Ν
	Amycolatopsis sp. GTVL4-7 ^a	LJZ	Ν
	Actinomycetospora sp. FXJ1.479 ^a	WS	Ν
	Actinomycetospora sp. FXJ1.484 ^a	WS	Ν
	Lentzea jiangxiensis FXJ1.034 ^{Ta,†}	AU	Са, Кр
	Pseudonocardia sp. FXJ1.453 ^a	WS	Ν
	Saccharothrix sp. FXJ1.021 ^a	WS	Ca, Kp, Sa
	Saccharothrix sp. FXJ1.486 ^a	LJZ	Ν
Streptomycetaceae	Streptomyces sp. FXJ1.008 ^a	YL	Ν
	Streptomyces sp. FXJ1.013 [†]	YL	Ν
	Streptomyces sp. FXJ1.019	YL	Ν
	Streptomyces sp. FXJ1.020	YL	Pa, Sa
	Streptomyces sp. FXJ1.029 ^a	AU	Ν
	Streptomyces sp. FXJ1.030	AU	Pa
	Streptomyces sp. FXJ1.031 ^a	AU	Ν
	Streptomyces sp. FXJ1.032 [†]	AU	Ca, Ec, Fo, Sa,
	Streptomyces sp. FXJ1.033	AU	Ν
	Streptomyces sp. FXJ1.040 ^a	AU	Ν
	Streptomyces sp. FXJ1.042 [†]	AU	Ν
	Streptomyces sp. FXJ1.044	YL	Pa
	Streptomyces sp. FXJ1.050 ^a	AU	Ср
		AU	Ν
	Streptomyces sp. FXJ1.054 [†]	AU	IN

TABLE S6 Information of the 107 selected isolates for secondary metabolite analysis

Streptomyces sp. FXJ1.060 ^a	AU	Sa
Streptomyces sp. FXJ1.066	AU	Ν
Streptomyces sp. FXJ1.068	AU	Af, Ca, Sa, Vc
Streptomyces sp. FXJ1.069 ^{a,†}	AU	Ν
Streptomyces sp. FXJ1.075 ^a	AU	Af, Ca, Fo, Sa
Streptomyces sp. FXJ1.076 ^a	AU	Af, Ca, Ec, Fo, Sa
Streptomyces sp. FXJ1.079 ^{a,†}	AU	Sa
Streptomyces sp. FXJ1.092 ^a	AU	Kp, Sa
Streptomyces sp. FXJ1.093 [†]	AU	Ec, Kp, Sa
Streptomyces sp. FXJ1.172 ^a	XS	Af, Ec, Sa
Streptomyces sp. FXJ1.234	РҮН	Af, Ca
Streptomyces sp. FXJ1.235 [†]	PYH	Ec
Streptomyces sp. FXJ1.238 ^{a,†}	РҮН	Pa
Streptomyces sp. FXJ1.249	YL	Ca, Ec, Sa
Streptomyces sp. FXJ1.250 [†]	YL	Fo
Streptomyces sp. FXJ1.253 ^a	AU	Af, Ca, Ec, Fo, Sa, Vc
Streptomyces sp. FXJ1.264	YL	Ec, Kp, Pa, Sa, Vc
Streptomyces sp. FXJ1.272	PYH	Ν
Streptomyces sp. FXJ1.275	PYH	Ν
Streptomyces sp. FXJ1.297 ^{a,†}	PYH	Ν
Streptomyces sp. FXJ1.309	XS	Ca, Ec, Sa, Vc
Streptomyces sp. FXJ1.310	XS	Ca, Ec, Sa
Streptomyces sp. GA60	AU	Ca, Kp, Pa, Vc
Streptomyces sp. FXJ1.401 ^a	LJZ	Sa
Streptomyces sp. FXJ1.407 ^a	LJZ	Af, Ca, Sa
Streptomyces sp. FXJ1.408 ^{a, †}	LJZ	Af, Ca, Fo
Streptomyces sp. FXJ1.409 ^a	LJZ	Ca, Cp, Sa
Streptomyces sp. FXJ1.414 ^{a,\dagger}	WS	Ca, Fo
Streptomyces sp. FXJ1.417 ^a	WS	Af, Fo, Sa
Streptomyces sp. FXJ1.429 ^a	WS	Ca, Cp, Ec, Fo, Kp, Pa, Sa, Vc
Streptomyces sp. FXJ1.430 ^a	LJZ	Af, Ca, Cp, Sa
Streptomyces sp. FXJ1.433	LJZ	Ca, Cp, Sa
Streptomyces sp. FXJ1.434 ^{a,†}	LJZ	Ca, Cp
Streptomyces sp. FXJ1.437 ^a	LJZ	Ca, Cp
Streptomyces sp. FXJ1.439 ^{a, †}	LJZ	Ср, Кр
Streptomyces sp. FXJ1.442 ^a	WS	Af, Ca, Cp, Ec, Fo, Kp, Pa, Sa, Vc
Streptomyces sp. FXJ1.447 ^a	LJZ	Ca, Cp, Fo, Sa
Streptomyces sp. FXJ1.450 ^a	WS	Ca, Cp, Fo, Ec, Kp, Pa, Sa, Vc
Streptomyces sp. FXJ1.470 ^{a, †}	WS	Ν
Streptomyces sp. FXJ1.474 ^{a, †}	LJZ	Ca
Streptomyces sp. FXJ1.475 ^a	LJZ	Ca, Cp, Sa
Streptomyces sp. FXJ1.502 ^a	LJZ	Af, Ca, Sa
Streptomyces sp. FXJ1.512 ^a	LJZ	Af, Ca
Streptomyces sp. FXJ1.532 ^{<i>a</i>,†}	LJZ	Af, Ca, Cp, Fo
- -		· •

	<i>Streptomyces</i> sp. FXJ1.535 ^{<i>a</i>,†}	LJZ	Sa
	Streptomyces sp. FXJ1.701 [†]	YL	Af, Cp, Fo
	Streptomyces sp. FXJ1.907 ^{a,†}	LJZ	Cp, Sa
	Streptomyces sp. FXJ1.1116 [†]	LJZ	Af
	Streptomyces sp. GTVL2G15 [†]	LJZ	Sa, Vc
	Streptomyces sp. FXJ23y ^{a,†}	LJZ	Af, Ca
Streptosporangiaceae	Nonomuraea jiangxiensis FXJ1.102 ^T ^{a, †}	AU	Ν
	Nonomuraea sp. FXJ1.368 ^{a,†}	AU	Ν
	Microbispora sp. FXJ1.457 ^{a,†}	WS	Sa
	Microbispora sp. FXJ1.769 ^{a,†}	AU	Ν
	<i>Microbispora</i> sp. FXJ1.1062 ^{\dagger}	LJZ	Ν
	Microtetraspora sp. FXJ1.1037	YL	Ν
	Sphaerisporangium sp. FXJ1.452 ^a	LJZ	Ν
	Streptosporangium sp. FXJ1.481 ^a	WS	Ν
	Streptosporangium sp. FXJ1.1111 ^a	LJZ	Af, Ca
	Streptosporangium sp. FXJ1.1117 ^{a, †}	LJZ	Af, Cp
Thermomonosporaceae	Actinoallomurus sp. FXJ1.503 ^a	LJZ	Ν
	Actinocorallia sp. FXJ1.544	LJZ	Ν
	Actinomadura sp. FXJ1.340 ^a	WS	Ca, Sa, Vc
	Actinomadura sp. FXJ1.344 ^a	WS	Ν
	Actinomadura sp. FXJ1.848 ^a	LJZ	Ν
	Actinomadura sp. FXJ1.1129 ^{a,†}	LJZ	Ν

^{*a*} Strains assigned to the acidophilic group.

^{*b*} Stains marked with ([†]) share < 99% 16S rRNA gene sequence similarity with the nearest type strain.

^c Strains are antagonistic to the following indicators: *Af, Aspergillus fumigatus; Fo, Fusarium oxysporum; Ca, Candidia albicans; Cp, Candida pseudorugosa; Ec, Escherichia Coli; Kp, Klebsiella pneumonia; Pa, Pseudomonas aeruginosa; Sa, Staphylococcus aureus; Vc, Vibrio cholera.* N, no antimicrobial activity shown.

		Producing			Chemical data	
No.	Strain	medium	Compound(s) ^c	Structural class	UV (MeOH)	$MS (m/z)^d$
Strep	tomycetes					
1	Streptomyces sp. FXJ1.050 ^a	GYM	Nigericin [†]	Polyether	None	[M-H] ⁼ =723.6
			Niphimycin	Macrolide	231	[M+H] ⁺ =1142.7343
2	Streptomyces sp. FXJ1.055 ^a	GYM	3 albonoursin type compounds	Diketopiperazine	317	Not measured
3	Streptomyces sp. FXJ1.066	GYM	Lobophorins A&B [†]	Macrolide	240, 266, 282(sh)	[M+H] ⁺ =1157.5, 1185.7
		SGG	Spoxazomicins A&B	Siderophore	243, 303	[M+H] ⁺ =336.1384, 336.1382
4	Streptomyces sp. FXJ1.068	GYM	Spoxazomicin C 5 milbemycins	Macrolide	241, 248, 260(sh), 300 241/237/243/237/243	$[M+H]^+=194.0821$ $[2M+Na]^+=1111.4;$ $[M+H_2O]^+=644.3, 646.2,$ 658.2, 660.2
			4 nanchangmycins*	Polyether	234 236/234/238	$[M+Na]^+=889.9$ $[M+Na]^+=889.8, 889.8, 889.8$
5	Streptomyces sp. FXJ1.069 ^{a, b}	SGG	Desferrioxamines E&G, ferrioxamine E	Siderophore	End abs.	[M+H] ⁺ =601.3565, 654.2683, 619.3657
6	Streptomyces sp. FXJ1.076 ^a	GYM/MOSY	6 elaiophylin-type compounds	Macrolide	249	[M+Na] ⁺ =1019.5, 1033.8, 1047.6, 1047.8, 1061.5, 729.4
		GYM	Nigericin [†]	Polyether	None	[M-H] ⁻ =723.6
7	Streptomyces sp. FXJ1.092 ^a	GYM	3 Albonoursin type diketopiperazines	Diketopiperazine	231, 315	Not measured
8	Streptomyces sp. FXJ1.093 ^b	SGG	6 Albonoursin type diketopiperazines	Diketopiperazine	233, 317	$[M+H]^+=271.3$, others not measured
9	Streptomyces sp. FXJ1.172 ^a	MOSY	Thienodolin [†]	Indole derivative	236, 289, 329	[M-H] ⁻ =248.9889
		GYM	Lasalocid A-E [*]	Polyether	243, 302 243, 302	[M-H] ⁻ =589.4 [M-H] ⁻ =603.4, 603.4, 603.4, 603.4
		GYM	Desferrioxamine E	Siderophore	End abs.	$[M+H]^+=601.4$
10	Streptomyces sp. FXJ1.235 ^b	MOSY/SGG	Antibiotic PI 220 or Furaquinocins	Quinone derivative	221, 268, 294, 414	[M-H] ⁼ =385.1650
11	Streptomyces sp. FXJ1.249	MOSY	β-rubromycin and 3'-OH-β-rubromycin [#]	Related to anthracycline	228, 312, 348, 487/512	[M+H] ⁺ =553.0988, 537.1050
12	Streptomyces sp. FXJ1.253 ^a	GYM/MOSY	6 elaiophylins	Macrolide	249	Same as those of FXJ1.076
		GYM	Nigericin	Polyether	None	[M-H] ⁻ =723.6

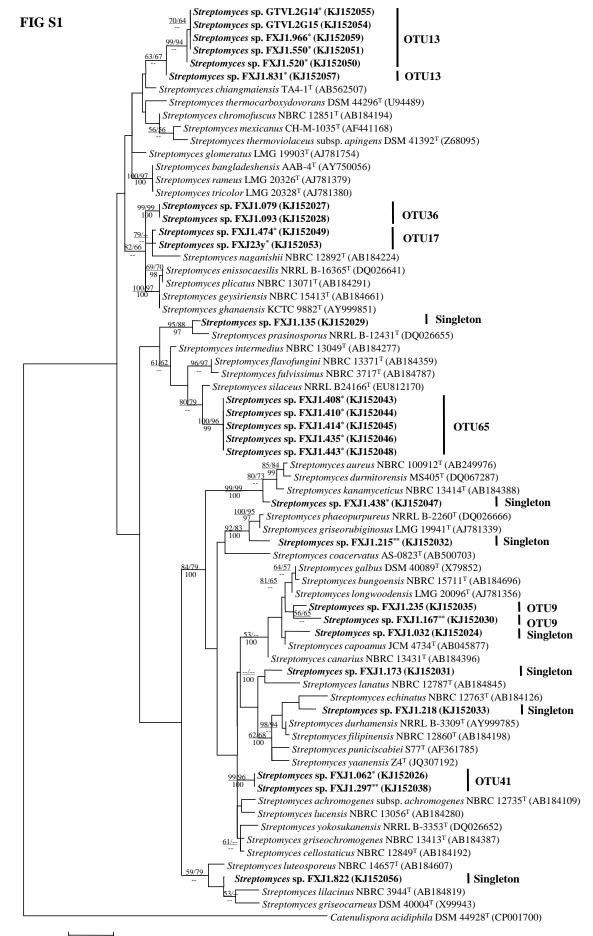
TABLE S7 Known secondary metabolites from the selected isolates

			• 4			
13	Streptomyces sp. FXJ1.264	GYM/MOSY	Antibiotic BE 24566B ^{†,#}	Antharcycline	273, 364	[2M-H] ⁻ =723.6
		GYM	Desferrioxamine E	Siderophore	End abs.	$[M+H]^+=601.4$
		GYM	Etheromycin [†]	Polyether	None	[M-H] ⁻ =913.3
14	Streptomyces sp. FXJ1.297 ^{a, b}	GYM	6, 8-dihydroxy-3- methyl-1H-isochromen-1-one [†]	Isocoumarin	236, 243, 277, 326	[2M-H] ⁻ =382.8
15	Streptomyces sp. FXJ1.408 ^{a, b}	GYM/MOSY/ SGG	Brunefungin or flavopentin	Polyene macrolide	264, 363	[M+H] ⁺ =721.2
16	Streptomyces sp. FXJ1.409	MOSY	5-(3-Indolyl)oxazole Antibiotic SF 2583A	Indole-oxazole Chlorinated indole-oxazole	221, 265, 300(sh) 220, 271, 287	$[M+H]^+=185.0717$ $[M+H]^+=219.0334$
17	Streptomyces sp. FXJ1.414 ^{a, b}	GYM/MOSY/ SGG	Brunefungin or flavopentin	Polyene macrolide	264, 363	[M+H] ⁺ =721.2
18	Streptomyces sp. FXJ1.417 ^a	MOSY	Cyclothiazomycin	Thiopeptide	221, 270(sh)	[M-H] ⁻ =1471.4
19	Streptomyces sp. FXJ1.437 ^a	MOSY	1 micropeptin type compound	Peptide	220, 280	$[M+H]^+=1003.6$
20	Streptomyces sp. FXJ1.450 ^a	MOSY	Borrelidin	PKS type macrolide	254	$[M-H]^{-}=488.5$
21	Streptomyces sp. FXJ1.502 ^a	MOSY	Cyclothiazomycin	Thiopeptide	221, 270(sh)	[M-H] ⁻ =1471.6
22	Streptomyces sp. FXJ1.535 ^{a, b}	SGG	Ochromycinone	Angucycline	265, 400	$[M+H]^+=307.0977$
23	Streptomyces sp. FXJ1.701 ^b	SGG	Anisomycin C	Benzylpyrrolidine	230(sh), 276	[M+H] ⁺ =292.1055
24	Streptomyces sp. FXJ1.907 ^{a, b}	GYM	4-5 milbemycins β series compounds	Macrolide	237-241	Similar to those of FXJ1.068
			2 nanchangmycins	Polyether	234/236	Similar to those of FXJ1.068
25	Streptomyces sp. GTVL2G15 ^b	SGG	Oxachelin	Siderophore	242, 250, 260(sh), 303	[M+H] ⁺ =636.2
Non-	streptomycete actinomycetes					
1	Nocardia sp. FXJ1.010 ^{a, b}	GYM/MOSY	Guanidylfungin A&B	Macrolide	End abs.	[M-H] ⁻ =1114.5, 1128.5
2	Amycolatopsis sp. FXJ1.274 ^{a, b}	SGG	Apoptolidin A, isoapoptolidin and 8 related derivatives	Macrolide	230, 323 233, 313 232, 322 234, 305 234, 304	$[M+Na]^{+}=1251.5$ $[M+Na]^{+}=1251.5$ $[M+Na]^{+}=1151.9$ $[M+Na]^{+}=1151.7$ Others not measured
3	Actinomadura sp. FXJ1.344 ^a	SGG	Homoprejadomycin	Angucycline	265, 400	$[M+H]^+=339.3$

^{*a*} Strains assigned to the acidophilic group.

^b Stains represented putative new species.

^c The compounds marked with ([†]), (^{*}) and ([#]) were also subjected to NMR, tandem-MS and CD analyses, respectively. Niphimycin was produced at pH 7.2.


^d Figures accurate to one decimal place were generated by regular MS, and figures accurate to four decimal places were generated by HR-MS.

REFERENCES CITED IN THE SUPPLEMENTAL TABLES

Li X, Zhang L, Ding Y, Gao Y, Ruan J, Huang Y. 2012a. *Lentzea jiangxiensis* sp. nov., isolated from acidic soil. Int. J. Syst. Evol. Microbiol. **62**:2342–2346.

Li X, Zhang L, Ding Y, Gao Y, Ruan J, Huang Y. 2012b. *Nonomuraea jiangxiensis* sp. nov., isolated from acidic soil. Int. J. Syst. Evol. Microbiol. **62:**1409–1413.

Ludwig W, Euz dy J, Schumann P, Busse HJ, Trujillo ME, Kämpfer P, Whitman WB. 2012. Road map of the phylum *Actinobacteria*, p 1–28. *In* Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki K, Ludwig W, Whitman WB (ed) Bergey's manual of systematic bacteriology, 2nd ed, vol 5. Springer, New York, NY.

0.01

APPENDIX S1 Chemical data and detailed structure elucidation of the novel secondary metabolites

New compounds from Streptomyces sp. FXJ1.532

After isolation and purification, two pure compounds [**FXJ15321** (30 mg) and **FXJ15322** (18 mg)] were obtained.

FXJ15321 was obtained as pale yellow solid. Its molecular formula was established as $C_{41}H_{66}O_{13}$ according to the $[M+Na]^+$ at m/z 789.4402 (calcd. 789.4401) (see supplemental Fig. AS1) combined with the ¹³C-NMR data and corresponding to nine degrees of unsaturation. The ¹H-NMR, ¹³C-NMR, DEPT 135 and 2D-HSQC spectra (supplemental Figs. AS2-AS5) revealed the presences of three cabonyl groups, one ester or amide group, two olefinic groups, six methylene groups, 17 non-olefinic methine groups, nine methyl groups and one methoxy group (Table A1).

FXJ15321	L					FXJ153	22			
lo. δ _C		$\delta_{\rm H}$	COSY	HMBC(H→C)	ROESY	$\delta_{\rm C}$	$\delta_{\rm H}$	COSY	HMBC(H→C)	ROESY
172.8	8, C	_		2, 3, 24		172.7, C	_		2, 3, 24	
39.6,	CH2	2.43(dd; 10.8, 15.0)	3	3		39.8, CH2	2.42(dd; 11.4, 15.0) a	3	3, 4	
		a								
		2.67(dd; 2.4, 15.0) b			3		2.70(dd; 2.4, 15.0) b			3
70.7,	СН	4.27(m)	2,4	2, 4, 28	2b	70.9, CH	4.28(ddd, 2.4, 9.9, 9.9)	2,4	2, 4, 28	2b
44.8,	CH	3.49(m)	3, 28	2,28	7, 28	44.8, CH	3.47(m)	3, 28	2, 3, 28	7,28
204.9	9, C			3, 4, 7, 28, 29		205, C	_		3, 4, 7, 28, 29	
138.8	8, C			8, 30		136.6, C	_		8, 29	
140.9	9, CH	6.47(d; 9.6)	29	8, 29, 30	4	142.6, CH	6.66(d; 9.6)	29	8, 29, 30	4
48.2,	СН	3.85(m)	7,30	7, 30	29, 30	44.5, CH	4.01(dq, 6.6, 9.6)	7, 30	7, 30	7, 29, 30
208.8	8, C	_		7, 8, 10, 30		210.9, C	_		7, 8, 10, 11, 30	
0 40.8,	CH2	2.35(dd; 2.4, 16.2) a	11		11, 31	47.2, CH2	2.33(dd; 9.6, 13.8) a	11	11, 12	11
		2.92(dd; 10.8, 16.2)			31		3.03(dd; 3.6, 13.8) b			11, 31
		b								
1 73.8,	CH	4.34(ddd, 2.4,	10, 12	10, 12, 13, 15, 31	10a, 12, 15b, 31	78.2, CH	3.52(ddd, 3.6, 9.6, 9.6)	10, 12	10, 12, 13, 15, 31	10,
		3.6-4.2, 10.8)								
2 38.4,	СН	1.92(m)	11, 13, 31	10, 31	11, 31	43.9, CH	1.53(ddq; 9.6, 9.6, 6.6,)	11, 13, 31	10, 31	10, 31
3 80.1,	СН	3.43(m)	12, 14	12, 14, 15, 31	31, a	83.9, CH	3.07(dd; 10.2, 10.2)	12, 14	11, 12, 14, 15, 16, 31, a	11, 16, 31,
4 38.1,	СН	1.58(m)	13, 15, 16	13, 15, 16	15b	39.8, CH	1.39(m)	13, 15, 16	13, 15, 16, 17	15b, 16b
5 66.1,	CH2	3.26(m) a	14	13, 16	16b	70.1, CH	2.82(dd, 12.0, 12.0) a	14	13, 16	11

TABLE A1 NMR data of **FXJ15321 and FXJ15322** in $CDCl_3$ [¹H- (600 MHz) and ¹³C-NMR (150 MHz), δ in ppm, J in Hz]

		3.71(dd; 3.6-4.2; 12.0) b			11, 14		3.75(dd; 4.8; 12.0) b			14
16	34.1, CH2	1.26(m), a	14, 17	13, 15, 32		32.3, CH2	0.88(m) a	14, 17	13, 15, 32	13, 14, 17
		2.15(m), b			15a		2.54(m) b			13, 14
17	38, CH	3.16(m)	16, 32	16, 19	19, 32	37.79, CH	3.08(m)	16, 32	16, 19, 20, 32	15b, 16a, 20,
										32
18	205.9, C	_		16, 17, 19, 20, 32		206, C	_		16, 17, 19, 20, 32	
19	131.6, CH	6.16(d; 16.2)	20	21	17, 20	131.4, CH	6.12(d; 16.2)	20	20, 21	20, 21
20	146.3, CH	6.97(ddd; 16.2, 6.6,	19, 21	21, 22	17, 19,	146.8, CH	6.95(ddd; 16.2, 6.6, 6.6)	19, 21	19, 21, 22	19, 17
		6.6)								
21	37.9, CH2	2.29(m) a	20, 22	19, 20		37.85, CH2	2.27(m) a	20, 22	19, 20, 22	22, 23
		2.50(m) b			33		2.49(m) b			33
22	68.6, CH	3.89(m)	21, 23	20, 21, 24, 33	23	68.4, CH	3.85(m)	21, 23	20, 21, 24, 33	24, 23, 21a
23	39.5, CH	1.90(m)	22, 24, 33	21, 24, 33	22	39.6, CH	1.92(m)	22, 24, 33	21, 24, 33	21a, 22, 24, 33
24	78.6, CH	5.06(dd; 4.2, 8.4)	23, 25	22, 23, 26, 33, 34	22	78.5, CH	5.07(dd; 3.6, 9.0)	23, 25	22, 23, 26, 33, 34	22, 23, 25
25	40, CH	1.85(m)	24, 26, 34	24, 27, 34	26	39.9, CH	1.86(m)	24, 26, 34	24, 27, 34	
26	65.6, CH	4.03(dq; 2.4, 6.0)	25, 27	24, 27, 34	25, 27	65.6, CH	4.07(dq; 6.6; 2.4-3.0)	25, 27	24, 27, 34	25, 27
27	20.7, CH3	1.23(d; 6.6)	26	26	26	20.7, CH3	1.22(d; 6.6)	26	26	26
28	13.6, CH3	1.03(d; 7.2)	4	4	4	14, CH3	1.01(d; 7.2)	4	3, 4	4
29	10.9, CH3	1.96(s)	7	7	8	10.6, CH3	1.87(s)	7	7	8
30	14.2, CH3	1.22(d; 6.6)	8	7,8	8	16, CH3	1.21(d; 6.6)	8	7, 8	8
31	12.5, CH3	1.03(d; 7.2)	12	11, 12, 13	10, 11, 13, a	12.1, CH3	1.07(d; 6.6)	12	11, 12, 13	10b, 13, a
32	16.6, CH3	1.05(d; 7.2)	17	16, 17	17	18.6, CH3	1.01(d; 7.2)	17	16, 17	17
33	8.9, CH3	0.93(d; 7.2)	23	22, 23, 24	21b	8.8, CH3	0.92(d; 7.2)	23	22, 23, 24	21b, 23

34	9.8, CH3	0.97(d; 7.2)	25	25, 26		9.9, CH3	0.98(d; 7.2)	25	24, 25, 26	25
а	102.9, CH	4.26(d; 7.8)	b	13, b, e	13, 31, b, e	102.9, CH	4.33(d; 7.2)	b	13, b, e	13, 31, b, cb, e
b	74.3, CH	3.17(ddd; 0, 7.2, 7.2)) a, c	c, d	a, ca	74.7, CH	3.20(ddd; 0, 7.2, 7.2)	a, c	a, c, d	a
с	37.2, CH2	1.17(m) ca	b, d		b	37.2, CH2	1.18(m) ca	b, d	b, d	
		2.12(m) cb			d, e		2.13(ddd, 1.8, 5.4, 12.6))		d, e
							cb			
d	80.2, CH	3.24(m)	c, e	b, c, f, g	cb	80.3, CH	3.27(m)	c, e	b, c, e, g	a, cb
e	67.4, CH	3.56(dq, 6.6, 1.8)	d, f	c, f	a, cb	67.3, CH	3.55(dq, 6.0, 1.8)	d, f	c, f	a, cb
f	20, CH3	1.21(d; 6.6)		e		19.9, CH3	1.23(d; 6.6)		e	e
g	56, CH3	3.43(s)		d		55.9, CH3	3.44(s)		d	

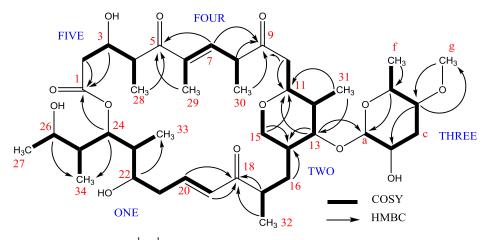


FIG A1 Key ¹H-¹H COSY and HMBC correlations of FXJ15321

Detailed analysis of 2D-NMR spectra (supplemental Figs. AS5-AS7) revealed that FXJ15321 was comprised of five partial structures (Fig. A1). Partial structure one was featured by the connections from H-19 to H-27, established by the COSY signals among these hydrogen atoms, and could be further sustained by the key HMBC correlations from H-22 to C-33, and from H-24, H-26 to C-34. Partial structure two was featured by the connections from H-10 to H-17, established by the COSY signals, and could be further sustained by the key HMBC correlations from H-31, H-15, H-13 and H-10 to C-11, from H-31 to C-13, and from H-16, H-15 and H-13 to C-14; and according to these correlations, an hexatomic ring system consisting C-11, C-12, C-13, C-14, C-15 and an oxygen atom could be established. Partial structure three was featured by the COSY connections with H-a/H-b/H-c/H-d/H-e/H-f, and was further sustained by the key HMBC correlations from H-f to C-e, from H-e to C-a, from H-d to C-b, C-g and from H-g to C-d; and according to these signals, a sugar ring composed of C-a, C-b, C-c, C-d, C-e, C-f and C-g was established. Partial structures four and five were elucidated by the connectivities among H-30/H-8/H-9/H-7/H-6/H-29 and H-2/H-3/H-4/H-28, and confirmed by their key HMBC correlations, respectively. The connectivities among these partial structures were mainly established by the HMBC correlations. For example, the connection between partial structures one and five could be recognized by the HMBC signals of H-24, H-2 and H-3 to C-1.

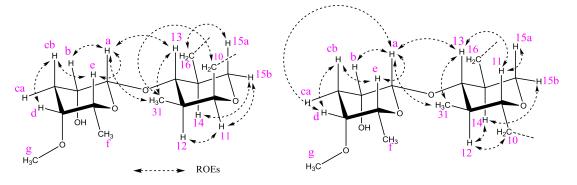


FIG A2 Key NOE correlations of FXJ15321 (left) and FXJ15322 (right)

The possible relative configurations within partial structures **two** and **three** could be suggested according the ROESY experiment (Fig. A2, supplemental Fig. AS8). The NOE correlations

between H-12 and H-11, H-11 and H-15b, H15b and H14, H-13 and H-31, H16 and H15a, and between H-31 and H-10 suggested that H-12, H-14, H-15 and H-11 were on one face of the ring, and H-31, H-13 and H-10 on the other face of the ring. However, a certain deduction could not be made owing to a lack of coupling constants and direct ROE correlations between H12 and H14, H13 and H10, H13 and H15a, and between H15a and H10. The NOE correlations between H-a and H-e, H-a and H-b, H-e and H-cb, and between H-cb and H-d revealed that H-a, H-b, H-cb, H-d and H-e were on the same side of sugar ring. The strong NOE signals between H-a and H-13 and between H-a and H-31 stabilized the relative positions of the two rings. The very low J_{bca} (=0) and the strong NOE correlations observed between Ha and Hb supported the equatorial bond of Hb, although the coupling constants of J_{ab} and J_{bcb} were not small enough (7.2 Hz). Therefore, the relative configuration could be suggested as $11S^*$, $12R^*$, $13R^*$, $14S^*$, aR^* , bS^* , dR^* and eR^* . The C-19/C-20 olefin was assigned *E*-geometry based on their large coupling constant (16.2 Hz); the C-6/C-7 olefin was proposed as *E*-geometry based on the NOE correlation between H-29 and H-8 observed in both the ROESY and NOE difference experiments (supplemental Figs. AS8 and AS9).

FXJ15322 was obtained as pale yellow solid. It's molecular formula was established as $C_{41}H_{66}O_{13}$ according to the $[M+Na]^+$ at m/z 789.4408 (calcd. 789.4401) (supplemental Fig. AS10) combined with the ¹³C-NMR data and corresponding to nine degrees of unsaturation, too. Careful analysis of its 1D/2D-NMR data (supplemental Figs. AS11-AS17) revealed that the planar structure and most of the NOE correlations were identical with those of FXJ15321, with difference lying in the C-11 position. According to the ROESY experiment (supplemental Fig. AS17), NOE correlations between H-10 and H-12, H-14 and H-12, H-14 and H-15b, H-11 and H-13, and between H-11 and H-15a revealed that the relative configuration of C-11 position was changed (Fig. A2), and an *R** configuration was therefore proposed.

New compounds from Streptomyces sp. FXJ1.076

After isolation and purification, three pure compounds [**FXJ10761** (8.2 mg, efomycin M), **FXJ10762** (7.4 mg, new compound) and **FXJ10763** (4.0 mg, new natural product)] were obtained. **FXJ10761** was obtained as white solid. It's molecular formula was established as $C_{42}H_{64}O_{10}$ according to the [M+H]⁺ at m/z 729.4 and ¹H/¹³C/DEPT 135-NMR data (Table A2, supplemental Figs. AS18-AS21). After careful analyses of its ¹H-, ¹³C-NMR, ³J coupling constant and 2D-NMR data, including COSY, HSQC, HMBC and ROESY spectra (supplemental Figs. AS22-AS25), coupled with the optical rotation value $[\alpha]_D^{25} = +103^\circ$ (c=0.4, MeOH), this compound was identified to be efomycin M (Antonicek *et al.*, 1996; Roland & Johann, 2007) (Fig. A3).

FIG A3 Structure and Key ¹H-¹H COSY, HMBC correlations of FXJ10761

No.	δ_{C}	$\delta_{\rm H}$	COSY	$HMBC(H\rightarrow C)$	ROESY
1 and 1'	168.38, C	_		2, 3, 7'	
2 and 2'	121.14, CH	5.61(d, 15.6)	3	3, 4	
3 and 3'	145.25, CH	6.96(dd, 15.0, 11.4)	2, 4	4, 5	
4 and 4'	131.35, CH	6.05(dd, 15.0, 11.4)	3, 5	2, 3, 6	
5 and 5'	144.50, CH	5.64(m)	4, 6	3, 6, 7, 19	
6 and 6'	41.51, CH	2.49(m)	5, 7, 19	4, 5, 7, 19	
7 and 7'	76.63, CH	5.09(dd, 9.6, 0)	6	5, 9, 6, 8, 19, 20	8
8 and 8'	35.98, CH	1.94(m)	9, 20	6, 9, 10, 20	7
9 and 9'	71.54, CH	3.73(dd, 7.2, 0)	8	7, 8, 10, 20, 21	20
10 and 10'	45.47, CH	2.90(m)	21	21	20
11 and 11'	203.17, C	—		9, 10, 12, 13, 21	
12 and 12'	131.00, CH	6.23(d, 16.2)	13	13, 14	
13 and 13'	147.61, CH	6.72(dd; 9.6, 16.2)	12, 14	14, 15, 17	
14 and 14'	52.38, CH	2.04(m)	13, 15	12, 13, 15, 16, 17, 18	
15 and 15'	23.54, CH2	1.43(m), 1.61(m)	14, 16	13, 14, 16, 17	
16 and 16'	11.92, CH3	0.86(d; 7.2)	15	14, 15	15a (0.86ppm)
17 and 17'	69.55, CH	3.82(m)	18	13, 14, 15, 18	
18 and 18'	21.34, CH3	1.17(d; 6.6)	17	14, 17	
19 and 19'	15.32, CH3	1.03(d; 6.6)	6	5, 6, 7	21
20 and 20'	9.25, CH3	0.92(d; 6.6)	8	7, 8, 9	6, 9, 10, 18, 21
21 and 21'	9.21, CH3	1.17(d; 6.6)	10	9, 10	19

TABLE A2 NMR data of **FXJ10761** in $CDCl_3$ [¹H- (600 MHz) and ¹³C-NMR (150 MHz), δ in ppm, *J* in Hz]. The COSY, HMBC and ROESY spectra were shown for half structure

FXJ10762 was obtained as white solid. It's molecular formula was established as $C_{41}H_{62}O_{10}$ according to the [M+HCOO]⁻ at m/z 759.4320 (calcd. 759.4320) and ¹H/¹³C/DEPT 135-NMR data (Table A3, supplemental Figs. AS26-AS29). The planar structure was deduced mainly according to comparison of ¹H and ¹³C-NMR data with those of **FXJ10761**. The 2D-COSY/HSQC/HMBC spectra (supplemental Figs. AS30-AS32) demonstrated that the compound lacked the C-16' group, and thus the planar structure was established (Fig. A4). Because the correlation signals of 2D-NOESY spectrum (supplemental Fig. AS33) were not strong enough, the stereo-structure was proposed to be identical with that of **FXJ10761** mainly owing to the high similarity in ¹H and ¹³C NMR data.

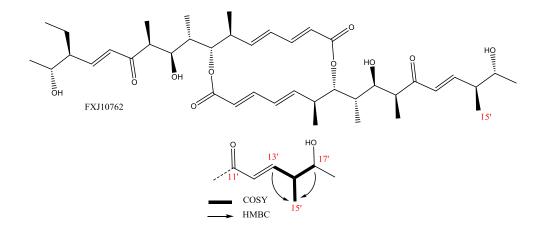


FIG A4 Structure and key ¹H-¹H COSY and HMBC correlations of FXJ10762

No.	δ_{C}	$\delta_{\rm H}$	COSY	$HMBC(C \rightarrow H)$	ROESY	No.	δ_{C}	$\delta_{\rm H}$	COSY	$HMBC(C \rightarrow H)$	ROESY
1	168.38, C	_		2, 3, 7'		1'	168.38, C	_		2', 3', 7	
2	121.15, CH	5.61(m)	3	3, 4		2'	121.11, CH	5.61(m)	3'	3', 4'	
3	145.24, CH	6.96(m)	2, 4	4, 5		3'	145.31, CH	6.96(m)	2', 4'	4', 5'	
4	131.34, CH	6.05(m)	5, 3	2, 3, 6	6	4'	131.34, CH	6.05(m)	5', 4'	2', 3', 6'	6'
5	144.47, CH	5.62(m)	4, 6	3, 6, 7, 19		5'	144.56, CH	5.62(m)	4', 6'	3', 6', 7', 19'	
6	41.53, CH	2.49(m)	5, 7, 19	4, 5, 7, 19	4	6'	41.53, CH	2.49(m)	5', 7', 19'	4', 5', 7', 19'	4'
7	76.63, CH	5.09(m)	6, 8	5, 6, 9, 19, 20	8	7'	77.20, CH	5.09(m)	6', 8'	5', 6', 9', 19', 20'	8'
8	35.97, CH	1.94(m)	7, 9, 20	6, 9, 10, 20	7	8'	35.89, CH	1.94(m)	7', 9', 20'	6', 9', 10', 20'	7'
9	71.54, CH	3.74(m)	8, 10	7, 8, 10, 20, 21	10, 12	9'	71.64, CH	3.74(m)	8', 10'	7', 8', 10', 20', 21'	10', 12'
10	45.47, CH	2.89(m)	9, 21	8, 21	9, 21	10'	45.65, CH	2.89(m)	9', 21'	8', 21'	9', 21'
11	203.17, C	_		9, 10, 12, 13, 21		11'	203.49, C	_		9', 10', 12', 13', 21'	
12	131.00, CH	6.25(m)	13	13, 14	9	12'	129.03, CH	6.25(m)	13'	13', 14'	9'
13	147.60,CH	6.74(m)	12, 14	14, 15, 17		13'	149.14,CH	6.87(m)	12', 14'	14', 15', 17'	
14	52.38, CH	2.04(m)	13, 15, 17	12, 13, 15, 16, 17, 18		14'	44.37, CH	2.34(m)	13', 15', 17'	12', 13', 15', 17', 18'	
15	23.55, CH2	1.43(m), 1.61(m)	14, 16	13, 14, 16, 17		15'	15.60, CH3	1.07(m)	14'	13', 14', 16', 17'	
16	11.92, CH3	0.87(m)	15	14, 15		16'	none	none			
17	69.56, CH	3.82(m)	14, 18	13, 14, 15, 18		17'	70.85, CH	3.74(m)	14', 18'	13', 14', 15', 18'	
18	21.35, CH3	1.17(m)	17	14, 17		18'	20.82, CH3	1.17(m)	17'	14', 17'	
19	15.32, CH3	1.04(m)	6	5, 6, 7		19'	15.32, CH3	1.04(m)	6'	5', 6', 7'	
20	9.28, CH3	0.93(m)	8	7, 8, 9		20'	9.28, CH3	0.93(m)	8'	7', 8', 9'	
21	9.21, CH3	1.17(m)	10	9, 10		21'	9.40, CH3	1.17(m)	10'	9', 10'	

TABLE A3 NMR data of **FXJ10762** in $CDCl_3$ [¹H- (600 MHz) and ¹³C-NMR (150 MHz), δ in ppm, J in Hz]

FXJ10763 was obtained as white solid. It's molecular formula was established as $C_{48}H_{76}O_{14}$ according to the [M+HCOO]⁻ at m/z 921.5228 (calcd. 921.5212) and ¹H/¹³C/DEPT 135-NMR data (Table A4, supplemental Figs. AS34-AS37). Careful comparison with the NMR data of **FXJ10761** revealed that half structure of the compound was in accordance with **FXJ10761**, with differences lying in another half structure. To deduce the differences, the 2D-COSY/HSQC/HMBC spectra (supplemental Figs. AS38-AS40) were made and key H-H and C-H correlation signals relevant to the different positions were analyzed (Fig. A5). From the COSY and HMBC spectra, we could establish two ring systems from C-11' to C-18' and from C-a to C-f, which was further verified by the comparison of ¹³C-NMR data with the ring system of compound elaiophylin. The planar structure was thus established (Fig. A5). The chemical shifts from C-1' to C-21', and from C-a to C-f and corresponding H were in accordance with those of FXJ10761, meanwhile, the chemical shifts from C-1' to C-21', and from C-a to C-f and corresponding H were in accordance with those of FXJ10763 was proposed (Fig. A5). The optical rotation value of $[\alpha]_D^{25} = +10^\circ$ (c=0.21, MeOH) indicated that it might be identical with compound 38 ($[\alpha]_D^{25} = +13^\circ$) synthesized by Hammann *et al.* (1990).

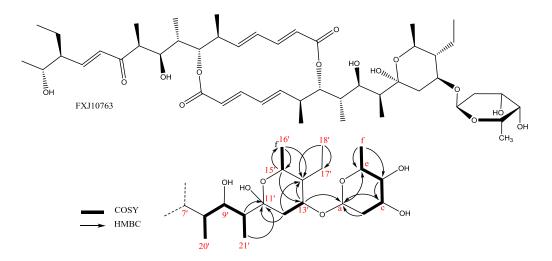
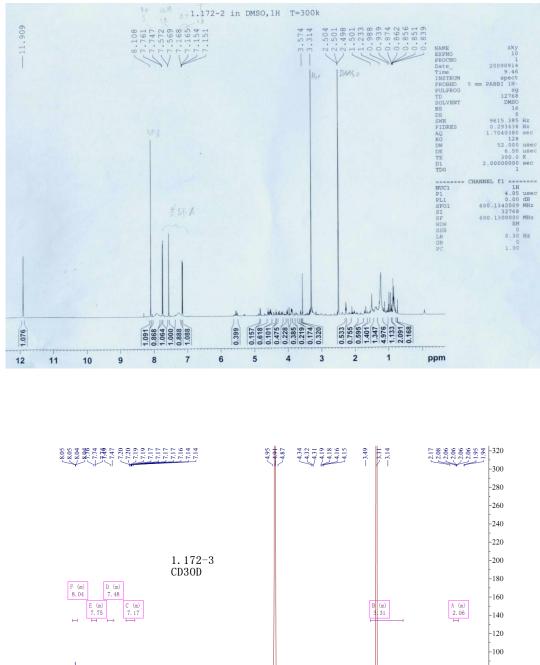


FIG A5 Structure and key ¹H-¹H COSY and HMBC correlations of FXJ10763

No.	δ_{C}	$\delta_{\rm H}$	COSY	$HMBC(H\rightarrow C)$	No.	$\delta_{\rm C}$	$\delta_{\rm H}$	COSY	$HMBC(H\rightarrow C)$
1	170.05, C			2, 3, 7'	1'	168.36, C	—		2', 3', 7
2	121.14, CH	5.62(d, 15.0)	3	3, 4	2'	120.99, CH	5.61(d, 15.0)	3'	3', 4'
3	145.18, CH	6.97(m)	2,4	4, 5	3'	145.02, CH	6.97(m)	2', 4'	4', 5'
4	131.50, CH	6.07(dd, 15.0, 15.0)	5, 3	2, 3, 6	4'	131.92, CH	6.07(dd, 15.0, 15.0)	5', 3'	2', 3', 6'
5	144.64, CH	5.67(dd, 15.0, 7.8)	4,6	3, 6, 7, 19	5'	144.18, CH	5.66(dd, 15.0, 7.8)	4', 6'	3', 6', 7', 19'
6	41.34, CH	2.52(m)	5, 7, 19	4, 5, 7, 19	6'	40.95, CH	2.52(m)	5', 7', 19'	4', 5', 7', 19'
7	76.75, CH	5.05(m)	6, 8	5, 6, 9, 19, 20	7'	77.81, CH	4.75(dd, 10.2, 10.2)	6', 8'	5', 6', 9', 19', 20'
8	36.10, CH	1.95(m)	7, 9, 20	7, 9, 20	8'	35.84, CH	1.95(m)	7', 9', 20'	7', 9', 20'
9	71.47, CH	3.74(dd, 8.4, 8.4)	8, 10	7, 8, 10, 20, 21	9'	70.66, CH	4.11(dd, 9.6, 9.6)	8', 10'	7', 8', 11', 20', 21'
10	45.54, CH	2.89(m)	9, 21	21	10'	41.61, CH	1.71(m)	9', 21'	21'
11	203.03, C	—		9, 10, 12, 13, 21	11'	99.04, C	—		10', 12', 21'
12	130.96, CH	6.24(d, 15.6)	13	14	12'	38.89, CH2	1.02(m), 2.37(dd, 10.8, 3.0)	13'	none
13	147.53,CH	6.72(dd, 15.0, 9.6)	12, 14	14, 15, 17	13'	70.20, CH	3.98(m)	12'	12', 15'
14	52.37, CH	2.03(m)	13, 15, 17	12, 13, 15, 16, 17, 18	14'	48.42, CH	1.17(m)	none	12', 13', 16', 18'
15	23.55, CH2	1.42(m), 1.61(m)	14, 16	13, 14, 16, 17	15'	66.54, CH	3.90(dt, 9.6, 5.4)	16'	16'
16	11.91, CH3	0.86(m)	15	14, 15	16'	19.14, CH3	1.10(d, 5.4)	15'	15'
17	69.55, CH	3.81(td, 5.4, 5.4)	14, 18	13, 14, 15, 18	17'	19.37, CH2	0.84(m), 1.00(m)	none	18'
18	21.34, CH3	1.17(m)	17	14, 17	18'	9.07, CH3	0.86(m)	none	none
19	15.27, CH3	1.04(d, 6.6)	6	5, 6, 7	19'	14.91, CH3	1.03(d, 6.0)	6'	5', 6'
20	9.19, CH3	0.92(d, 6.6)	8	7, 8, 9	20'	8.75, CH3	0.81(d, 6.0)	8'	7', 8'
21	9.07, CH3	1.17(m)	10	9, 10	21'	7.04, CH3	1.00(m)	10'	9', 10'
					а	93.24, CH	5.05(s)	b	13', b, c
					b	33.54, CH2	1.79(m)	a, c	d
					с	66.06, CH	3.98(m)	b, d	b, d
					d	71.47, CH	3.62(m)	c, e	b, f, c or e
					e	65.90, CH	3.98(m)	d, f	a, f
					f	16.79, CH3	1.24(d, 6.6)	e	e


TABLE A4 NMR data of **FXJ10763** in $CDCl_3$ [¹H- (600 MHz) and ¹³C-NMR (150 MHz), δ in ppm, J in Hz]

New compound from Streptomyces sp. FXJ1.172

After isolation and purification, one pure compound--**thienodolin** (>50 mg, from 12 L fermentation mixture) was obtained. A hydroxyl derivative was also discovered but very unstable, and could rapidly degrade to thienodolin after the crude extract was isolated either by silica-gel, LH-20 gel, RP-18 gel or by HPLC with natural pH water, 0.05% acetic acid or 0.05% ammonia water. Therefore, the structure of this new compound was deduced mainly according to the comparison of HR-MS/MS and ¹H-NMR spectra with thienodolin. The ¹H-NMR spectrum was obtain according to the procedure below: the crude extract was redissolved using methanol in which the new compound was relatively stable (it was very unstable in DMSO), and subjected to HPLC directly (according to our experiment, this compound could exist for about one day after HPLC preparation at natural pH) for 20 injections with 30 μ l per injection; the collected liquid was concentrated to dryness in vacuum as soon as possible, follow by the redissolving with *methanol-d₄*, and the ¹H-NMR spectrum was made immediately.

The molecular formula of the new compound was established as $C_{11}H_7ClN_2O_2S$ according to the [M-H]⁻ at m/z 264.9878 (calcd. 264.9839). Thiendolion was obtain as $C_{11}H_7ClN_2OS$ according to the [M-H]⁻ at m/z 248.9889 (calcd. 248.9890).

By comparing the ¹H-NMR spectra of thienodolin and the new compound (Fig. A6), we found their signals between 7.0-8.2 ppm, which were attributed to the hydrogen signals of aromatic and thiophene rings, were nearly identical, indicating that the hydroxylation was occurred neither on the aromatic ring nor on the thiophene ring. Further MS2 fragment ions of the two compounds (Figs. A7 and A8) indicated that the hydroxylation was not on the NH₂-C=O group. Therefore, the hydroxylation should be occurred on the nitrogen atom of the indole ring, and the new compound was identified as **N-hydroxythienodolin**.

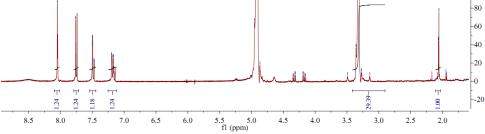
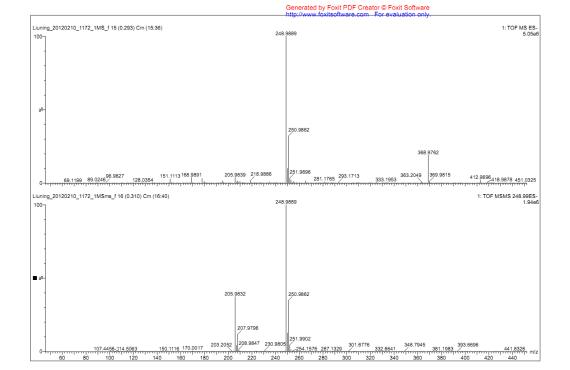



FIG A6¹H-NMR of thienodolin (upper) and N-hydroxytheinodolin (lower)

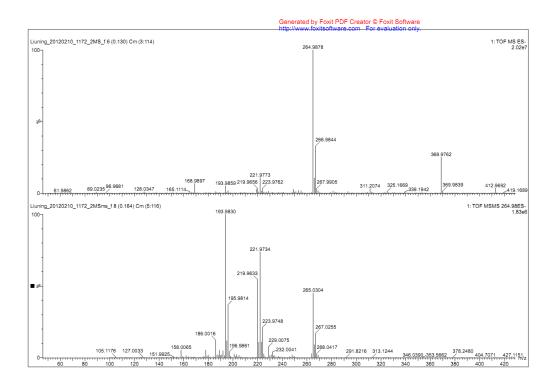


FIG A7 MS/MS fragments of thienodolin (upper) and N-hydroxytheinodolin (lower)

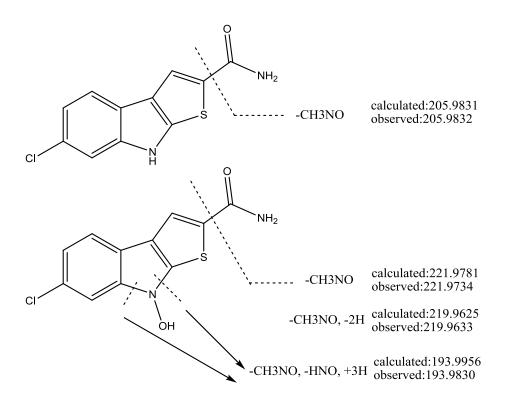


FIG A8 MS/MS fracture patterns of thienodolin (upper) and N-hydroxytheinodolin (lower)

REFERENCES CITED IN APPENDIX S1

Antonicek HP, Bischoff E, Gondol D, Gutbrod O, Krahn T, Rodriguez ML, Schütz H. 1996.

Use of efomycins. US patent 6, 291, 515.

Barth R, Mulzer J. 2007. Total synthesis of efomycine M. Angew. Chem. Int. Ed. Engl.46:5791–5794.

Cui C, Wang H, Han B, Song Y. 2001. Elaiophylins, new cell cycle inhibitors and apoptosis inducers, produced by *Streptomyces pseudoverticillus* (III) structural and NMR studies. Chin. J. Med. Chem. **11:**25–31.

Hammann P, Kretzschmar G, Seibert G. 1990. Secondary metabolites by chemical screening. 7.I. Elaiophylin derivatives and their biological activities. J. Antibiot. (Tokyo). 43:1431–1440.

Supplemental Figures

FIG. AS1 HR-ESI-MS spectrum of FXJ15321. FIG. AS2 ¹H-NMR spectrum (600 MHz, CD_3OD) of **FXJ15321**. FIG. AS3 13 C-NMR spectrum (150 MHz, CD_3OD) of **FXJ15321**. FIG. AS4 DEPT 135 spectrum (150 MHz, *CD*₃*OD*) of **FXJ15321**. FIG. AS5 1 H- 13 C-HSOC spectrum (600 × 150 MHz, *CD*₃*OD*) of **FXJ15321**. FIG. AS6 ^{1}H - ^{1}H -COSY spectrum (600 × 600 MHz, *CD*₃*OD*) of **FXJ15321**. FIG. AS7 1 H- 13 C-HMBC spectrum (600 × 150 MHz, *CD*₃*OD*) of **FXJ15321**. FIG. AS8 ¹H-¹H-ROESY spectrum (600 \times 600 MHz, *CD*₃*OD*) of **FXJ15321**. FIG. AS9 NOE difference spectrum (H-29 irradiated) (600 MHz, CD₃OD) of FXJ15321 FIG. AS10 HR-ESI-MS spectrum of FXJ15322. FIG. AS11 ¹H-NMR spectrum (600 MHz, CD_3OD) of **FXJ15322**. FIG. AS12 ¹³C-NMR spectrum (150 MHz, CD_3OD) of **FXJ15322**. FIG. AS13 DEPT 135 spectrum (150 MHz, *CD*₃*OD*) of **FXJ15322**. FIG. AS14 ¹H-¹H-COSY spectrum (600 \times 600 MHz, *CD*₃*OD*) of **FXJ15322**. FIG. AS15 1 H- 13 C-HSQC spectrum (600 × 150 MHz, *CD*₃*OD*) of **FXJ15322**. FIG. AS16 1 H- 13 C-HMBC spectrum (600 × 150 MHz, *CD*₃*OD*) of **FXJ15322**. FIG. AS17 ¹H-¹H-ROESY spectrum (600 \times 600 MHz, *CD*₃*OD*) of **FXJ15322**. FIG. AS18 ESI-MS spectrum of FXJ10761. FIG. AS19 ¹H-NMR spectrum (600 MHz, $CDCl_3$) of **FXJ10761**. FIG. AS20 13 C-NMR spectrum (150 MHz, *CDCl*₃) of **FXJ10761**. FIG. AS21 DEPT 135 spectrum (150 MHz, CDCl₃) of FXJ10761. FIG. AS22 ¹H-¹H-COSY spectrum (600×600 MHz, $CDCl_3$) of **FXJ10761**. FIG. AS23 $^{1}\text{H}^{-13}\text{C}$ -HSQC spectrum (600 × 150 MHz, *CDCl*₃) of **FXJ10761**. FIG. AS24 1 H- 13 C-HMBC spectrum (600 × 150 MHz, *CDCl*₃) of **FXJ10761**. FIG. AS25 ¹H-¹H-ROESY spectrum (600 \times 600 MHz, *CDCl*₃) of **FXJ10761**. FIG. AS26 HR-ESI-MS spectrum of FXJ10762. FIG. AS27 ¹H-NMR spectrum (600 MHz, $CDCl_3$) of **FXJ10762**. FIG. AS28 13 C-NMR spectrum (150 MHz, *CDCl*₃) of **FXJ10762**. FIG. AS29 DEPT 135 spectrum (150 MHz, *CDCl*₃) of **FXJ10762**. FIG AS30 1 H- 1 H-COSY spectrum (600 × 600 MHz, *CDCl*₃) of **FXJ10762**. FIG. AS31 ${}^{1}\text{H}{}^{-13}\text{C}{}^{-13}\text{C}\text{HSQC}$ spectrum (600 × 150 MHz, *CDCl*₃) of **FXJ10762**. FIG. AS32 1 H- 13 C-HMBC spectrum (600 × 150 MHz, *CDCl*₃) of **FXJ10762**. FIG. AS33 ¹H-¹H-ROESY spectrum (600×600 MHz, *CDCl*₃) of **FXJ10762**. FIG. AS34 HR-ESI-MS spectrum of FXJ10763. FIG. AS35 ¹H-NMR spectrum (600 MHz, $CDCl_3$) of **FXJ10763**. FIG. AS36¹³C-NMR spectrum (150 MHz, *CDCl*₃) of **FXJ10763**. FIG. AS37 DEPT 135 spectrum (150 MHz, CDCl₃) of FXJ10763. FIG. AS38 ^{1}H - ^{1}H -COSY spectrum (600 × 600 MHz, *CDCl*₃) of **FXJ10763**. FIG. AS39 ${}^{1}\text{H}{}^{-13}\text{C}{}^{-13}\text{C}\text{HSQC}$ spectrum (600 × 150 MHz, *CDCl*₃) of **FXJ10763**. FIG. AS40 1 H- 13 C-HMBC spectrum (600 × 150 MHz, *CDCl*₃) of **FXJ10763**.

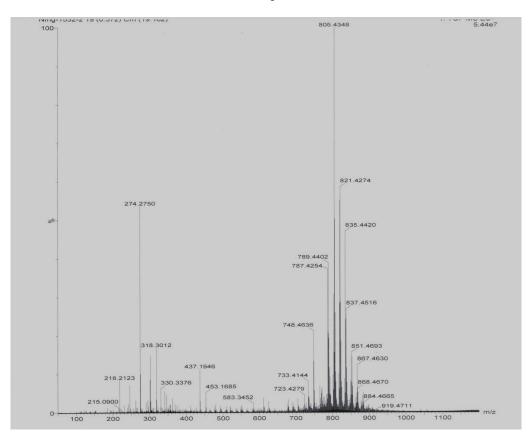
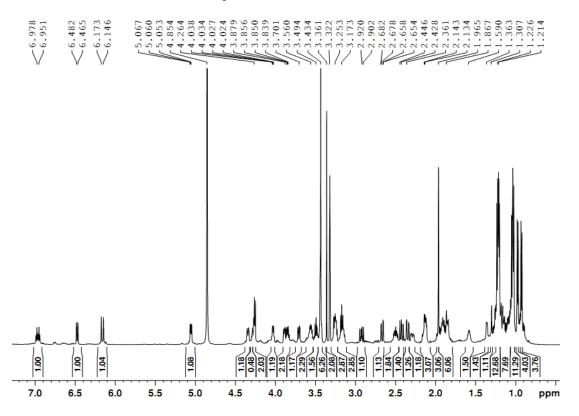
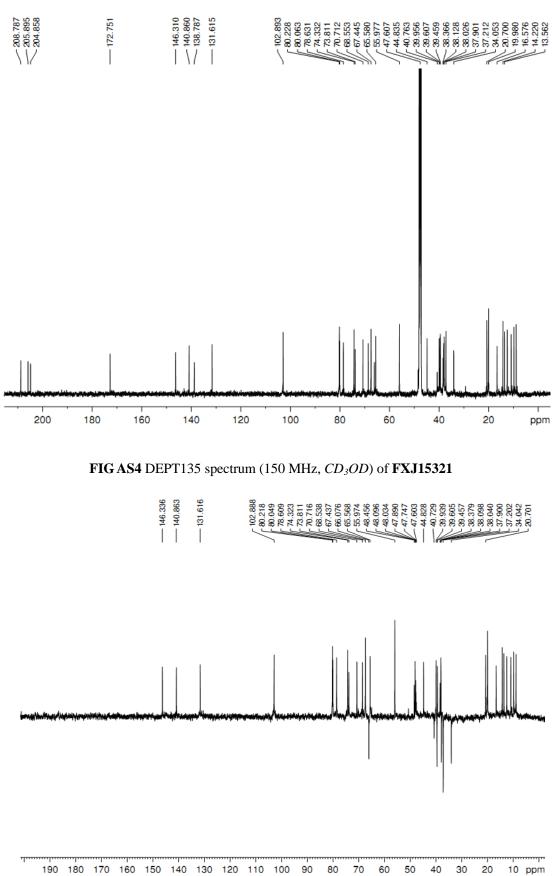




FIG AS1 HR-ESI-MS spectrum of FXJ15321

FIG AS2 ¹H-NMR spectrum (600 MHz, CD_3OD) of **FXJ15321**

FIG AS3 ¹³C-NMR spectrum (150 MHz, CD₃OD) of FXJ15321

 190 180 170 160 150 140 130 120 110 100

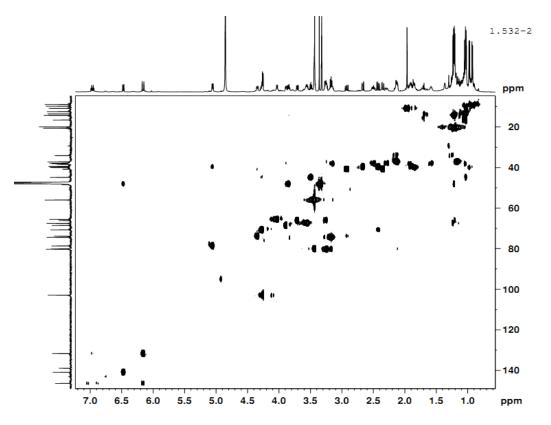
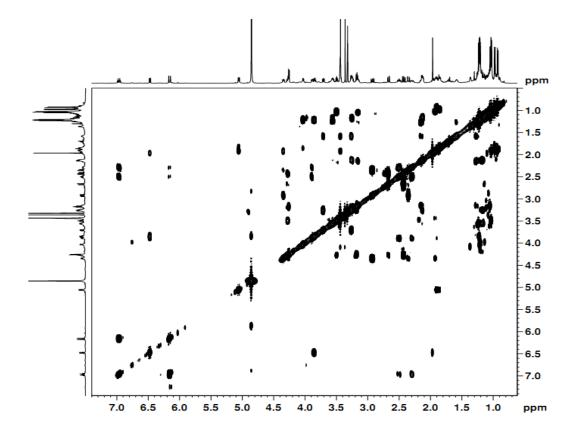



FIG AS5 $^{1}H-^{13}C$ -HSQC spectrum (600 × 150 MHz, $CD_{3}OD$) of FXJ15321

FIG AS6 $^{1}\text{H}-^{1}\text{H}-\text{COSY}$ spectrum (600 × 600 MHz, *CD*₃*OD*) of **FXJ15321**

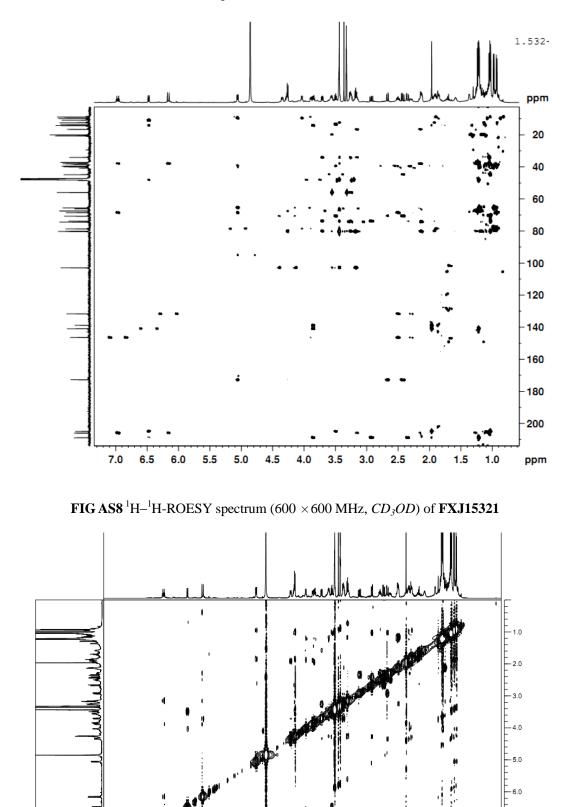
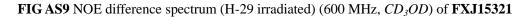


FIG AS7 1 H $^{-13}$ C-HMBC spectrum (600 × 150 MHz, *CD*₃*OD*) of FXJ15321

4.0

3.0

2.0

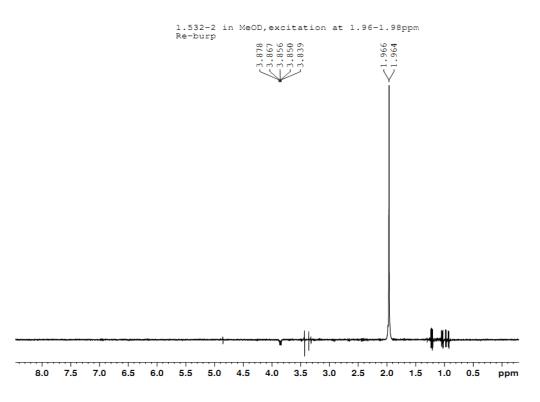
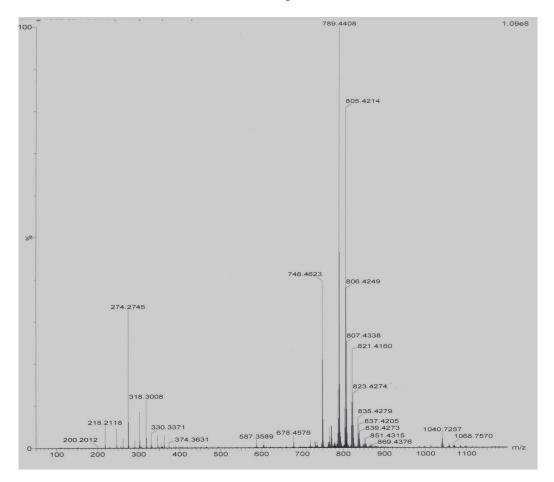
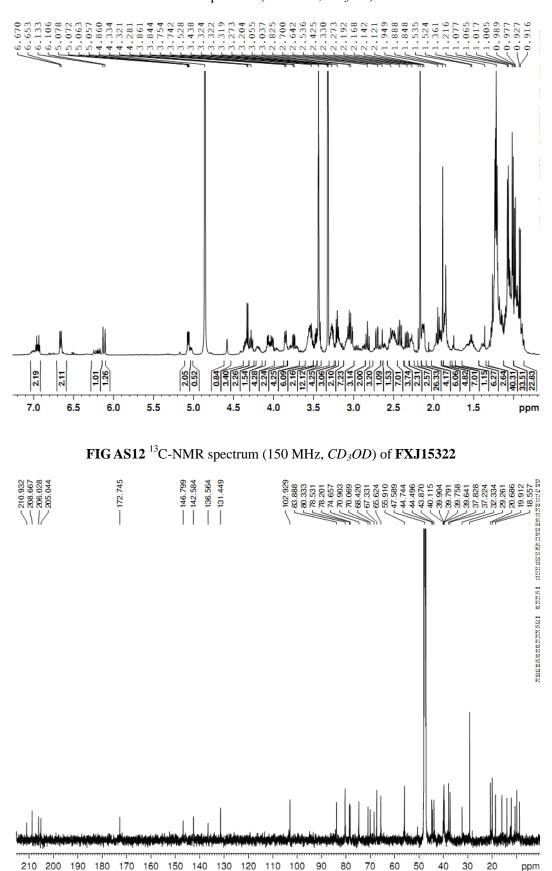
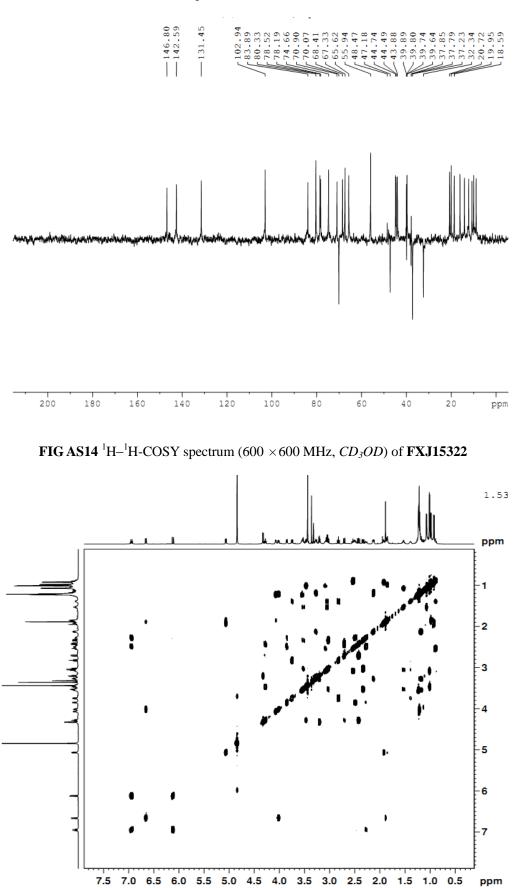

5.0

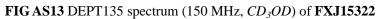
8.0 ppm (t2) | 7.0 6.0

-7.0

ppm (t1)

| 1.0


FIG AS10 HR-ESI-MS spectrum of FXJ15322

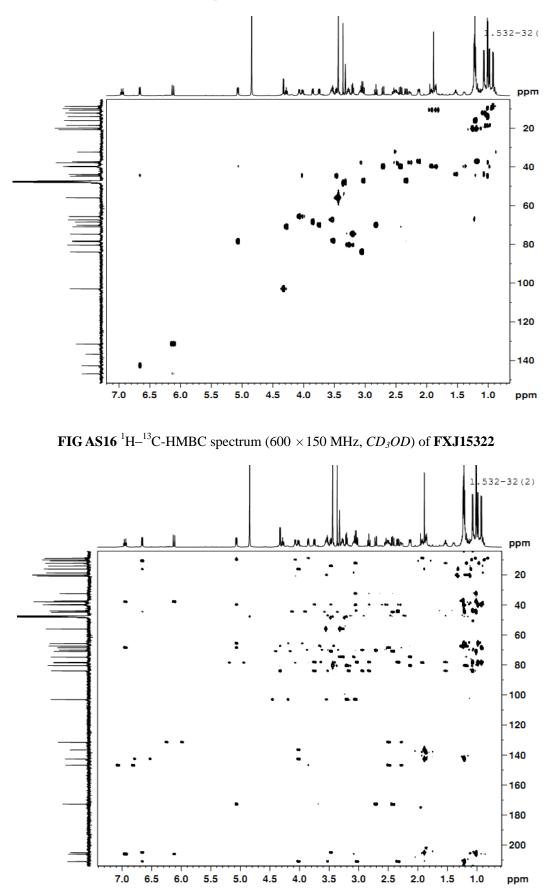
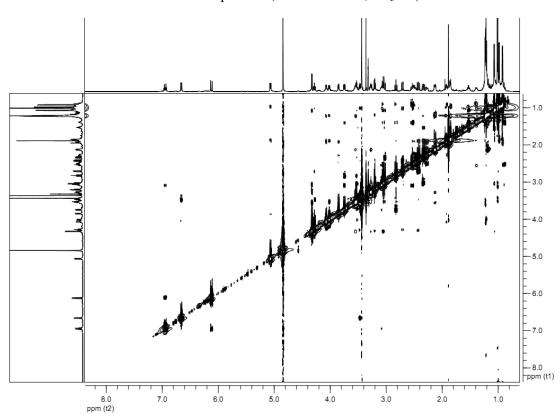
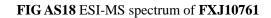
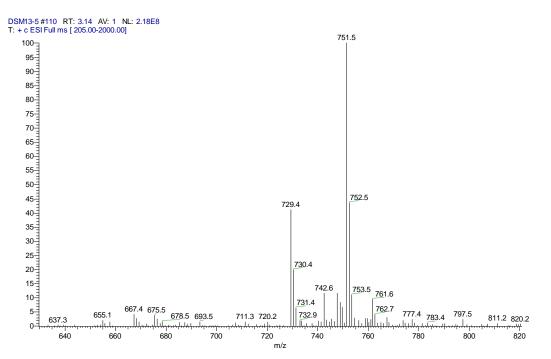
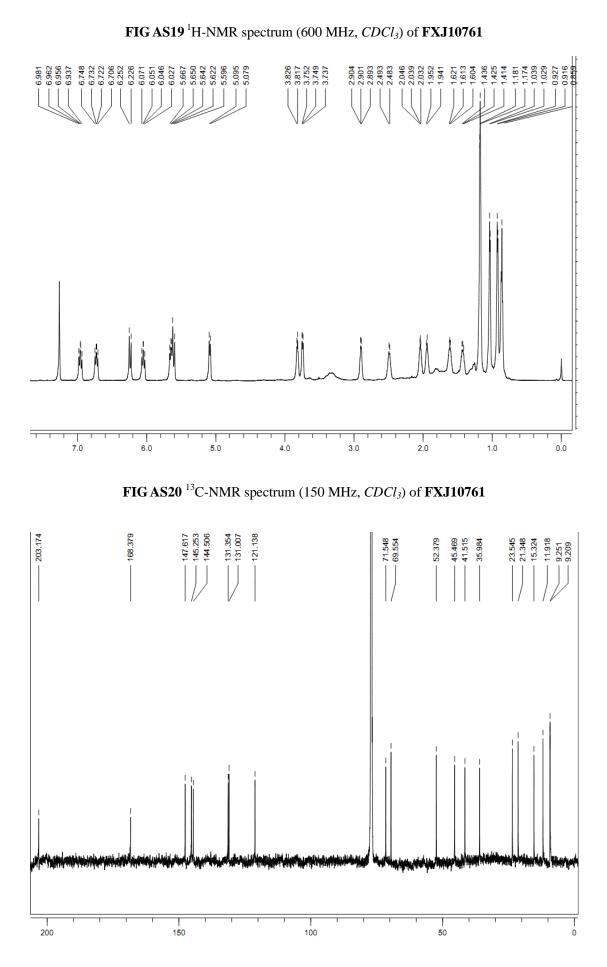
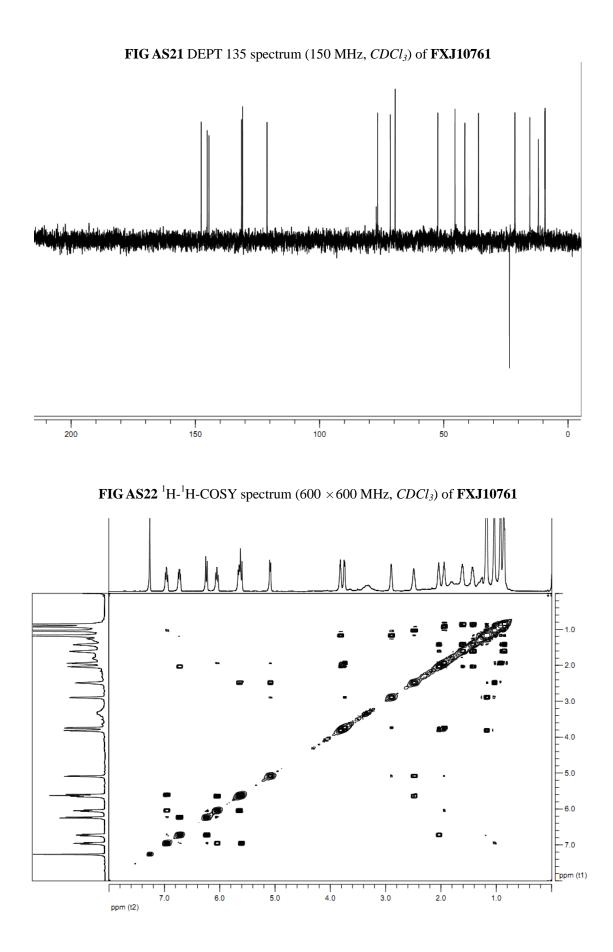
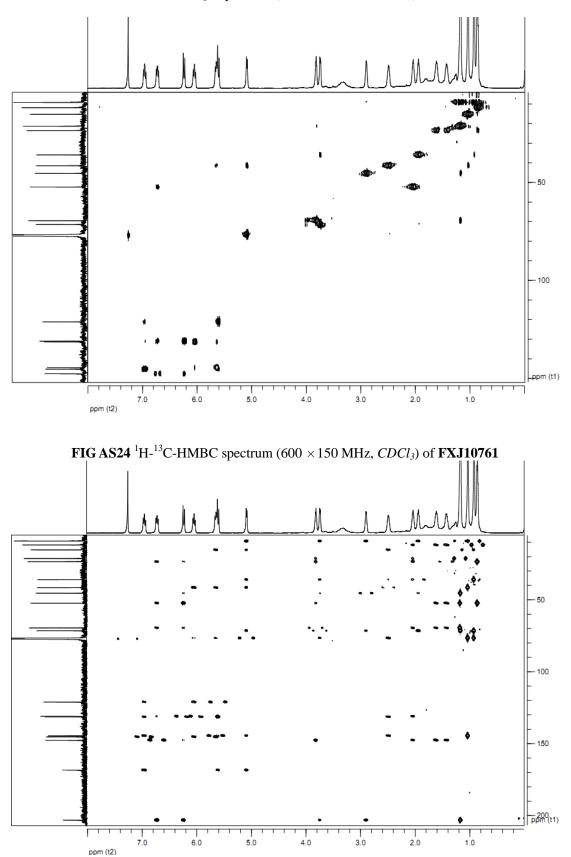
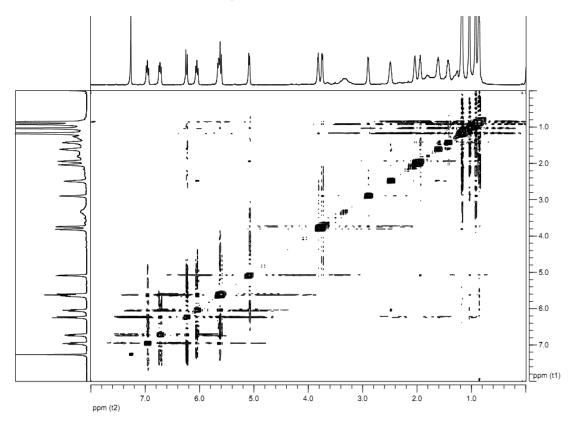


FIG AS11 ¹H-NMR spectrum (600 MHz, CD₃OD) of FXJ15322

FIG AS15 $^{1}\text{H}-^{13}\text{C}\text{-HSQC}$ spectrum (600 × 150 MHz, $CD_{3}OD$) of **FXJ15322**


FIG AS17 $^{1}\text{H}-^{1}\text{H}-\text{ROESY}$ spectrum (600 × 600 MHz, *CD*₃*OD*) of FXJ15322



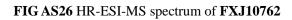


FIG AS23 1 H- 13 C-HSQC spectrum (600 × 150 MHz, *CDCl*₃) of **FXJ10761**

FIG AS25 ${}^{1}\text{H}-{}^{1}\text{H}-\text{ROESY}$ spectrum (600 × 600 MHz, *CDCl₃*) of **FXJ10761**

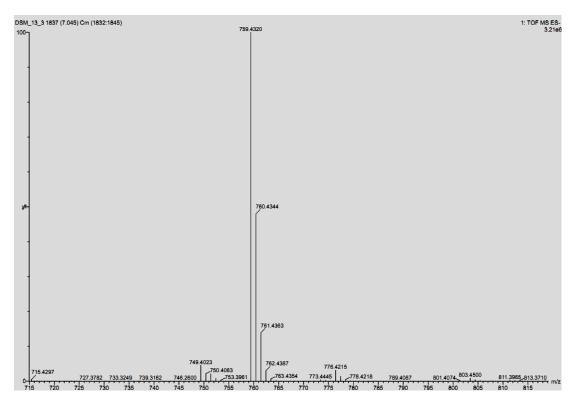
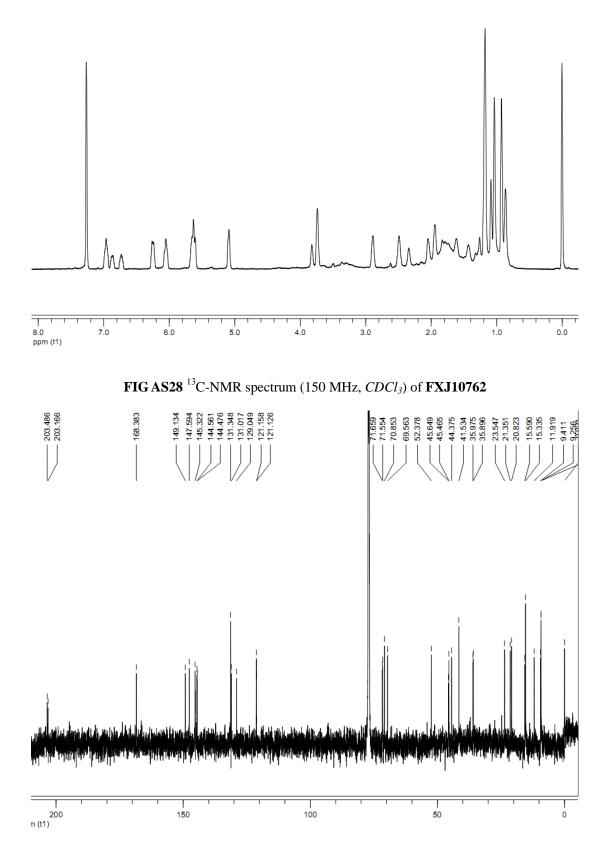
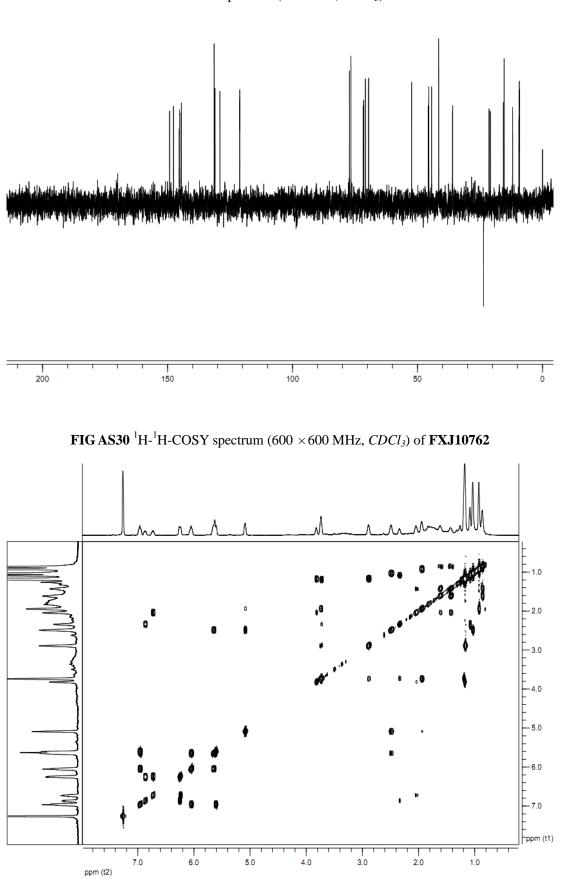
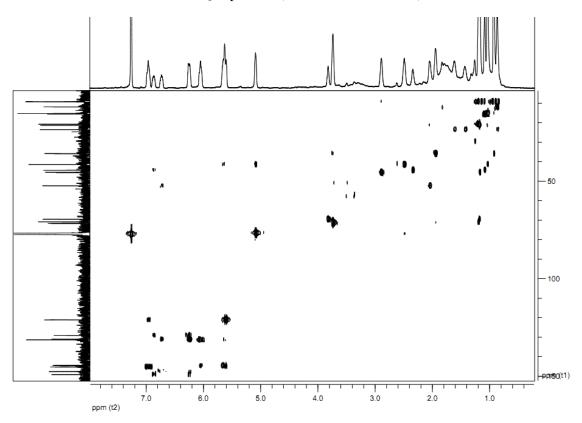
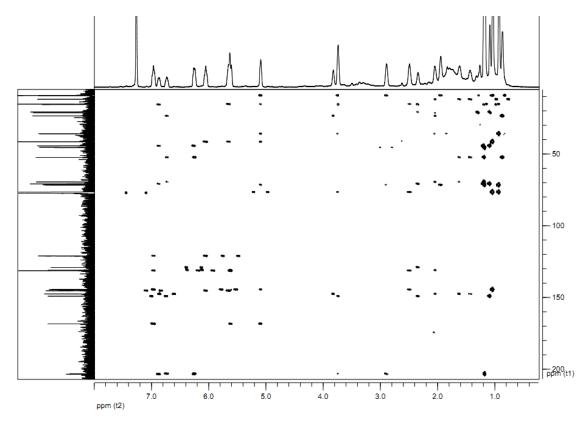



FIG AS27¹H-NMR spectrum (600 MHz, CDCl₃) of FXJ10762

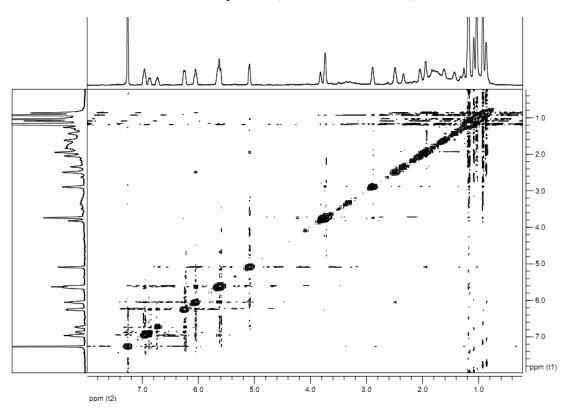

FIG AS29 DEPT 135 spectrum (150 MHz, CDCl₃) of FXJ10762

FIG AS31 1 H- 13 C-HSQC spectrum (600 × 150 MHz, *CDCl₃*) of **FXJ10762**

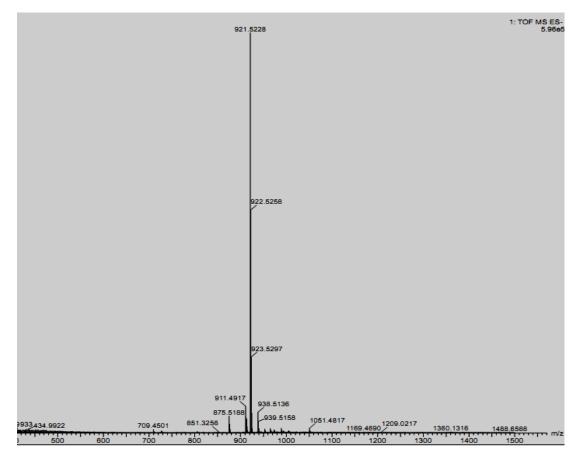

FIG AS32 1 H- 13 C-HMBC spectrum (600 × 150 MHz, *CDCl₃*) of **FXJ10762**

FIG AS33 1 H- 1 H-ROESY spectrum (600 × 600 MHz, *CDCl₃*) of **FXJ10762**

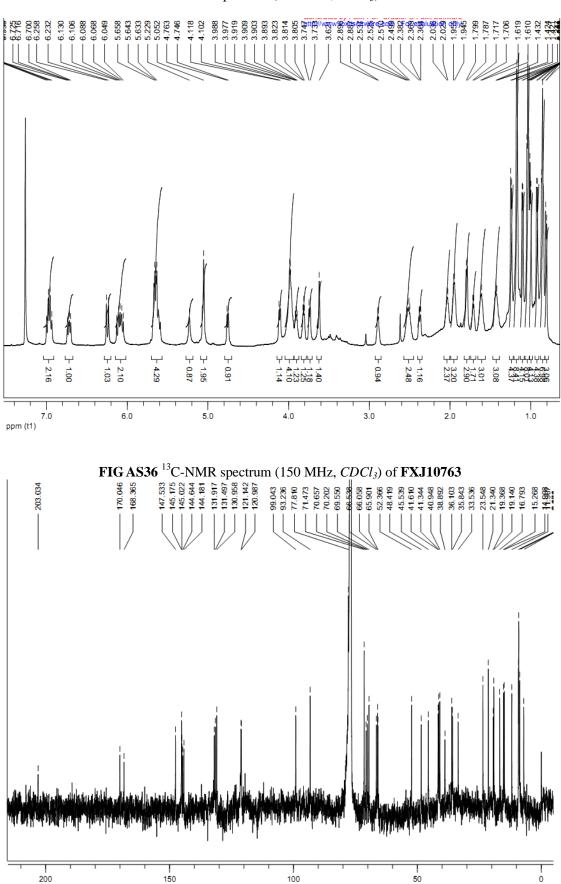


FIG AS35¹H-NMR spectrum (600 MHz, CDCl₃) of FXJ10763

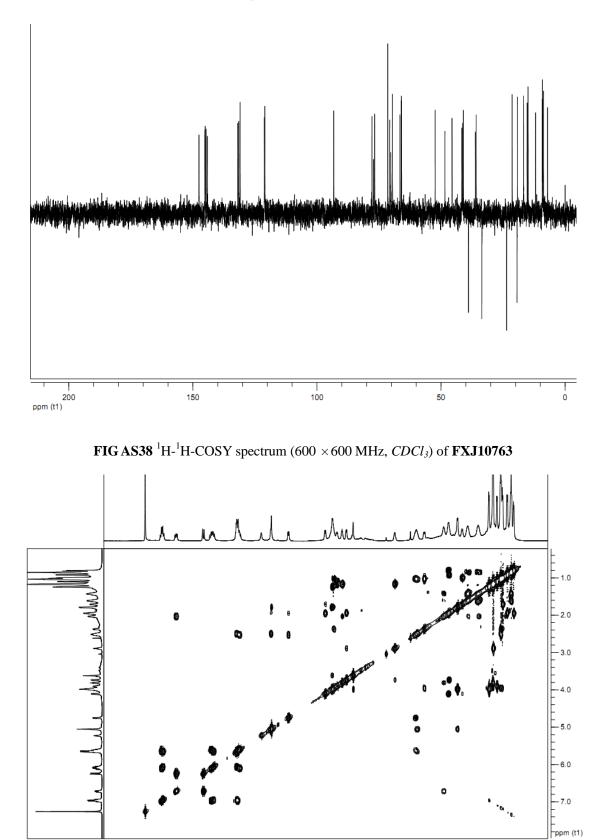


FIG AS37 DEPT 135 spectrum (150 MHz, CDCl₃) of FXJ10763

4.0

3.0

2.0

5.0

1.0

6.0

7.0

ppm (t2)

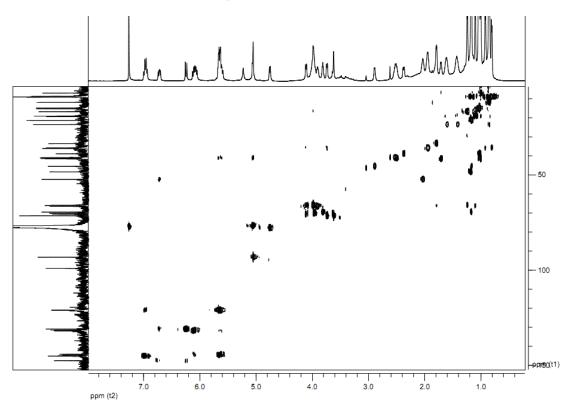
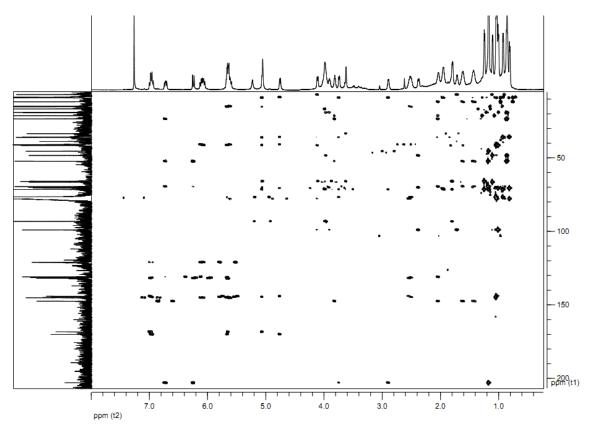



FIG AS39 1 H- 13 C-HSQC spectrum (600 × 150 MHz, *CDCl*₃) of FXJ10763

FIG AS40 1 H- 13 C-HMBC spectrum (600 × 150 MHz, *CDCl₃*) of FXJ10763

