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SI Materials and Methods

Although we expect our algorithm to be readily adaptable to a
broad range of data, we have optimized it for use on tetrode data
collected from the rat striatum and cortex. The electrophysio-
logical data acquisition software (Neuralynx Cheetah) records
1-ms time windows triggered when the voltage crosses a threshold.
In our MATLAB implementation of this algorithm, specific
parameters (e.g., types of interpolation) can be entered as options
in a configuration file. This approach gives the user flexibility in
optimizing the algorithm for specific datasets.

Our algorithm can be divided into three main parts (Fig. 1C):
(i) in preprocessing, the candidate spike data are prepared and
the SNR is enhanced; (if) in the core algorithm, a transformed
feature space is constructed, and clusters and subclusters are
found and refined. The core algorithm and part of the pre-
processing are iterated on the unsorted data until a criterion is
met; (iii ) in postprocessing, nearly simultaneous candidate spikes
removed during preprocessing are assigned to clusters, and cluster
quality is evaluated.

Preprocessing. Our algorithm begins with several steps of pre-
processing, including stationarity, spike amplitude SNR, and local
density filtering, to increase the SNR and to enhance the ef-
fectiveness of the core clustering algorithm (Fig. 1 C and D). The
spike amplitude SNR and local density filters are applied to the
unsorted data at the beginning of each iteration of the algorithm
except for the final one.

Initial Spike Selection. During data acquisition, when a 1-ms re-
cording window is triggered by a threshold crossing, additional
nearly simultaneous candidate spikes may also be recorded within
the same time window. Our algorithm temporarily removes such
spikes. The temporarily removed spikes are ultimately added back
to clusters during postprocessing, after all of the iterations of the
algorithm are completed (Fig. S1D).

Stationarity Filter. The algorithm removes candidate spikes in time
bins containing a number of spikes more than five SDs above the
mean; this removes noise consisting of rapid voltage deflections,
which probably occur as a result of mechanical problems (e.g.,
a transient loose connection or bumping of the tetrode microdrive
assembly and headstage preamplifier). This noise usually appears
along the diagonal in peak vs. peak plots (Fig. S2).

Core Algorithm. The core algorithm consists of three main parts:
(i) initial feature space construction, dimension evaluation, and
spatial transformation, in which a transformed feature space is
constructed by scaling dimensions (features) according to their
importance; (ii) recursive clustering; and (iii) rebuilding the
cluster from the core (Fig. 1 C and D). The SNR and local
density filters and the core algorithm are iterated to find addi-
tional clusters. After each iteration, the resulting clusters are
removed from the candidate spike data. As described in Spike
Amplitude SNR Filter of the main text, the SNR criterion level is
decreased in each iteration. In the final iteration, the algorithm
omits the SNR and local density filters to look for valid clusters
that might have been filtered out. Evaluation of dimensions
according to their contribution to separability is an essential
part of our algorithm. Evaluation refers to the determination of
the relative importance of selected dimensions.
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Initial Feature Space Construction. The algorithm constructs a
feature space of 13 dimensions (Fig. 1C): four peak voltage
dimensions (one for each tetrode channel), eight PC di-
mensions (PC1 and PC2 of the candidate spike waveforms
recorded for each of the four tetrode channels), and three
peak PC dimensions (PC1, PC2, and PC3 of the peak voltages
on the four channels). The peak voltages on the four channels
together can be viewed as a signature reflecting, in part, the
location of the neuron relative to the four wires (Fig. 1 A and B).

As a final step, each dimension (peak voltage, PC, or peak PC)
is independently z-score normalized. In most cases, when per-
forming PCA, we apply a mean subtraction that focuses it on the
variability in the shape of the waveform rather than on vertical
shifts of the entire waveform. The initial space for each of the four
channels consists of n dimensions, where each dimension is the
voltage at one time point of the interpolated, peak-aligned, and
padded waveform within the 1.25-ms time window. The wave-
form recorded in each channel is subtracted by the mean of
the points within that waveform. This procedure contrasts with
the built-in MATLAB function pca, which would subtract the
waveform in each channel by the mean of all waveforms (over
time) in that channel. This MATLAB version of PCA would be
vulnerable to variability involving vertical shifts of the whole
waveform. We attribute most of this type of variability to a
background of multiunit activity. As a result of this variability,
the MATLAB version of PCA would not be focused on the
variability in waveform shape that is relevant to clustering,
whereas our version of PCA is able to focus on this variability.

We use the MATLAB version of PCA only for calculating peak
PC. In this case, each channel contributes only one dimension
to the initial 4D space—namely, its peak voltage. Because the
vertical shifts are expected to be different for the four channels,
subtracting the mean peak voltage of the four channels would
not be helpful.

Dimension Evaluation. MPC, an index of cluster validity, is an ad-
aptation of the partition coefficient defined by Bezdek (1, 2) that
reduces its monotonic tendency with respect to ¢ (3). The MPC
value m is defined as

C
m—l—ch(l—VPC),

where Vpc is the partition coefficient defined by Bezdek:

Vpc= %iiu;

i=1 j=1

Here, n is the number of vectors (e.g., spikes) in the multidimen-
sional space, ¢ is the number of clusters, and u; refers to the
entries in the partition matrix U. For our case, u; gives the de-
gree of membership of spike j in cluster i on a scale from 0 to 1.

Fuzzy C-Means Clustering. Having prepared a suitable space, the
algorithm runs FCM clustering multiple times on the distribution
in this space, assuming different numbers of clusters in each run.
The correct number of clusters is the number that maximizes the
MPC value (Fig. S4). Instead of randomly initializing FCM, we
use a heuristic that deterministically produces the initial centers
of each cluster. Our heuristic does not guarantee a global min-
imum for the FCM objective function.
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Recursive Clustering. Following the first round of clustering, our
algorithm identifies clusters within clusters by applying the same
methods used in the initial clustering. PCA is applied to just the
candidate spikes within the cluster. Dimensions are again selected
and evaluated. If one or more dimensions meet the criteria of
being potentially separable and having nonzero dimensional
importance, the algorithm applies the same clustering method to
the spikes within the cluster; it repeats this subclustering re-
cursively until there are no dimensions that meet the criteria.

Finding Cluster Cores. The clusters found by the algorithm up to this
point do not have the best possible boundaries, due to the removal
of valid spikes by the strong filters and the limitations of the FCM
algorithm. The algorithm reduces each cluster to a core that normally
contains the 30% of the cluster’s spikes closest to the centroid. The
algorithm uses Euclidean distances for this purpose, because it is
less affected by errors in FCM clustering.

Rebuilding Clusters from Cores. Along each dimension, the algo-
rithm looks for a valley in the distribution of Mahalanobis distances
and includes spikes in the cluster that are nearer to the cluster core
than the valley. However, if a cluster is very small, up to 60% of the
spikes closest to the centroid may be used, according to this formula
in MATLAB:

1. Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms.
Advanced Applications in Pattern Recognition (Plenum, New York), pp 1-13.

upper_bound = min(round(0.6 * num_spikes),
x max(200, num_core_spikes));

where upper_bound is the number of spikes in the core, num_
spikes is the number of spikes in the cluster, and num_core_spikes
is 30% of num_spikes.

Removing Bad Clusters. Each dimension is tested individually. A
cluster is removed if it is evaluated as potentially separable along
any dimension according to the following test (Fig. S54): Let v be
any local minimum in the projection of the distribution onto
a dimension. Let p be the largest local maximum on either side
of v. If v<3 p for any v, the data are potentially separable along
this dimension. For larger clusters (>10,000 spikes), we consider
any local minimum not too near the peak, in a peak radius of 10
indexes (Fig. S5 B and C), to make the cluster bad.

Assigning Nearly Simultaneous Spikes to Clusters. Spike waveforms
of different neurons that were recorded by the same tetrode
within the same 1-ms window were temporarily removed. The
waveforms are separated from each other, and each waveform is
given an appropriate timestamp. Each waveform is then assigned
to a cluster based on its peak voltages recorded on the four
tetrode channels.

2. Wang WN, Zhang YJ (2007) On fuzzy cluster validity indices. Fuzzy Sets Syst 158(19):
2095-2117.
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Fig. S1. Spike alignment and nearly simultaneous spike separation stationarity filter. (A) Raw data containing misaligned spikes. (B) Spikes undergo peak-
to-peak alignment. (C) The data, after alignment, have a simplified structure that can now be combined in a unified waveform. (D) The unified waveform
shows two spikes recorded in the 1-ms interval. The dashed lines indicate the beginning and end of each spike.
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-' Fig. S2. Stationarity filter. (A) Nonstationary time periods are shown in red during a sample recording period. (B) A 2D projection of peaks exhibiting, along
the diagonal, nonstationary noise. (C) The same 2D projection after removing the nonstationary recording fragment.
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Fig. S3. SNR filter and local density filter. (A) The peaks and valleys of waveform, shown here as blue dots on a representative waveform, are identified in
recorded spikes. (B) Three spikes with different SNRs. The red spike was found in iteration 1, and the blue spike was found in iteration 5. The green spike was
identified as a multiunit cluster in iteration 5. (C) A 2D projection of a recorded dataset. (D) A conceptualization of a local density filter. The densities inside of
the bin (DI) and outside of the bin (DO) are calculated. If the density inside of the bin is significantly lower than outside density, the spikes inside the bin are
removed. (E) A 2D projection after the application of the local density filter to the data shown in C.
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Fig. S4. FCM and MPC procedures. The dataset is clustered, using FCM, to yield different numbers of clusters. Ellipses are drawn around the cluster borders,
and the each cluster center is marked with a red X. Due to the FCM approach, each point has a probability of inclusion in each of the clusters. MPC then ranks

each clustering configuration, giving preference to cluster configurations that maximize each point’s affinity to one cluster. The clusters provided by an FCM
algorithm are shown for two clusters in A and for three clusters in B.

Friedman et al. www.pnas.org/cgi/content/short/1503940112 30f5


www.pnas.org/cgi/content/short/1503940112

L T

z

1\

BN AS  DNAS P

Solution for big cluster:

density function of the cluster

— Cluster peak

Bimodal distribution

— bad cluster
Valley

A Problem: B
accidentally formed cluster
1801
\>?; I Second peak
ﬁ -
3 =
(o8 [}
o [ 5
© o
21
c
5]
< -
R
e
Channel 1 peak (V)
(o3 Solution for small cluster:
density function of the cluster
Second peak «— Cluster peak
¢ V <0.75"P;
Bimodal distribution
— bad cluster
2
‘@
c
a a
*n Valley o
0 1

Channel 1 peak (uV)

Channel 1 peak (V)

Fig. S5. Cluster lacking a normal distribution. (A) An example of a cluster (red) identified in the midst of multiunit activity (gray). (B) The distribution of this

cluster is not normal. There is an additional second peak identified in the distribution. (C) Another example of a bimodal cluster density distribution.

Methodology for cluster quality evaluation

Calculate:

1) Consistency at time

2) Bimodality using FCM with MPC
3) Cluster incompleteness - cut by threshold
4) Number of active tetrode channels
5) Cluster waveform similarity

6) L-ratio

7) Bhattacharyya distance between identified clusters

8) Bhattacharyya distance between unsorted background

2

(Check for signs of an obviously unacceptable cluster)
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Fig. S6. Methodology for evaluation of cluster quality. After cluster attributes are calculated, unacceptable clusters are identified. Of the acceptable clusters,
clusters with multiunit activity receive grades of 1 and 2, and separable clusters receive grades of 3, 4, and 5.
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Fig. S7. Cluster grade distribution for spike sorting performed by experts. The percentage of identified clusters is shown. Categories shown on the upper right
of graph represent different types of artifacts. Grades 1 and 2 correspond to multiunit activity. Grades 3, 4, and 5 are separable recordings.
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Fig. S8. Simulation-generated data containing 16 clusters with high level of overlap, similar to those shown in Fig. 6H. (A) An example of simulation data in
which 16 clusters were partially identified by the algorithm. (B) The percentage of simulation spikes assigned to correct clusters by the algorithm (green) and
percentage of simulation clusters accurately identified by the algorithm (red). Error bar represents SDs across simulation clusters.
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