
Modelling the spatial heterogeneity of photosynthetic
efficiency under stress

This is the Additional file 7 of the paper by Bresson et al. (Plant Methods).

Several abiotic or biotic factors, including abiotic stresses (water deficit, high temperature, freezing, salinity)
and pathogens, can contribute to heterogeneous photosynthetic performance at a leaf or whole-plant levels
due to their effects on plant physiology. Chlorophyll fluorescence (ChlF) imaging is among the existing
imaging techniques (e.g. thermo-imaging, hyperspectral imaging) that provide indicators of a leaf or a plant
photosynthetic performance.

In this paper by Bresson et al., we observed that a severe water deficit caused drastic changes in the
heterogeneity of photosynthetic efficiency, as measured by ChlF imaging on plants of Arabidopsis thaliana
ecotype Col-0. Precisely, the effects of water deficit rapidly translated into bimodal Gaussian distributions
of the maximum quantum efficiency of PSII photochemistry (Fv/Fm). This was due to an increase of leaf
areas (beginning at leaf tips) with reduced photosynthetic efficiency as stress progressed whereas other parts
remained healthy for a longer time. In perishing plants (60% of the plants) the whole leaf area of the rosette
reached null values of Fv/Fm and plants failed to recover after rewatering.

In order to quantify and analyse the heterogeneity of photosynthetic performance at the leaf and whole-plant
levels, we developed a statistical procedure that first identify mixture distributions of pixel values (here given
by Fv/Fm) and extract the parameters of multi-modality, limited here to two modes (i.e. bimodality). Then,
the temporal dynamics of the distribution is a mixture of two Gaussian distributions with means µ(t)1 and
µ(t)2, standard deviations σ(t)1 and σ(t)2 and weights ρ(t)1 and ρ(t)2 = 1− ρ(t)1 that change as a function
of time t.

From the parameters of bimodal mixture distributions we calculated two indices of heterogeneity: S, the
bimodal separation, and Wmax, the spatial efficiency of a photosynthetically heterogeneous plant. In the
paper we showed that these indices allowed the comparison of the dynamics of photosynthetic heterogeneity
among genotypes and in response to stress.

Here, in order to improve the presentation of the method and of its potentialities, we performed a simulation
exercise to analyse the sensitivity of both S and Wmax to changes in the dynamics of the bimodal parameters.
Although further work is needed to improve the simulation process that could explicitly include spatial
dynamics, functional hypotheses of variation of the parameters, or stress recovering, we argue that the
parameters used to simulate the dynamics of the bimodal distributions could provide useful tolerance/sensitivity
indices.

Modelling the temporal dynamics of mixture distributions

Temporal dynamics of means

The temporal dynamics of the means of the two distributions µ(t)i were modelled as:

µ(t)i =
{

µmax, if t < δµi,

(µmax − µmin)× e
−

(t−δµi)2

2(θµi/8)2 + µmin, otherwise,
θµi ≥ 0.

µ(t)i is monotone, decreasing, and tends to µmin when time tends to infinity and satisfies 0 ≤ µ(t)i ≤ µmax
(see Figure 1a). Here, µmax = 0.83, the observed maximum Fv/Fm value. δµi is the lag time before µ(t)i
begins to decrease and θµi is the parameter that inversely affects the decreasing rate.
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Temporal dynamics of standard deviations

The temporal dynamics of the standard deviations of the two distributions σ(t)i were modelled as an
exponential function approaching the Normal distribution in the form:

σ(t)i = aib
(t−(ci+δσi))2

i + σmin i

Parameter a controls the height (y-value) of the maximum σ value; parameters c and δσ control the location
(x-value) of the maximum (or minimum). σmin i controls the minimum standard deviation (see Figure 1b).
σ(t) is a straight line for b = 1, as used in the simulations presented in this document.

Temporal dynamics of weights of the distributions

The temporal dynamics of the weights of the distributions ρ(t)i, were modelled as:

ρ(t)1 =
{

ρmax, if t < δρ,

(ρmax − ρmin)× e− (t−δρ)2

2(θρ/8)2 + ρmin, otherwise,
θρ ≥ 0, 0 ≥ ρmax ≤ 1, 0 ≥ ρmin ≤ 1.

ρ(t)2 = 1− ρ(t)1.

ρ(t)i is monotone, decreasing, and tends to ρmin when time tends to infinity and satisfies 0 ≤ ρ(t)i ≤ rhomax
(see Figure 1a). Here, we fixed ρmin = 0 and ρmax = 1 but both may vary between 0 and 1. δρ is the lag
time before ρ(t)1 begins to decrease (or ρ(t)2 increases) and θρ is the parameter that inversely affects the
decreasing rate.

Parameters of bimodal heterogeneity

From the parameters of the mixture distributions we calculated : S, the bimodal separation, such as:

S = (µmax−µmin)
2(σmax+σmin) .

For each mode i of the distribution S can be calculated relatively to any optimum mean with null standard
deviation (here, 0.87(0), the theoretical optimum Fv/Fm value) as:

Si = (0.87− µi)
2(σi)

and used to calculate the weighted contribution to bimodality of two distributions relatively to an optimum
Wmax as:

Wmax = S1×ρ1−S2×ρ2
S1×ρ1

.

Simulations

Distributions were obtained using the rtnorm function of the msm package for random generation from a
truncated Normal distribution [0, 0.87] with mean equal to µ(t), standard deviation equal to σ(t) and ρ(t) the
weight of each distribution (Figure 2). Simulations were performed for n = 10000 observations, the median
number of pixels of the ChlF images which varied from 21 to 68000 pixels.
The dynamics of S and Wmax were then calculated (Figure 3).
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Figure 1: (a) Example of dynamics of the means (µ) of two Gaussian populations following the equations
above with δµ = (15, 10), θµ = (60, 30). (b) Constant standard deviations (σ) of two Gaussian populations
following the equations above with a = (0.07, 0.10), b = 1. (c) Example of dynamics of the weights of (ρ) of
two gaussian populations following the equations above with δρ = 3 and θρ = 80. This set of parameters
values approximate the values observed in the data by Bresson et al. (this paper) in response to severe water
deficit for plants that did not survive the stress.
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Figure 2: Example of distribution dynamics using the parameters of Figure 1.
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Figure 3: Dynamics of heterogeneity indices. Variation of S (a) and (b) Wmax (b) given the parameters of
Figure 1.

Experimental design of sensitivity analyses

The sensitivity of the parameters S andWmax to the variation of the mixture parameters was then investigated.
We performed the sensitivity analysis on 45 sets of parameters chosen to mimic a wide range of potential
photosynthetic stresses (e.g., severe and moderate water stress, localized disease) as:


θµ1 = {80, 90, 100}, δµ1 = 20, µmax1 = 0.83, µmin1 = {0.30, 0.50, 0.75}.
θµ2 = {20, 50, 90}, δµ2 = 10, µmax2 = 0.83, µmin2 = {0.10, 0.15, 0.20}.
a1 = 0.08, b1 = 1,
a2 = 0.12, b2 = 1,
θρ1 = {100, 200, 300, 500, 1000}, δρ1 = 3, ρmax1 = 1, µmin1 = 0.

where increasing values of the parameters for µ(t)1 (n = 3; green to blue in Figure 4a), µ(t)2 (n = 3; cyan to
red in Figure 4a) and ρ(t) (n = 5; orange to violet in Figure 4c) were combined, whereas σ(t)i were kept
constant for clarity (blue for σ(t)2 and red for σ(t)2 in Figure 4b). θ are inversely related to the decreasing
rates of the means µi and proportion ρ1 of the healthiest pixels, i.e. the rate at which the stress is affecting
the plant. δ represent the lag time before parameters are changing (e.g. the lag time before stress has
measurable effects or, for a plant disease, the incubation time). The lag times δµi have been kept constant in
the simulations presented in Figures 4-6, whereas δµ1 varied at 20, 40 and 60 in simulations presented in
Figures 7-8. Figure 4 gives the dynamics of the parameters of the distributions and Figures 5 and 6 give the
dynamics of S and Wmax following this experimental design.

Results and discussion

As expected, the patterns of variation of S and Wmax were highly impacted by the dynamics of the mixture
distributions (Figures 5-6). The level of photosynthetic heterogeneity (S) during stress is mainly controlled by
the variation of µ(t)1 (blue to green curves, Figures 4a and 5b). However, the increase in S at the beginning
of a stress is independent of the rate of decrease of µ(t)1 (inversely related to θµ1) but depends on the rate
of decrease of µ(t)2 (θµ2, red, grey and blue curve, figures 4a and 5b). S reaches a maximum when the
separation between the means is maximal and then it decreases to a plateau which occurence is dependant
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Figure 4: Combinations of bimodal parameters (n = 45) for sensitivity analyses. Different colours represent
different combinations of parameters whereas same colour represents covarying parameters. (a) Means,
µ(t)1 (θµ1 = {80, 90, 100}, δµ1 = 20, µmax1 = 0.83, µmin1 = {0.30, 0.50, 0.75}; green to blue), µ(t)2 (θµ2 =
{20, 50, 90}, δµ2 = 10, µmax2 = 0.83, µmin2 = {0.10, 0.15, 0.20}; cyan to red). (b) Standard deviations,
σ(t)1 (a1 = 0.08, b1 = 1, blue), σ(t)2 (a2 = 0.12, b2 = 1, red); kept constant for clarity. (c) ρ(t)1 (θρ1 =
{100, 200, 300, 500, 1000}, δρ1 = 3, ρmax1 = 1, µmin1 = 0; orange to violet). θ are inversely related to the
decreasing rates and δ represent the lag time. See text for details.
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Figure 5: Variation of S (left) and Wmax (right) given the combinations of bimodal parameters in Figure 4.
Colours in panels vary following the variations of the parameters in Figure 4: each panel line represents µ(t)1
(a, d), µ(t)2 (b, e) and ρ(t) (c, f). Note that σ(t)i are constant and that S is independent of ρ.
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Figure 6: Variation of S (left) and Wmax (right) given the combinations of bimodal parameters in Figure 4.
Colours in panels vary following the variations of the parameters in Figure 4: each panel line represents µ(t)1
(a, d), µ(t)2 (b, e) and ρ(t) (c, f). Note that σ(t)i are constant and that S is independent of ρ. Note also that
the limits of y-axis for Wmax has been set to [-5;1].
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on the decreasing rates θµi of both means, on the lag times δµi (Figures 7-8) and value is dependent on the
lower asymtote µmin (Figures 5a,b and 8a,b). The lag time between the start of the stressing period and the
appearence of the first effects on photosynthetic performance is an important parameter of the dynamics of
stress tolerance. δµ2 can illustrate the resilience of healthy parts (plant parts not impacted by the stress).
If we take the example of a plant subjected to a disease, δµ1 and δµ2 participate in illustrating both the
incubation period and the spread of the symptoms (e.g. localised vs. systemic).
Therefore, a sudden change, followed by a quick decrease, in S indicates a rapid effect of a factor or high
sensitivity of the plant to a factor (i.e. low θµi), whereas, a gradual increase, followed by a slow decrease, in
S is indicative of a slight effect of a factor or of an effect spatially localised to small areas, and can also be
indicative of high tolerance of the plant to a stress.
However, S does reflect the spread (in terms of area impacted) of the effects since this index does not take
into account the size the impacted regions (i.e. ρi; Figure 5c). On the contrary, Wmax explicitly takes into
account the weights of the mixture distribution and therefore the size of the populations whose means are
varying. Wmax is also highly sensitive to the variations in the distribution parameters (Figure 5d-f). When
the proportion of impacted pixels increases rapidly (i.e. low θρ), indicative of a quick and generalised defect
in the photosynthetic performance, Wmax can decrease abruptely from 1 to −∞ (Figure 5f). However, the
dynamics of Wmax also depend on the dynamics of µi. For instance, Wmax increases when S is decreasing,
which is particularly visible when the lag time δµi is changing (Figures 7-8). This simulation analysis suggests
that the variation of Wmax during stress (specifically, the rate of decrease and the time to reach negative
values) can be a good indicator of stress tolerance in response to many environmental stresses.

Conclusions

The simplified simulation exercise used here was sufficient to reproduce what has been observed in this paper
by Bresson et al. in plants grown under severe water deficit that did not survive the stress (Figures 1-3).
We argue that this simple simulation exercise is sufficient to reproduce the different behaviours of a plant
or a leaf facing a change in its environment or its physiological status in terms of sensitivity, tolerance and
dynamics. Specifically, the parameters of the equations used to simulate the dynamics of mixture distributions
can be used as indicators of the tolerance/sensitivity of a plant to any factor or combination of factors. For
instance, some factors can have spatially localised determinisms (e.g. pathogens) with more or less random
patterns while others can be more diffuse. Moreover, some factors can act suddently or be more diffuse
through time (e.g. suddent changes in temperature vs. moderate but continuous water deficit).
Future developments, in addition to the accumulation of experimental evidences, will improve the simulation
process to explicitly include spatial dynamics, functional hypotheses of variation of the parameters, and stress
recovering, and could allow the prediction of plant response to environmental factors.
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Figure 7: Combinations of bimodal parameters (n = 45) for sensitivity analyses showing the effects of changes
in the lag time δµ1. Different colours represent different combinations of parameters whereas same colour
represents covarying parameters. (a) Means, µ(t)1 (θµ1 = {80, 80, 80}, δµ1 = 20, 40, 60, µmax1 = 0.83, µmin1 =
{0.30, 0.50, 0.75}; green to blue), µ(t)2 (θµ2 = {20, 50, 90}, δµ2 = 10, µmax2 = 0.83, µmin2 = {0.10, 0.15, 0.20};
cyan to red). (b) Standard deviations, σ(t)1 (a1 = 0.08, b1 = 1, blue), σ(t)2 (a2 = 0.12, b2 = 1, red); kept
constant for clarity. (c) ρ(t)1 (θρ1 = {100, 200, 300, 500, 1000}, δρ1 = 3, ρmax1 = 1, µmin1 = 0; orange to
violet). θ are inversely related to the decreasing rates and δ represent the lag time. See text for details.
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Figure 8: Effects of changes in the lag time δµ1 on the variation of S (left) and Wmax (right) given the
combinations of bimodal parameters in Figure 7.
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