Supporting Information

Development of a novel class of tubulin inhibitor from desmosdumotin B with a hydroxylated bicyclic B-ring

Kyoko Nakagawa-Goto^{†,‡,*}, Akifumi Oda[†], Ernest Hamel[§], Emika Ohkoshi[‡], Kuo-Hsiung Lee^{\ddagger, Δ, \perp}, Masuo Goto^{$\ddagger, *$}

[†] School of Pharmaceutical Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192. Japan
[‡] Natural Product Research Laboratories, Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568, United States
[^] UNC Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, 27599-7295, United States
[§] Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702, United States
[⊥] Chinese Medicine Research and Development Center, China Medical University and Hospital, 2 Yuh-Der Road, Taichung, 40447, Taiwan

*Corresponding authors. K.N.G. Tel.: +81-76-264-6305, e-mail: <u>kngoto@p.kanazawa-u.ac.jp</u> M.G. Tel.: +1-919-843-6325, fax: 919-966-3893, e-mail: <u>goto@med.unc.edu</u>

Tabel of Contents

1	Synthetic Procedure of Benzo[b]thiophene Aldehydes	S3-4
2	Table S1, cLogP and PSA Parameter of TEDB-TBs	S5
3	Table S2, Standard Deviations for Table 1	S6
4	Figure S1, Immunofluorescence Staining of PC-3 Cells	S7
5	Figure S2, Immunofluorescence Staining of PC-3 Cells	S8-12
6	Figure S3, Binding Modes of Colchicine in a Tubulin Crystal	S13
	Structure	
7	Figure S4, 3D Models of 12 and DAMA-colchicine	S14
8	References for Supporting Information	S15

1. Synthetic Procedure for Benzo[b]thiophene Aldehydes

5-Methoxy-3-methylbenzo[*b*]thiophene (35) ^{1,2}: To a solution of 4-methoxybenzenethiol (32, 5.4 g, 38.9 mmol) in DMF (30 mL) was added K₂CO₃ (11.0 g, 79.7 mmol) and chloroacetone (3.4 mL, 42.7 mmol) at 0 °C. The mixture was stirred for 0.5 h at 0 °C, then allowed to warm to rt and stirred for 3 h. The reaction mixture was diluted with AcOEt and washed with water. The organic phase was washed with brine, dried over Na₂SO₄ and concentrated *in vacuo*. The residue was heated with polyphosphoric acid (22 g) in toluene (60 mL) at 100 °C for 18 h. The mixture was concentrated, carefully neutralized with K₂CO₃ at 0 °C and extracted with AcOEt. The organic phase was washed with brine, dried over Na₂SO₄, and concentrated *in vacuo*. The residue was chromatographed on silica gel with AcOEt–hexane as eluent to afford the target compound **35** (3.827 g) in 55% yield. ¹H NMR (300 MHz, CDCl₃, δ): 7.70 (d, 1H, *J* = 8.6 Hz, 7-*H*), 7.14 (d, 1H, *J* = 2.6 Hz, 4-*H*), 7.08 (br s, 1H, 2-*H*), 7.00 (dd, 1H, *J* = 8.6 and 2.6 Hz, 6-*H*), 3.90 (s, 3H, 5-OCH₃), 2.40 (d, 3H, *J* = 1.2 Hz, 3- CH₃).

4- and **6-Methoxy-3-methylbenzo[***b***]thiophene (36³ and 37⁴): To a solution of 3-methoxybenzenethiol (33, 6.0 mL, 48.9 mmol) in DMF (30 mL) was added K₂CO₃ (14.3 g, 103.7 mmol) and chloroacetone (4.3 mL, 54 mmol) at 0 °C. The mixture was stirred for 4 h allowed to warm to rt without heating. After the same work-up as described above, the residue was heated with polyphosphoric acid (35.3 g) in toluene (50 mL) at 100 °C for 18 h. Work-up was performed as described above. The residue was chromatographed on silica gel with AcOEt–hexane as eluent to afford 36** (1.728 g) as a colorless solid in 20% yield and 37 (3.634 g) as a colorless oil in 50% yield. **36**: ¹H NMR (300 MHz, CDCl₃, δ): 7.39 (d, 1H, *J* = 8.0 Hz, 7-*H*), 7.22 (dd, 1H, *J* = 8.0 and 7.8 Hz, 6-*H*), 6.86 (s, 1H, 2-*H*), 6.71 (d, 1H, *J* = 7.8 Hz, 5-*H*), 3.90 (s, 3H, 4-OCH₃), 2.61 (s, 3H, 3- CH₃). **37**: ¹H NMR (300 MHz, CDCl₃, δ): 7.58 (d, 1H, *J* = 8.8 Hz, 4-*H*), 7.32 (d, 1H, *J* = 7.8 Hz, 7-*H*), 7.01 (dd, 1H, *J* = 8.8 and 2.3 Hz, 5-*H*), 6.88 (d, 1H, *J* = 1.2 Hz, 2-*H*), 3.87 (s, 3H, 6-OCH₃), 2.40 (d, 3H, *J* = 1.2 Hz 3- CH₃).

7-Methoxy-3-methylbenzo[*b*]thiophene (**38**⁵): To a solution of 3-methoxybenzenethiol (**34**, 2.0 g, 14.4 mmol) in DMF (10 mL) was added K_2CO_3 (4.2 g, 30.4 mmol) and chloroacetone (1.3 mL, 16.3 mmol) at 0 °C. The mixture was stirred for 3 h while warming to rt without heating. After the same work-up as described above, the residue was heated with polyphosphoric acid

(15.5 g) in toluene (25 mL) at 100 °C for 21 h. Further work-up was as described above. The residue was chromatographed on silica gel with AcOEt–hexane as eluent to afford **38** (1.400 g) as a colorless solid in 55% yield. **38**: ¹H NMR (300 MHz, CDCl₃, δ): 7.38-7.32 (m, 2H), 7.06 (br s, 1H), 6.82–6.76 (m, 1H), 4.00 (s, 3H, OCH₃), 2.43 (s, 3H, CH₃).

General synthetic procedures for 24–27: To a solution of methoxy-3-methylbenzo[*b*]thiophene (**35**, 1.244 g, 7.0 mmol) in CCl₄ (80 mL) was added *N*-bromosuccinimide (1.532 g, 8.6 mmol) and benzoyl peroxide (17 mg, 0.07 mmol). The reaction mixture was refluxed for 1.5 h. After filtration, the volatile solvent was removed *in vacuo*. The residue was dissolved in CHCl₃ (25 mL). Hexamethyltetramine (1.505 g, 10.8 mmol) was added, and the mixture was refluxed overnight. The volatile solvent was removed *in vacuo*, and 50% AcOH aq. (40 mL) was added to the residure. The mixture was refluxed for 3 h. After addition of water (20 mL) and CHCl₃ (4.0 mL), the mixture was refluxed for an additional 10 min, then allowed to stand for 3 h at rt. The mixture was diluted with water, and extracted with AcOEt. The organic phase was washed with brine, dried over Na₂SO₄, and concentrated *in vacuo*. The residue was chromatographed on silica gel with AcOEt–hexane as eluent to afford the target compound (**24**, 0.521 g) in 39% yield.

5-Methoxybenzo[*b*]thiophene-**3-carbaldehydes (24)**^{6,7}: ¹H NMR (300 MHz, CDCl₃, δ): 10.11 (s, 1H, -CHO), 8.31 (s, 1H, 2-H), 8.18 (d, 1H, *J* = 2.5 Hz, 4-H), 7.72 (d, 1H, *J* = 9.0 Hz, 7-H), 7.10 (dd, 1H, *J* = 9.0 and 2.2 Hz, 6-H), 3.92 (s, 3H, -OCH₃).

4-Methoxybenzo[*b*]thiophene-3-carbaldehydes $(25)^{3,7}$: 25% yield. ¹H NMR (300 MHz, CDCl₃, δ): 10.65 (s, 1H, -CHO), 8.36 (s, 1H, 2-H), 7.50 (d, 1H, J = 8.0 Hz, 5- or 7-H), 7.37 (t, 1H, J = 8.0 Hz, 6-H), 6.92 (d, 1H, J = 8.0 Hz, 5- or 7-H), 4.03 (s, 3H, -OCH₃).

6-Methoxybenzo[*b***]thiophene-3-carbaldehydes (26)**⁷: 21% yield. ¹H NMR (300 MHz, CDCl₃, δ): 10.08 (s, 1H, -CHO), 8.55 (d, 1H, *J* = 9.0 Hz, 4-*H*), 8.15 (s, 1H, 2-*H*), 7.33 (d, 1H, *J* = 2.3 Hz, 7-*H*), 7.13 (dd, 1H, *J* = 9.0 and 2.3 Hz, 5-*H*), 3.90 (s, 3H, -OC*H*₃).

7-Methoxybenzo[*b*]thiophene-3-carbaldehydes (27): 13% yield. ¹H NMR (300 MHz, CDCl₃, δ): 10.15 (s, 1H, -CHO), 8.31 (s, 1H, 2-H), 8.24 (dd, 1H, *J* = 8.0 and 0.8 Hz, 4-H), 7.47 (t, 1H, *J* = 8.0 Hz, 5-H), 6.89 (d, 1H, *J* = 8.0 Hz, 5-H), 4.02 (s, 3H, -OCH₃).

2. Table S1.

cLogP and PSA Parameters of TEDB-TBs

	Ring-B	cLogP	PSA*		
4	Benzo[b]thiophen-3'-yl	5.267	63.6		
6-9	Hydroxyl benzo[b]thiophen-3'-yl	4.759	83.83		
13	Benzo[b]thiophene-2'-yl	5.477 63.6			
14	Hydroxyl benzo[b]thiophene-2'-yl	4.749	83.83		
5	Naphthalen-1'-yl	5.396	63.6		
15	4'-Hydroxyl naphtalen-1'-yl	4.835	83.83		
16	2'-Hydroxyl naphtalen-1'-yl	4.535	83.83		
18	Naphthalen-2'-yl	5.396	63.6		
19	6'-Hydroxyl naphtalen-2'-yl	4.729	83.83		

Calculated by ChemBioDraw 13 software

PSA: polar surface area

3. Table S2.

Standard Deviations for Table 1

	Cell line/IC ₅₀ (µM)							Inhibitor	y effects			
	KB	KB- VIN	PC-3	A549	Hep- G2	HCT-8	MDA- MB-231	SK- BR-3	MCF -7	ZR- 75-1	ITA EC ₅₀ (µM)	ICB (%)
4	0.01	0.01	0.01	0.01	0.01	0.01	0.08	0.02	0.03	0.04	0.1	5
6	0.10	0.07	0.80	0.10	0.11	0.15	0.09	0.02	0.04	0.62	0.2	2
7	0.73	0.19	0.94	0.35	1.30	0.27	0.11	0.12	0.01	0.22	0.2	0.8
8	1.13	0.33	0.33	0.14	0.53	0.91	0.23	0.33	0.01	0.23	0.5	2
9	0.46	0.07	0.20	0.34	0.64	1.42	NT	NT	NT	NT	0.6	5
10	NA	0.52	NA	NA	NT^{f}	NT	NT	NT	NT	NT	NT	NT
11	NA	NA	NA	NA	NT	NT	NT	NA	NT	NT	NT	NT
12	0.11	1.61	1.93	0.99	NT	NT	0.44	0.72	0.12	0.09	NT	NT
13	0.51	0.76	0.25	1.02	0.51	1.27	NT	NT	NT	NT	NT	NT
14	1.24	0.44	2.17	0.53	NT	NT	NT	2.10	NT	NT	NT	NT
5	-	_	-	-	-	-	NT	NT	-	NT	0.08	10
15	0.08	0.13	3.7	0.06	0.26	0.15	NT	0.10	NT	NT	0.3	5
16	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	0.4	3
17	0.10	0.07	0.07	0.05	0.05	0.22	NT	0.96	0.14	NT	0.3	3
18	0.05	0.08	0.10	0.10	0.03	0.05	NT	NT	0.05	NT	NO	0.4
19	1.26	0.78	1.89	0.99	1.58	1.55	NT	0.81	NT	NT	NT	NT
20	NA	NA	NA	NA	NA	NA	NT	NA	NT	NT	NT	NT
	Combretastatin A-4 (CA): Tubulin inhibitor								1.1	0.06		

4. Figure S1.

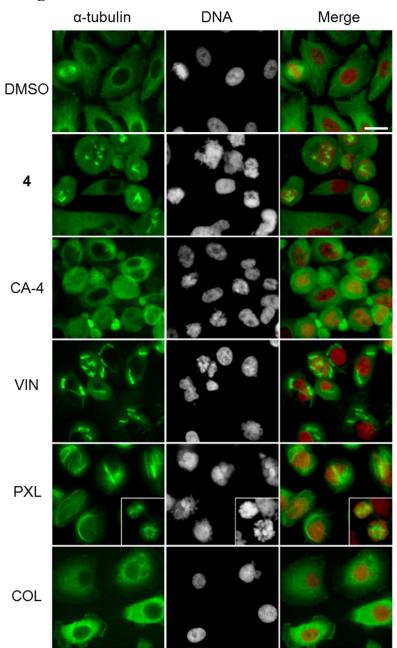
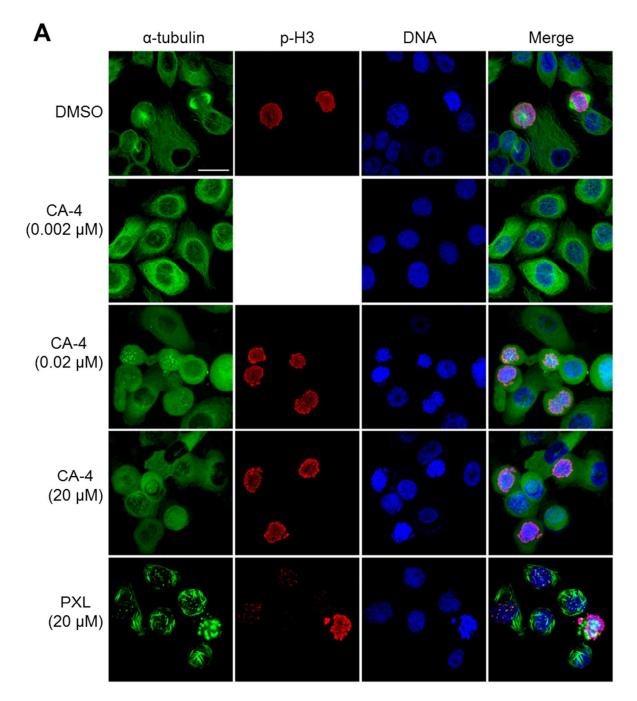
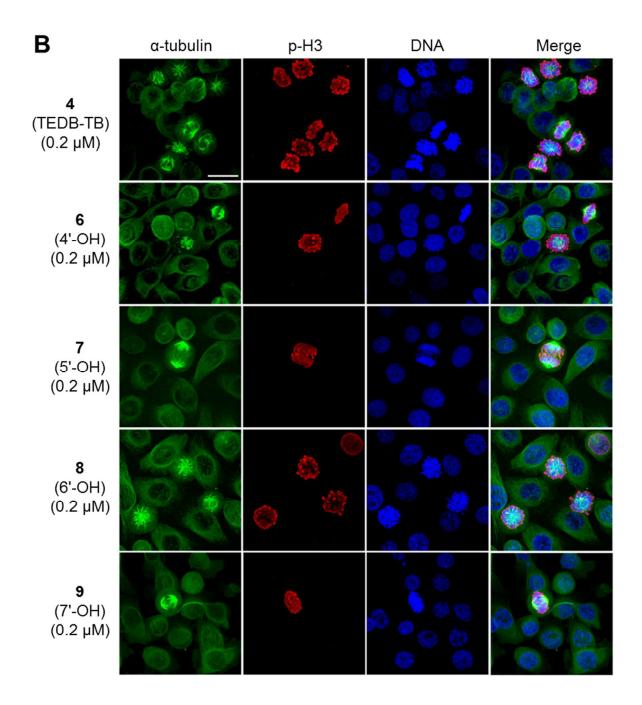
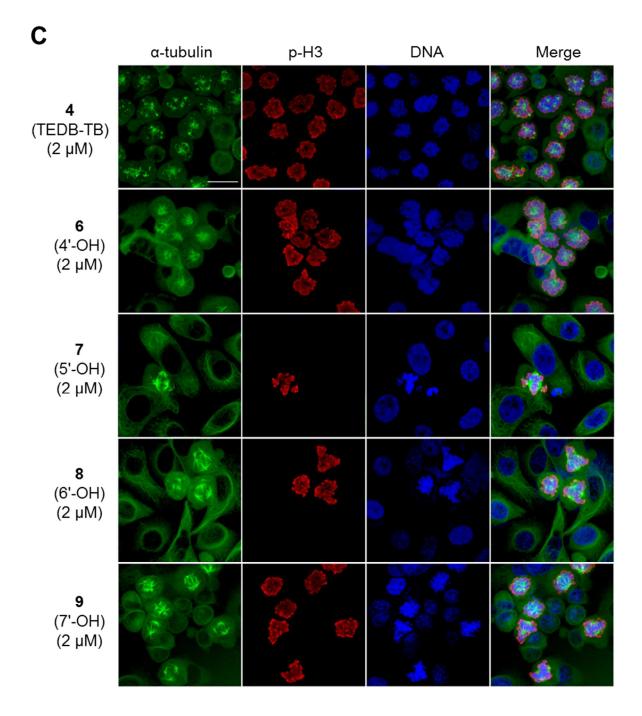





Figure S1. Effects of compounds on microtubule morphology in PC-3 cells. PC-3 cells were cultured and treated for 24 h with DMSO (control), 0.2 μ M compound 4 (TEDB-TB), 0.2 μ M CA-4 as a colchicine-like tubulin polymerization inhibitor, 5 μ M VIN, 0.2 μ M PXL as a microtubule hyper-stabilization agent, or 1 μ M colchicine (COL). Cells were stained with monoclonal antibody to α -tubulin (green) and DAPI for DNA (white). Images were captured with an Olympus BX61 fluorescence microscope with CCD camera. Merged images were prepared using Adobe Photoshop. DNA was pseudo-colored in red the merged images. Bar, 25 μ m.

5. Figure S2.

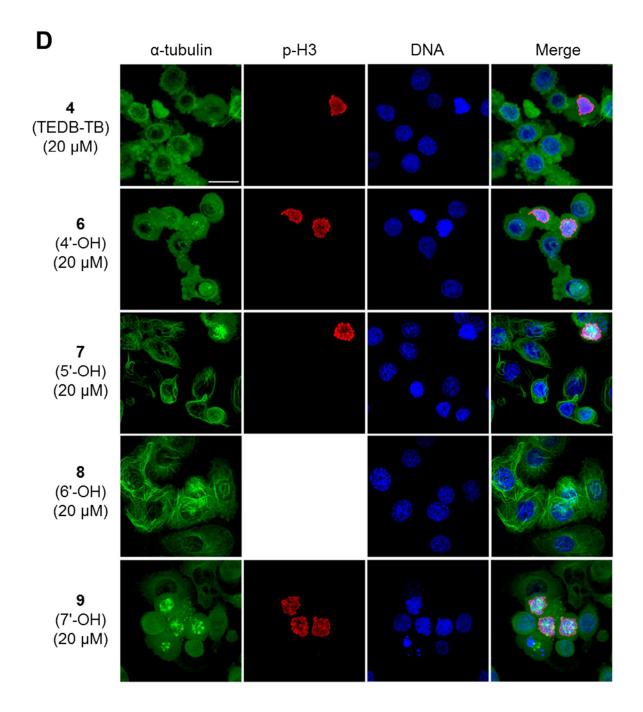
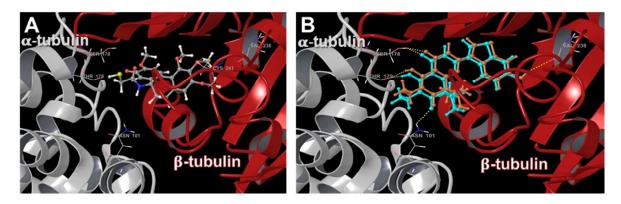



Figure S2. Dose-dependent effects of compounds on microtubule morphology in PC-3 cells. PC-3 cells were cultured and treated for 24 h with one of several concentrations of CA-4, PXL (A), or compounds 4, 6, 7, 8 or 9 at 0.2 (B), 2 (C) or 20 μ M (D). Cells were triple labeled with mouse monoclonal antibody to α -tubulin (green), rabbit polyclonal antibody to Ser10-phosphorylated histone H3 (p-H3) (red) as mitotic marker, and DAPI for DNA (blue). 10 to 20 confocal microscopic stacked images were reconstructed by ZEN software.

(A) Defects of microtubules following treatment with depolymerization agent CA-4 or microtubule stabilizing agent PXL. At the CA-4 concentration that inhibited microtubule polymerization, cells that were positive for accumulated p-H3 (Ser10) had no spindle formation, suggesting cell cycle arrest at prometaphase occurred in tandem with interphase microtubule depolymerization. Following treatment with 0.002 μ M CA-4, no of p-H3 positive cells were observed in the field, indicated by the absence of an image. Bar, 25 μ m.

(B-D) Dose dependent effects of 4 and its analogues on microtubule morphology in PC-3 cells. PC-3 cells were cultured and treated for 24 h with compound at 0.2 (B), 2 (C) or 20 μ M (D), followed by triple-labeling of α -tubulin (green), p-H3 (red) and DNA (Blue). Confocal images were processed by ZEN software. No p-H3 (Ser10) positive cells were observed in the field with cells treated with 0.002 μ M CA-4 (indicated by an absent image in A) or 20 μ M compound 8 (indicated by an absent image in D). Bar, 25 μ m.

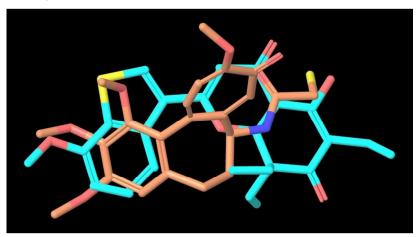

6. Figure S3.

Figure S3. Predicted docking modes for compounds binding to tubulin.

(A) Detailed view of docking model of DAMA-colchicine in the tubulin crystal structure (PDB ID: 1SA0). Colchicine shows a H-bond-like interaction with the side chain of β Cys241. (B) H-bonds calculated to be less than 3 Å between the protein and compounds 4 (blue) and 8 (brown) are represented by dashed lines.

7. Figure S4.

Figure S3. 3D models of **12** (blue skeleton) and DAMA-colchicine (brown skeleton) with oxygen in red, nitrogen in blue and sulfur in yellow.

8. References for Supporting Information

- 1. Plé, P.A.; Marnett, L.J, Synthesis of substituted benzo[*b*]thiophene by acid-catalyzed cyclization of thiophenylacetals and ketones. *J. Heterocyclic Chem.* **1988**, *25*, 1271-1272.
- Matsunaga, N.; Kaku, T.; Itoh, F.; Tanaka, T.; Hara, T.; Miki, H.; Iwasaki, M.; Aono, T.; Yamaoka, M.; Kusaka, M.; Tasaka, A. C_{17,20}-Lyase inhibitors I. Structure-based de novo design and SAR study of C_{17,20}-lyase inhibitors. *Bioorg. Med. Chem.* 2004, *12*, 2251-2273.
- 3. Campaigne, E.; Rpgers, R.B. Benzo[*b*]thiophene derivatives. XIX. Sulfur isosteres of psilocine and related isomers. *J. Heterocyclic Chem.* **1973**, *10*, 297-305.
- Campaigne, E.; Dinner, A.; Neiss, E.S. Benzo[b]thiophene derivatives. XV. Preparation and electrophilic substitution of 6-methoxy-3-methylbenzo[b]thiophene. *J. Heterocyclic Chem.* 1970, 70, 695-670.
- 5. Buchwald, S.L.; Fang, Q. An efficient one-pot method for the preparation of polysubstituted benzothiophenes. *J. Org. Chem.* **1989**, *54*, 2793-2797.
- Buchheit, K.-H.; Gamse, R.; Giger, R.; Hoyer, D.; Klein, F.; Kloeppner, E.; Pfannkuche, H.; Mattes, H. The serotonin 5-HT4 receptor. 2. Structure-activity studies of the indole carbazimidamide class of agonists. *J. Med. Chem.* 1995, *38*, 2331-2338.
- Lena, G.; Trapani, J.A.; Sutton, V.R.; Ciccone, A.; Browne, K.A.; Smyth, M.J.; Denny, W.A.; Spicer, J.A. Dihydrofuro[3,4-*c*]pyridinones as inhibitors of the cytolytic effects of the pore-forming glycoprotein perform. *J. Med. Chem.* 2008, *51*, 7614-7624.