HIF-inducible miR-191 promotes migration in breast cancer through complex regulation of TGFβ-signaling in hypoxic microenvironment.

Neha Nagpal¹, Hafiz M Ahmad², Shibu Chameettachal³, Durai Sundar¹, Sourabh Ghosh³, Ritu Kulshreshtha¹*

Supplementary data 1.- List of primers used

Supplementary data 2.- Functional assay for confirmation of hypoxic microenvironment or HIF activity

a. All the experiments have been performed by exposing the cells to 0.2% hypoxia (0.2% pO₂) in the hypoxic chamber for 24 hrs. The hypoxic microenvironment was confirmed by exposing the cells transfected with EPO-HRE to hypoxic microenvironment. Significantly high luciferase activity was observed in the cells exposed to hypoxic microenvironment. **b**. Activity of the HIF-1/2- α overexpression constructs or HIF-1/2- α specific shRNAs was confirmed through dual luciferase assay by cotransfecting EPO-HRE reporter plasmid in MCF7 cells. Graph represents relative luciferase activity. **c**. MCF7 cells were transfected with HIF-1 α overexpressing plasmid/vector control (PC) and shHIF-1 α /shCtrl to overexpress/ inhibit the expression of HIF-1 α and western blotting was done to measure the HIF-1 α levels. The graphical data points in a & b represent mean <u>+</u> S.D of at least three independent experiments. (*P<0.05, **P<0.01). Error bars denote <u>+</u> SD.

Supplementary data 3.- Confirmation of overexpression/ inhibition of specific molecules achieved by transient transfection

a,b. Level of miR-191 was transiently up/ downregulated by transfecting with pre-191 (Ambion) & anti-191 oligos (Exiqon) and exposed to hypoxic microenvironment for 24 hrs. The corresponding effect on the expression of miR-191 was then checked by qRT-PCR compared to that of their respective controls in MCF-7 cells. **c-e.** MCF-7 cells were transfected with pcdnA3.1-HuR or with esiRNA for HuR inhibition and exposed to hypoxic microenvironment for 24 hrs. The graph shows relative expression levels as determined by qRT-PCR (**c,d**) and western blotting (**e**) of HuR compared to that of respective control transfected cells. **f-h.** MCF-7 cells were transfected with TGFβ2 esiRNA or treated with recombinant TGFβ2 and the efficiency of esiRNA mediated inhibition or overexpression was confirmed through measuring TGFβ2 levels through qRT-PCR (**f,g**) or luciferase activity of pTPlux reporter construct (**h**). **i.** qRT-PCR data showing effect of ctrl or SMAD3 siRNA on SMAD3 levels in MCF7 cells. The graphical data points represent mean <u>+</u> S.D of at least three independent experiments. (**P<0.01). Error bars denote <u>+</u> SD.

Supplementary data 4.- Effect of miR-191 on TGF^β2 & HuR levels in the presence/absence of hypoxic microenvironment

a,b. Effect of miR-191 on TGF β 2 and HuR at protein levels in hypoxic microenvironment. The MCF7 cells with differential level of miR-191 were exposed to hypoxic microenvironment and analyzed for expression of TGF β 2 (**a**) and HuR (**b**) protein by western blotting and the relative protein levels were then quantified using imagej software for band densitometery. **c.** Level of miR-191 was differentially modulated and cells (MCF7) were exposed to hypoxic microenvironment, Immunofluorescence was done by using an antibody specific for TGF β 2 to compare the difference in fluorescence intensity observed. **d.** Cells were transfected with esictrl or esiHuR oligos in normoxia and qRT-PCR was performed. The results show that under normoxic conditions HuR is unable to downregulate TGF β 2 levels in breast cancer cell lines. **e-g** qRT-PCR was done to find out the effect of miR-191 on TGF β 2 & HuR levels in both normoxic and hypoxic microenvironment in a panel of breast cancer cell lines MCF7 (**e**), T47D (**f**) & MM231 (**g**). We found that the effect was minimal in the absence of hypoxic microenvironment. The graphical data points in a-g represent mean <u>+</u> S.D of at least three independent experiments. (*P<0.05, **P<0.01, *^P>0.05<0.1). Error bars denote <u>+</u> SD.

Supplementary data 5.- HuR is a direct target of miR-191.

a. Diagram showing sequence and position of miR-191 binding sites (wild type: HuR B1 & B2, mutant type HuR Mut B1) in HuR 3'UTR. **b,c.** 3'UTR luciferase activity of lucifease constructs (individually cloned: HuR B1, HuR B2, Both together: HuR B1&2) in response to differential miR-191 levels. It was found that miR-191 overexpression led to decrease in luciferase activity with HuR B1 and HuR B1&2 constructs (**b**) while lesser effect was observed with HuR B2 (**b**) or mutated HuR B1 sites (**c**). Therefore, miR-191 mediated downregulation of HuR is mediated mainly through binding to the HuR B1 site present in the HuR 3'UTR. The graphical data points in b & c represent mean \pm S.D of at least three independent experiments. (*P<0.05, **P<0.01, *^P>0.05<0.1). Error bars denote \pm SD.

Supplementary data 6.- Diagram showing putative miR-191 and HuR binding sites in TGFβ2 3'UTR

Diagram showing in-silico analysis data of the 3'UTR region of TGF β 2 for the putative HuR consensus sequences and miR-191 binding sites using RNAhybrid, ARE score and catRAPID softwares. The 3'UTR region containing the miR-191 and HuR binding sites of TGF β 2-3'UTR was cloned and checked for luciferase activity. Primer details are given in **Supplementary data 1**.

Supplementary data 7.- Validation of hypoxic microenvironment and transfection efficiency in the tumor spheroids

a. To recapitulate the endogenous hypoxic microenvironment 3D tumor spheroids were manifested and the level of *VEGFA* was sought as a marker of hypoxic microenvironment. **b.** The 3D tumor spheroids of MCF7 were transfected with anti-miR91/NCtrl and the effectiveness of transfection was confirmed by qRT-PCR. The graph shows miR-191 levels in antimiR-191/NCtrl treated MCF7 spheroids on day 1 and 7. The readings were normalized using U6. The graphical data points in a and b represent mean \pm S.D of at least three independent experiments. (*P<0.05, **P<0.01). Error bars denote \pm SD.

Supplementary Data 1- List of Primers

Primer Detail		Primer Sequence		Annealing Temperature
miR-191 RT primer		GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACCA GCTG		42°C
RNU6B RT primer		GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACAA AATATGGAAC		42°C
miR-191 forward primer		CGCGCAACGGAATCCCA		60°C
RNU6B forward primer		GCCCCTGCGCAAGGATGAC		60°C
Stem-loop unive	reverse rsal	GTGCAGGGTCCGAGGT		60 [°] C
	P	rimers designed to detect transcrip	pt levels of various shortlisted target genes	
Primer Detail	Forwar	d Primer	Reverse Primer	Annealing Temperature
PTGS2	TCAGT	AGGTGCATTGGAATCAAGC	TAGCAGTCCTGAGCTGAGGTTTACC	60°C
BMP4	AGCAT	GTCAGGATTAGCCGATCG	AGTCATTCCAGCCCACATCGC	60°C
SMAD3	GAGAT	GATGGGCTAAACAGGCAAC	CACTGTCCTTGGGAGGAGAGACC	60°C
TGFβ2	AGTCA	TACCACCTTTCCGATTGCC	AAAGCATGGTGCAAACATCTCTCTG	60 ⁰ C
TGFβ1	TCCTG	GCGATACCTCAGCAAC	TGAACCCGTTGATGTCCACTTG	60 ⁰ C
JUN	GTGTG	CACGAGTGGGAAGG	GATCGAATGTTAGGTCCATGGAG	58°C
FOS	AATGA	CCCTGAGCCCAAGCC	AGCTCTGTGGCCATGGCC	58°C
CTGF	AGCGT	GCTCACTGACCTGCC	TCACTTGCCACAAGCTGTCCAG	60°C
VEGFA	GCTAC	TGCCATCCAATCGAGAC	CTATGTGCTGGCCTTGGTGAG	58°C
HuR	ACCAA	TGTGAAAGTGATCC	TATGAATTCTTATTTGTGGGACTTGT TG	55°C

Primers designed to amplify HIF binding sites in miR-191 promoter for CHIP assay						
Ctrl	AGGCGCGCTTCGATGACG	AGGCAGGCGAGGGCATGG	60°C			
H1	GCTCCCTGTGCCATGTTGTCC	TCACCATGTTGGCCAGGCTG	60 ⁰ C			
H2	AGCCTGGCCAACATGGTGAAAC	TGCCTCCTTCAGTGTGATGCC	60 ⁰ C			
Н3	ACTAACTGCACGGTGACTCCTGC	ATCAGGACTGCAGCTTGGCTG	60 ⁰ C			
H4	CATCTGACTCTGGCTCCCAAGG	AGGGTTCACCATGTTGGCCAG	60°C			
Н5	ACGACAAATCCACGCAGCCTC	TGATAAACGGAAACCGCGTGC	60°C			
H6	TGTTCTGTGGCCCAGGTGAGC	AGCTGCTTTTGGGATTCCGTTG	60 ⁰ C			
Primers designed to clone the 3'UTR luciferase reporter constructs						
TGFβ2	ATTGAGCTCTGCTTTGGCTTT CTGGTTCTATG	ATTAAGCTTGAGGAGTCTGGTCTT GTAGGTAGC	57°C			
Mut-TGF	32 CAGATATAACAAGAGCCACG TGCTTTCTCCCCTTGGTTGTT TGGGATCAGCTACTTGC	GCAAGTAGCTGATCCCAAACAAC CAAGGGGAGAAAGCACGTGGCTC TTGTTATATCTG	57°C			
HuR B1	ATAACTAGTGGCAATTGGCG TGTAATGATG	ATTAAGCTTCACATGGTCATGGTC AAAGAGG	57°C			
HuR B2	ATAACTAGTCACCTCTTTGAC CATGACCATGTG	ATTAAGCTTTGGGAATCGGTTAAG AGAGCCTC	57°C			
HuR B1 &	2 ATAACTAGTGGCAATTGGCG TGTAATGATG	ATTAAGCTTTGGGAATCGGTTAAG AGAGCCTC	60°C			
Mut-HuR	B1 TCCACCAGAAGAGAAGCCTT TTGGCTTGGTTTGGGGCCACC TCTTTGAC	GTCAAAGAGGTGGCCCCAAACCA AGCCAAAAGGCTTCTCTTCT	66ºC			
H2-HRE	ATAACGCGTAGCCTGGCCAA CATGGTGAAAC	ATACTCGAGAGAGTGCTTGGTTCC AAGGTATGTG	60°C			
H3-HRE	ATACTCGAGGCATGAGGTAT GGCAGAGG	ATAACGCGTACCACTGCCCTTATC TTGCCTG	60°C			

Supplementary Data 4

β-actin

а

Relative band density (arbitrary unit)

2.5

2

1.5

1

0.5

0

HuR 3'UTR	D1
5'CAGAAGAGAGAGCCUUUUCCGUUG 3' GUCGACGAAAACCCUAAGGCAAC	(4027-4033) miR-191
5'CAUGACCAUGUGAUGUUCCGUUU 3' GUCGACGAAAACCCUAAGGCAAC	B2 (4071-4077) miR-191
5'CAGAAGAGAAGCCUUUU <mark>GGC</mark> UUG 3' GUCGACGAAAACCCUAAGGCAAC	Mut-B1 (4027-4033) miR-191

