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Kymograph Generation

As raw data, we are given movies of fluorescently stained DNA molecules confined in nanochannels. To

generate kymographs from these movies, we perform the following procedure. First, we create a single

representative frame via a simple time average of the entire movie. This frame is then rotated so that

the channels are horizontal, and individual molecules are detected via image segmentation. For a given

molecule, a 1D intensity trace is calculated for each movie frame by averaging over a 3-pixel vertical

window, and these 1D traces are then stacked to form a kymograph.

The Reisner Method

Here we explain our implementation of the Reisner alignment method, as described in [1]. As usual, we

begin with a raw, unaligned kymograph produced as detailed above. To begin the alignment, a template

row, T , is chosen (typically picked near the middle of the kymograph), and then each non-template row,

Ai, is individually and independently aligned to the template row in the following way.

First, all the Ai are translated linearly so that their centers of mass are aligned to T ’s. Then the next

step is to “smooth out” the local longitudinal fluctuations. This is done by dividing the Ai into a series

of uniform length pieces and applying a set of dilation/contraction factors to them.

In practice, a piecewise linear map Si is created, and the slopes of the individual linear components

are defined by dilation factors dk. Thus Si itself is a function of the dk, for example Si(dk). Now this
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map Si operates on the row Ai we wish to align, and a new profile, A
′

i(xj , dk) is created (where xj is

the jth pixel in the profile). The parameters dk are chosen to minimize the least squared difference ∆

between the row Ai and the template row T :

∆ =

N∑
j=1

[
A

′

i(xj , dk)− T (xj)
]2

Minimizing ∆ with respect to the dk can be performed by any standard global optimization procedure;

however it must be noted that the process is very susceptible to local minima. Thus in our implementation

we employ simulated annealing; in this process we limit the number of ∆ evaluations to a number which

increases linearly with the number of dilation factors dk.

Once the dilation factors have been chosen for all rows, they are normalized so that the average dilation

dk across all rows is one (i.e., 〈dk(i)〉 = 1). This is done to better approximate the true equilibrium

conformation of the DNA and help minimize the effect of template frame choice. Now the dk(i) are

applied to all rows Ai to obtain the final aligned kymograph.

Laplacian of Gaussian Filter

The Laplacian of Gaussian filter is a standard image processing technique which is useful for “blob”

detection. It uses the sum of second derivatives in the image to emphasize blobs of size roughly given by

the variance of the Gaussian kernel. In this way, we emphasize not so much edges as ridges and valleys

in the data which will be easier to detect in our feature detection step.

To perform the Laplacian of Gaussian, first we convolve I with a Gaussian kernel

g(x, y, t) =
1

2πt
exp

{
−x

2 + y2

2t

}
(1)

to give a scale space representation L(x, y; t) = g(x, y, t) ? I(x, y). Then the Laplacian operator ∇2L =

Lxx + Lyy is computed, resulting in strong positive responses for dark regions of extent
√

2t and strong

negative responses for bright regions of similar extent [2]. For our data, we have found t = 10 pixels to

be adequate.

The size of the applied filter is set to be 10 pixels in the horizontal direction and only 3 pixels in the

vertical direction, rendering the process close to one dimensional but with a small vertical component.
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This is done because features are expected to fluctuate horizontally between vertical time frames.

Calculating KD and KB

Given a Laplacian response K(x, y), linearly scaled such that each value falls in the range [−1, 1], we

calculate KD and KB using

KD(x, y) =


1−K(x, y) for K(x, y) > 0

B for K(x, y) ≤ 0

(2)

KB(x, y) =


1 +K(x, y) for K(x, y) < 0

B for K(x, y) ≥ 0

, (3)

where B � 1 is a large constant which creates “barrier” pixels through which paths will not traverse. In

this way, we prevent the feature detection algorithm from “jumping” between adjacent features. Then in

KD, small values represent dark regions, and in KB small values represent bright regions.

Information Score

Here we introduce an information score associated with a DNA barcode, given as a 2D intensity profile,

I. This score was chosen to quantify the amount, and sharpness, of “robust” peaks and valleys in the

barcode.

We define these “robust” extrema as those which differ from neighboring pixels by an amount greater

than a threshold value, Ith, typically chosen to be equal to the background noise level. In order to quantify

this background noise, we assume that I has already been aligned. By the nature of the alignment, each

column in I represents a single intensity value obscured by the addition of noise due to the photophysics

of the dyes, noise in the imaging system and thermal fluctuations of the confined DNA molecules. Thus

we create a new image whose pixel in the yth row, xth column, is given by

I ′(x, y) = I(x, y)− 〈I(x, y)〉y, (4)

where I(x, y) is simply the intensity of this pixel in the aligned kymograph, and 〈I(x, y)〉y is the mean
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intensity of the xth column of the kymograph. Then, assuming perfect alignment, I ′ is an image with

intensities attributable only to our kymograph’s background noise, so our background variance σ2 is given

by the intensity variance of I ′, or

σ2 = 〈(I ′ − 〈I ′〉)2〉. (5)

Now we calculate the time average of I, denoted 〈I(x, y)〉y, given by

〈I(x, y)〉y =
1

m

m∑
y=1

I(x, y) (6)

and we locate the “robust” peaks and valleys by treating 〈I(x, y)〉y as an energy landscape and employing

the method of Azbel, developed for a simplified description of the random melting of a one dimensional

two-component Ising model [3, 4] (see below). Thus we obtain only local extrema which are “robust,”

i.e., regions which to the left and right are surround by an “energy barrier” larger than the threshold Ith

(typically chosen equal to the average background noise, i.e., σ).

Let us now, for completeness, briefly review the method by Azbel [3, 4] for finding robust local

maxima and minima. The method scales linearly with the barcode length and uses the fact that robust

local maxima and minima are alternating, i.e. a local maximum must be followed by a local minimum

and vice versa. Since the barcode’s initial pixels in general represent background noise, in our version

of the Azbel approach we utilize that the first local extremum must be a minimum. The algorithm now

proceeds as follows: we step through the pixels, x, consecutively. For each pixel we calculate the intensity

difference C(xs, x) = 〈I〉x−〈I〉xs
where xs is a start pixel as defined below. At the start of the algorithm

we set xs = 1 and calculate C(xs, x) for increasing x as long as the criteria C(xs, x) < Ith is fulfilled

(implemented through a while-loop). Once this criterion is violated we know that the pixel xs must be

a robust local minimum (surrounded to the right by a barrier larger than Ith), so this pixel number is

stored and the while-loop terminated. If, within the while-loop above, the intensity difference decreases,

i.e. we find that C(xs, x) < 0, we must have a new local minima and we shift xs to the present pixel

position, xs → x, with a corresponding reset of C(xs, x). Once a robust local minima has been identified

according the the scheme above, we proceed in an identical fashion to identify a subsequent robust local

maximum, starting at pixel x. To this purpose we invoke the condition C(xs, x) > −Ith (and C(xs, x) > 0

as a requirement for shifting xs) within a new while-loop. The procedure above is repeated until all n

pixels representing 〈I(x, y)〉x has been exhausted. In Fig. S1 we display the local extrema found using
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Figure S1. Illustration of “robust” extrema detected by Azbel’s method. The aligned
time-average of kymograph 6 (from Fig. 7 in the main text) was used, with σ = 50 intensity units for
illustrative purposes.

the approach above.

Finally our information score is that of self information [5], and we define the information content IS

of a DNA barcode by

IS =
∑
k

− log

[
1√

2π log(σ2 + χ)
exp

{
− log(|∆Ik|)2

2 log(σ2 + χ)

}]
, (7)

where the ∆Iks are the intensity differences between neighboring peaks and valleys identified above, and

k denotes the numbering of ∆Is found. Also, χ = 1 is a regularization parameter which ensures that IS

is real-valued for all noise levels.

To justify the use of the logarithm of ∆I(k) rather than I(k) itself in Eq. (7) we note that in a

simplistic approach to DNA melting we have that the probability for a DNA basepair to be open is

related to the Boltzmann weight P (i) ∝ exp(−β∆E(i)), where ∆E(i) is the energy difference between a

basepair being open and closed. Therefore, by using log[I(k)] our information score utilizes free energy

differences.

Experimental Procedure

To generate the optical DNA mappings shown in the main text, we employed the following experimental

protocol. T4GT7 DNA (supplied by Nippon Gene, Japan through Wako Chemicals GmbH, Neuss, Ger-

many) was mixed at a ratio of 1 dye molecule per 6 base pairs with YOYO1 R© Iodide (LifeTechnologies R©,
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USA) and kept at 50◦C for 2 hours to ensure homogeneity of staining. Melting experiments were per-

formed in a buffer consisting of 10mM NaCl in 0.05 x TBE (1 x TBE is 89mM Tris, 89mM Boric acid

and 2mM EDTA). Beta-mercaptoethanol was added to a final concentration of 2% and formamide to a

final concentration of 50%.

Using compressed nitrogen the buffer carrying the DNA molecules was forced into nanochannels with

cross section 100 nm by 150 nm etched in fused silica. Once in the nanochannels the molecules were

imaged in a Nikon TE2000 microscope (Nikon, Tokyo, Japan) using a high-pressure mercury lamp for

excitation, a FITC filter cube to pick out the fluorescence from the stained DNA and an Andor Ixon DU

897 EMCCD (Andor Technology, Belfast, Ireland) camera for image acquisition.

In order to form the melt maps the nanochannel device was brought into contact with an aluminium

block, heated to 31.5◦C at which temperature the molecules are partially denatured. We utilized the

time dependence of the barcode formation process to create kymographs of different quality and different

information contents. Molecules were imaged over several distinct 5-minute periods resulting in the 10

kymographs in Fig. 7 in the main text, representing a collection of 4 molecules. Kymographs generated

from the same molecules were: (1, 2, 5), (3, 8), (7, 4, 10), (6, 9).
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