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Smoothness of the Spline Functions 
 As described in the main text, let ageij denote the age of the ith individual at the 

time of his/her jth scan. The thickness measured at the vth vertex is modeled as a 

smooth function gv of age plus a random person effect uiv plus error: 

 

 thicknessijv =  gv(ageij) + uiv + errorijv             (1)  

 

Rather than specifying the form of gv (linear, quadratic, etc.), we allow it to be an 

essentially arbitrary smooth function, by taking it to be a linear combination of 10 

piecewise cubic B-spline functions (Main Figure 2) (1). Estimating this linear 

combination by conventional least squares would lead to an overly bumpy estimate of 

gv. Penalized spline smoothing avoids this by instead minimizing the sum of squared 

errors plus a ‘roughness’ penalty, taken here to be 𝜆∫ 𝒈𝒗′′ (𝒕)𝟐𝒅𝒕. The integral serves as 

an index of the roughness or bumpiness of the function, and the non-negative 

smoothing parameter λ determines the tradeoff between the goodness of fit and the 

estimated function’s smoothness. If λ is small, then there is only a small penalty for 

roughness, and gv will tend to be less smooth; as λ approaches infinity, gv approaches a 

straight line as would result from ordinary linear regression. Finding an optimal value of 

λ is crucial. Often, this is done by cross-validation and related procedures (2). Here, we 

follow the approach of choosing the smoothing parameter by restricted maximum 

likelihood (3-5), a well-known method for fitting linear mixed-effect models (6). One 

advantage of this approach is that it allows a unified treatment when, as in our case, the 

model incorporates random effects for longitudinal scans of the same individual. 
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Comparison between Polynomial and Spline Models 
 Polynomial models have been used by most existing work to analyze the 

maturational trajectories of regions of the brain. The use of polynomial models can 

assess whether the relationship between age and thickness is best captured by linear, 

quadratic or cubic models (7; 8). When there is evidence for an ‘inverted U’-type curve, 

regions can also be differentiated based on the peak of these curves (7; 9).   

 However, polynomial models impose severe limits on hypothesis testing about 

differences in maturational trajectories between brain regions or between study 

populations. First, it is not clear how to quantify differences in the shapes of growth 

curves, especially if they have been modeled by polynomial functions of different order 

(e.g. quadratic vs. cubic). Second, these growth curves are highly dependent on the 

precise age-range sampled, which can lead to false inferences about key features such 

as the location of the peak of a maturational trajectory (10; 11). Finally, accurate 

modeling of neurodevelopment is severely limited by the assumption that regional brain 

growth must correspond to linear, quadratic or cubic functions, rather than allowing the 

shape of the model to be determined by the complexity of the biology. 

 The use of semiparametric penalized spline models addresses these limitations 

(12), allowing us to characterize differences in the trajectories of growth curves between 

brain regions and between clinical groups at tens of thousands of points across the 

cortical mantle. It has been shown that features of such models are more robust to 

alterations in the sampled age range, because the fit of the curve at a given age 

depends on local information only (scans within a limited age range), as opposed to 

polynomial models where scans at the edges of the age range can affect the entire 

curve (10; 12; 13). In addition, it is straightforward to distinguish age-constant trait 

differences and age-varying trajectory differences between groups.  
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Table S1. Demographic information on study sample. 

 Participants 
with COS 

Healthy 
Participants 

Statistic (df) P-value 

Scans 261 264   

Subjects 106 102   

Age of Scan, Mean 
(SD) 

17.4 (4.5) 
Range = 7-32 

17.2 (5.0) 
Range = 8-33 

t = 0.56 (519.3) 0.57 

Sex 35 F; 71 M 41 F; 61 M X2 = 0.8 (1) 0.4 

Race 8 A; 25 B; 9 H; 
6 O; 58 W 

5 A; 22 B; 7 H; 
7 O; 61 W 

X2 = 1.2 (4) 0.88 

IQ, Mean (SD) 76.6 (13.7) 112.2 (12.3) t = 26.2 (406.2) <0.001 

Socio-economic 
Status, Mean (SD) 

40.2 (32.2) 62.6 (20.6) t = 5.9 (176.5) <0.001 

Handedness 21 L; 85 R 6 L; 96 R X2 = 7.7(1) 0.005 
COS, childhood-onset schizophrenia; df, degrees of freedom; F, female; M, male; R, right-
handed; L, non-right-handed. Race: A, Asian; B, Black/African-American; H, Hispanic; O, 
other/mixed-race; W, white.  
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Table S2. Brain anatomical areas with any group difference between typical 
development and childhood-onset schizophrenia. In other words, the null 
hypothesis H0, that βv (age) in equation (2) is identically zero, is rejected. Regions listed 
have group differences encompassing at least 20% of their surface area, using an FDR 
threshold of 0.001. 

AAL Region 
MNI Coordinate of Peak Vertex Percent of  AAL Region 

with Group Differences x y z 
IFGtriang.R 51.6 24.6 7.6 86% 
IFGtriang.L -37.8 23.2 8 77% 
PreCG.L -27.6 -11.9 56.3 75% 
SMA.L -7.5 16.5 67.3 67% 
IFGoperc.R 50.4 22.2 11.7 64% 
SFGmed.R 4 27.8 53.4 62% 
STG.L -62.7 -25.1 10.6 50% 
IPL.L -55.7 -30.9 47.1 48% 
SMA.R 3.8 21.9 59.8 40% 
SFGdor.L -22.4 11.1 52.6 40% 
IFGoperc.L -40.6 20.4 8.5 40% 
MFG.L -26.6 15.1 47.9 39% 
PreCG.R 43.3 6.2 23.3 38% 
PoCG.L -37.3 -18.3 42.5 38% 
SFGmed.L -4 41.8 44.7 36% 
SMG.L -60.4 -43.3 40.3 36% 
HES.R 53 -20.5 5.4 32% 
HES.L -60.2 -16.2 4.9 31% 
ITG.L -56 -48.2 -5.9 30% 
SFGdor.R 16.9 31.4 56.8 30% 
MFG.R 37.2 12.1 28.8 25% 
MTG.L -65.1 -46.9 -2 24% 
PCL.L -11.2 -9.4 71.9 23% 

AAL, Automated Anatomical Labeling; FDR, false discovery rate; MNI, Montreal Neurological 
Institute. Regions: IFGtriang.R; right inferior frontal gyrus, triangular part; IFGtriang.l, left inferior 
frontal gyrus, triangular part; PreCG.L, left precentral gyrus; SMA.L, left supplementary motor 
area; IFGoperc.R, right inferior frontal gyrus, opercular part; SFGmed.R, right medial superior 
frontal gyrus; STG.L, left superior temporal gyrus; IPL.L, left inferior parietal lobule; SMA.R, right 
supplementary motor area; SFGdor.L, left dorsolateral superior frontal gyrus; IFGoperc.L, left 
inferior frontal gyrus, opercular part; MFG.L, left middle frontal gyrus; PreCG.R, right precentral 
gyrus; PoCG.L, left postcentral gyrus; SFGmed.L, left medial superior frontal gyrus; SMG.L, left 
supramarginal gyrus; HES.R, right Heschl’s gyrus; HES.L, left Heschl’s gyrus; ITG.L, left inferior 
temporal gyrus; SFGdor.R, right dorsolateral superior frontal gyrus; MFG.R, right middle frontal 
gyrus; MTG.L, left middle temporal gyrus; PCL.L, left paracentral lobule. 
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Table S3. Brain anatomical areas with trait differences between typical 
development and childhood-onset schizophrenia. In other words, the null 
hypothesis H0a that 𝛽𝑣

(1) = 0  in equation (3) is rejected. Regions listed have group 
differences encompassing at least 20% of their surface area, using an FDR threshold of 
0.001. Regions listed have group differences over at least 20% of their surface area, 
using an FDR threshold of 0.001. 

AAL Region 
MNI Coordinates of Peak Vertex Percent of 

Region x y z 
IFGtriang.L -39.2 23.4 7 97% 
PreCG.L -27.9 -12.4 58.3 83% 
IFGoperc.L -41.7 20.2 8.4 80% 
STG.L -62.7 -25.1 10.6 79% 
SMA.L -4.5 20.2 56.7 75% 
SFGmed.R 4.5 26.7 52.3 71% 
HES.R 51.5 -19.8 5.8 62% 
MFG.L -24.7 9 54.5 60% 
SFGdor.L -24.3 1.6 51.6 52% 
SMG.L -61.3 -43.5 38.3 52% 
HES.L -60.2 -16.2 4.9 51% 
IFGtriang.R 41.8 13.2 25.8 51% 
ORBinf.L -38.1 29.4 -3.2 50% 
SMA.R 3.8 21.9 59.8 47% 
PreCG.R 52.9 0.7 44.5 47% 
MTG.L -65.1 -46.9 -2 45% 
SFGmed.L -4.7 40.2 45 44% 
SFGdor.R 12.9 37.5 50.4 44% 
ITG.L -56 -48.2 -5.9 41% 
MFG.R 47.4 3.2 45.4 36% 
IPL.L -57.1 -28.7 45.4 36% 
IFGoperc.R 42.8 12.3 25.3 33% 
PCL.L -12.4 -11.5 69.1 33% 
SMG.R 60.5 -33.1 45.9 27% 
STG.R 53.1 -21.3 5.9 25% 

AAL, Automated Anatomical Labeling; FDR, false discovery rate; MNI, Montreal Neurological 
Institute. Regions: IFGtriang.l, left inferior frontal gyrus, triangular part; PreCG.L, left precentral 
gyrus; IFGoperc.L, left inferior frontal gyrus, opercular part; STG.L, left superior temporal gyrus; 
SMA.L, left supplementary motor area; SFGmed.R, right medial superior frontal gyrus; HES.R, 
right Heschl’s gyrus; MFG.L, left middle frontal gyrus; SFGdor.L, left dorsolateral superior frontal 
gyrus; SMG.L, left supramarginal gyrus; HES.L, left Heschl’s gyrus; IFGtriang.R; right inferior 
frontal gyrus, triangular part; ORBinf.L; left inferior frontal gyrus, orbital part; SMA.R, right 
supplementary motor area; PreCG.R, right precentral gyrus; MTG.L, left middle temporal gyrus; 
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SFGmed.L, left medial superior frontal gyrus; SFGdor.R, right dorsolateral superior frontal 
gyrus; ITG.L, left inferior temporal gyrus; MFG.R, right middle frontal gyrus; IPL.L, left inferior 
parietal lobule; IFGoperc.R, right inferior frontal gyrus, opercular part; PCL.L, left paracentral 
lobule; SMG.R, right supramarginal gyrus; STG.R, right superior temporal gyrus. 
 
 
 
 
 
Table S4. Brain anatomical areas with trajectory differences between typical 
development and childhood-onset schizophrenia. In other words, the null 
hypothesis H0b that 𝛽𝑣

(2)(age) in equation (3) is identically zero is rejected. Regions 
listed have group differences encompassing at least 20% of their surface area, using an 
FDR threshold of 0.05. 

AAL Region 
MNI Coordinates of Peak Vertex Percent of AAL Region 

with Group Differences x y z 
IFGtriang.R 52.1 28.6 -1.4 73% 
IFGoperc.R 50.3 21.1 11.5 53% 
PCG.L -8.1 -42.7 33.5 45% 
ORBsupmed.R 3.1 23.8 -18.9 31% 
REC.R 3.5 33.2 -21.1 30% 
ORBinf.R 28.8 26.1 -22.3 27% 
DCG.L -2.3 -13.5 36.2 24% 
PoCG.L -27.3 -30.3 74.2 20% 

AAL, Automated Anatomical Labeling; FDR, false discovery rate; MNI, Montreal Neurological 
Institute. Regions: IFGtriang.R, right inferior frontal gyrus, triangular part; IFGoperc.R, right 
inferior frontal gyrus, opercular part; PCG.L, left posterior cingulate gyrus; ORBsupmed.R, right 
medial orbital superior frontal gyrus; REC.R, right gyrus rectus; ORBinf.R, right inferior frontal 
gyrus, orbital part; DCG.L, left median cingulate and paracingulate gyri; PoCG.L, left postcentral 
gyrus. 
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Table S5. Brain anatomical areas with both trajectory differences  and trait 
differences between typical development and childhood-onset schizophrenia. In 
other words, the null hypotheses H0a and H0b, that 𝛽𝑣

(1) = 0 and 𝛽𝑣
(2)(age) is identically 

zero in equation (3), are both rejected. Regions listed have group differences 
encompassing at least 20% of their surface area, using an FDR threshold of 0.05. 

AAL Region 
MNI Coordinate of Peak Vertex Percent of AAL Region 

with Group Differences x y z 
IFGtriang.R 55.9 28.9 11.6 69% 
IFGoperc.R 56.7 14.8 13.5 53% 
PoCG.L -30.8 -29.9 72.3 17% 
REC.R 7.3 40.4 -24.5 13% 

AAL, Automated Anatomical Labeling; FDR, false discovery rate; MNI, Montreal Neurological 
Institute. Regions: IFGtriang.R, right inferior frontal gyrus, triangular part; IFGoperc.R, right 
inferior frontal gyrus, opercular part; PoCG.L, left postcentral gyrus; REC.R, right gyrus rectus. 
 
 
 
 
Table S6. Brain anatomical areas with trajectory differences between typical 
development and childhood-onset schizophrenia that also fall into the cingulo-
fronto-temporal module of typical development. Regions listed have group 
differences encompassing at least 20% of their surface area, using an FDR-corrected p-
value threshold of 0.05. 

AAL Region 
MNI Coordinate of Peak Vertex Percent of AAL Region 

with Group Differences x y z 
IFGtriang.R 52.1 28.6 -1.4 70% 
ORBsupmed.R 3.1 23.8 -18.9 30% 
REC.R 3.5 33.2 -21.1 30% 
PCG.L -8.1 -42.7 33.5 26% 
IFGoperc.R 50.3 21.1 11.5 23% 

AAL, Automated Anatomical Labeling; FDR, false discovery rate; MNI, Montreal Neurological 
Institute. Regions: IFGtriang.R, right inferior frontal gyrus, triangular part; ORBsupmed.R, right 
medial orbital superior frontal gyrus; REC.R, right gyrus rectus; PCG.L, left posterior cingulate 
gyrus; IFGoperc.R, right inferior frontal gyrus, opercular part. 
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Figure S1. Modules comprised of regions with similar cortical thickness during 
childhood and adolescence. (A) A k-medoids algorithm was applied to the normative 
functional data without taking the first derivative. The illustrative case of K=3 modules is 
presented, as well as the growth trajectory of the average of the vertices in each 
module. (B) The average cortical thickness across all normative scans. It is evident that 
the modules in (A) simply separate the brain into regions of high, medium and low 
cortical thickness.  
 



Alexander-Bloch et al. 

9 

 
 
Figure S2. Randomization test of the significance of the overlap between typical 
developmental modules and childhood-onset schizophrenia-related alterations in 
the shape of maturational trajectories. (A) As illustrated in main text Figure 3, the 
overlap between developmental modules and cortical areas with significant clinical 
differences in the shape of their maturational trajectories (FDR < .05). (B) Five thousand 
surrogate sets of spatially contiguous brain areas, of the same size as the actual brain 
of group differences, but at random locations across the cortex, were simulated. The 
overlap between three of these simulated patterns of group differences and the typical 
developmental modules is shown. (C) Null distributions of the overlap with each module 
were estimated using the randomly simulated data. P-values were calculated as the 
proportion of simulated overlap values that exceeded the actual overlap. FDR, false 
discovery rate. 
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Figure S3. Typical developmental modules at different spatial resolutions. As the 
number of modules increases, the average size of the modules decreases accordingly. 
The colors of the modules across resolutions were matched algorithmically. First, the 
normalized mutual information (NMI) between all modular partitions was calculated (14). 
The partition with the second highest average NMI was matched to the partition with the 
highest average NMI by solving the linear assignment problem via the Hungarian 
algorithm (15). A soft (or fuzzy) partition based on the labels of both of these partitions 
was estimated, and the partition with the third highest average NMI was matched to this 
soft partition, also using the Hungarian algorithm, and so on for all of the partitions 
across resolutions. This process provides an approximate solution to the NP-hard 
multivariable assignment problem. It was implemented with the R package clue (16) 
using scripts available at http://brainnetworks.sourceforge.net/. 
 
 
 
 

http://brainnetworks.sourceforge.net/
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Figure S4. Abnormalities of growth curves in childhood-onset schizophrenia 
(COS) for each of the ~80,000 cortical vertices, using penalized spline models and 
FDR-adjusted p-values, after adding each subject’s total gray matter volume as a 
covariate in the statistical model. (A) Cortical regions with any difference in the 
maturational trajectory in COS, either a constant trait difference or an age-varying 
trajectory difference. In other words, the null hypothesis H0, that βv (age) in equation (2) 
is identically zero, is rejected. (B) Regions with significant group differences in trait 
between groups, i.e., the null hypothesis H0a that 𝛽𝑣

(1) = 0 in equation (3) is rejected.  
(C) Regions with significant group differences in trajectory, i.e., the null hypothesis H0b 
that 𝛽𝑣

(2)(age) in equation (3) is identically zero is rejected. In comparison with main text 
Figure 3, which shows equivalent figures without covarying for total gray matter volume, 
the trajectory differences between the two groups are essentially identical. Relatively 
fewer brain regions show significant trait differences after co-varying for total gray 
matter volume. For example, there are no residual trait group differences in the occipital 
lobe, after co-varying for total gray matter volume. FDR, false discovery rate. 
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