Okatsu et al., http://www.jcb.org/cgi/content/full/jcb.201410050/DC1 $\begin{array}{lll} \mbox{Figure S1.} & \mbox{Mass-spectrometry-based analysis} \\ \mbox{of phosphorylated ubiquitin.} & \mbox{(A-C)} & \mbox{Signals} \\ \end{array}$ derived from the nonmodified peptide (ES-TLHLVLR; A), the S65-phosphorylated peptide (ES[Phosphoryl]TLHLVLR; B), and the K63-GlyGly branch peptide (TLSDYNIQK[di-GlyGly]ESTLHLVLR) were obtained by MS-based analyses from whole cell lysates. The unmodified peptide was detected in all fractions examined (A), whereas the S65-phosphorylated peptide was observed only in CCCP-treated fractions (B), and the peptide with the K63-GlyGly branch (TLSDYNIQK[di-GlyGly]ESTLHLVLR) was detected in the middle (14,000-55,000) and the high (>55,000) molecular weight fractions (C). The data shown are from a single MS analysis of three independently prepared samples. (D) Extracted m/z 730.89644 ion chromatogram corresponding to the doubly charged ubiquitin peptide containing a diglycine branch at K48 in anti-K48-linked polyubiquitin chain antibody (Apu2) immunoprecipitates or control IgG. This experiment was completed once (n = 1). (E) The diglycine branch at K48 is demonstrated by the MS/MS spectrum of the m/z 730.90 ion at a retention time of 17.23 min in Apu2 immunoprecipitates from CCCP-treated cells. EIC (extracted ion chromatogram) of m/z 730.89644 ± 5 ppm (43-54 a.a.; LIFAGK[GG]QLEDGR, [M+2H]²⁺) Ε Figure S2. Tandem tetra-ubiquitin targeting to mitochondria is stabilized by treatment with the proteasome inhibitor MG-132. (A) HeLa cells expressing $4\times$ Ub, $4\times$ Ub(565D), $4\times$ Ub(565D), 565D, 565D Figure S3. Colocalization between Parkin and tetra-ubiquitin chain. (A and B) HeLa cells expressing WT GFP-Parkin (A) or the indicated GFP-Parkin mutants (B) were coexpressed with Mt-4×Ub or Mt-4×Ub (S65D), treated with MG-132 (10 μ M, 3 h), and subjected to immunocytochemistry using an anti-GFP antibody and an anti-V5 antibody that detects Mt-4×Ub. Bars, 10 μ m. Figure S4. Generation of PINK1 KO HeLa cell line. (A and B) WT HeLa cells, HeLa cells treated with the CRISPR/Cas9 system for PINK1 KO, and the resulting candidate clonal cells (#1-4) were transfected with GFP-Parkin and treated with CCCP (10 μ M, 6 h). Mitochondrial localization of GFP-Parkin in these cells was observed with a fluorescence microscope (A), and PINK1 expression and Parkin E3 activity were detected by immunoblotting with the indicated antibodies (B). Bars, 10 μ m. (C and D) Mislocalization of GFP-Parkin in clone #4 was complemented by reintroduction of PINK1. (C) The subcellular localization of GFP-Parkin in the indicated cells was observed with a fluorescence microscope after CCCP treatment (10 μ M, 6 h). Bars, 10 μ m. (D) The rate of Parkin mitochondrial localization in 100 cells was calculated in three independent experiments. Error bar represents the mean \pm SD (error bars). (E) Restoration of Parkin E3 activity by exogenous PINK1. PINK1 KO HeLa cells expressing PINK1 and GFP-Parkin were treated with 10 μ M CCCP for 6 h, and then immunoblotted with the indicated antibodies. Figure S5. Immunocytochemical analyses suggest recruitment of Parkin by mitochondrial phosphorylated ubiquitin and recruitment of LC3 and p62 by a mitochondrial ubiquitin chain. (A) In PINK1 KO HeLa cells, GFP-LC3 does not merge with mitochondria under steady-state conditions (1), whereas Mt-4×Ub and Mt-4×Ub(S65D) trigger obvious accumulation of LC3 on energized TMRE-stainable mitochondria (2 and 3). (B) Endogenous p62 is dispersed throughout the cytosol (1), whereas it accumulates on mitochondria in Mt-4×Ub- or Mt-4×Ub(S65D)-expressing cells (2 and 3). (C) HeLa cells stably expressing PINK1 were transfected with WT GFP-Parkin or phosphomimetic GFP-Parkin (S65E mutant), treated with CCCP and LLOMe, and then immunostained with the indicated antibodies. WT and phosphomimetic Parkin were transported to mitochondria (see also Fig. 5 C) regardless of LLOMe treatment. (D) HeLa cells expressing GFP-Parkin(S65E/C431S) with or without WT HA-Parkin were treated with CCCP (10 μM, 1.5 h), and immunostained with anti-GFP and anti-Tom20 antibodies. Mislocalization of the GFP-Parkin(S65E/C431S) mutant after CCCP treatment was complemented by coexpressing WT Parkin in trans. Bars, 10 μm. Table S1. List of plasmids used | Vector | Description | Source | |--|---|----------------------| | pGEX-6P-1 <i>-Tc</i> PINK1 | For expression of TcPINK1 in E. coli | Koyano et al., 2014 | | pEGFP-C1-Parkin WT | For expression of GFP-Parkin WT | Matsuda et al., 2010 | | pEGFP-C1-Parkin S65E | For expression of GFP-Parkin S65E | lguchi et al., 2013 | | pEGFP-C1-Parkin C431S | For expression of GFP-Parkin C431S | lguchi et al., 2013 | | pEGFP-C1-Parkin S65E/C431S | For expression of GFP-Parkin S65E/C431S | lguchi et al., 2013 | | pcDNA3.1-HA-Parkin WT | For expression of HA-Parkin WT | Matsuda et al., 2010 | | pcDNA3.1-Mt-Parkin WT | For expression of Mt-HA-Parkin WT | This study | | pcDNA3-4×Ub | For expression of V5-Ub G76V | This study | | pcDNA3-4×Ub S65D | For expression of V5-Ub S65D/G76V | This study | | pcDNA3-Mt-4×Ub | For expression of Tom20 N33-V5-Ub G76V | This study | | pcDNA3-Mt-4×Ub S65D | For expression of Tom20 N33-V5-Ub S65D/G76V | This study | | pcDNA3-Mt-4×Ub S65A | For expression of Tom20 N33-V5-Ub S65A/G76V | This study | | pCMVTNT(d1)-PINK1 WT -3HA | For weekly expression of PINK1 WT-3HA | Okatsu et al., 2012 | | pMXs-puro-PINK1 WT -3FLAG | For expression of PINK1 WT -3FLAG | Matsuda et al., 2010 | | pMXs-puro-PINK1 KD -3FLAG | For expression of PINK1 KD -3FLAG | Matsuda et al., 2010 | | pMXs-puro-PINK1 ΔN155 -3FLAG | For expression of PINK1 ΔN155 -3FLAG | Matsuda et al., 2010 | | pGEX-6P-1-GST-Parkin WT | For expression of GST-RnParkin WT in E.coli | Trempe et al., 2013 | | pGEX-6P-1-GST-Parkin S65E | For expression of GST-RnParkin S65E in E.coli | Koyano et al., 2014 | | pcDNA3-Ub ^r -L40-IRES-HA-Ub ^r -S27a | For inducible expression of Ub ^r -L40 and HA-Ub ^r -S27a | Xu et al., 2009 | | pcDNA3-Ub ^r S65A-L40-IRES- HA-Ub ^r S65A-S27a | For inducible expression of Ub ^r S65A-L40 and HA-Ub ^r S65A-S27a | This study | KD, kinase dead; Ubr, siRNA-resistant ubiquitin; IRES, ribosomal entry site ## References - Iguchi, M., Y. Kujuro, K. Okatsu, F. Koyano, H. Kosako, M. Kimura, N. Suzuki, S. Uchiyama, K. Tanaka, and N. Matsuda. 2013. Parkin-catalyzed ubiquitin-ester transfer is triggered by PINK1-dependent phosphorylation. J. Biol. Chem. 288:22019–22032. http://dx.doi.org/10.1074/jbc.M113.467530 - Koyano, F., K. Okatsu, H. Kosako, Y. Tamura, E. Go, M. Kimura, Y. Kimura, H. Tsuchiya, H. Yoshihara, T. Hirokawa, et al. 2014. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature. 510:162-166. - Matsuda, N., S. Sato, K. Shiba, K. Okatsu, K. Saisho, C.A. Gautier, Y.S. Sou, S. Saiki, S. Kawajiri, F. Sato, et al. 2010. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J. Cell Biol. 189:211-221. http://dx.doi.org/10.1083/jcb.200910140 - Okatsu, K., T. Oka, M. Iguchi, K. Imamura, H. Kosako, N. Tani, M. Kimura, E. Go, F. Koyano, M. Funayama, et al. 2012. PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria. Nat. Commun. 3:1016. http://dx.doi.org/10.1038/ncomms2016 - Trempe, J.F., V. Sauvé, K. Grenier, M. Seirafi, M.Y. Tang, M. Ménade, S. Al-Abdul-Wahid, J. Krett, K. Wong, G. Kozlov, et al. 2013. Structure of parkin reveals mechanisms for ubiquitin ligase activation. Science. 340:1451–1455. http://dx.doi.org/10.1126/science.1237908 - Xu, M., B. Skaug, W. Zeng, and Z.J. Chen. 2009. A ubiquitin replacement strategy in human cells reveals distinct mechanisms of IKK activation by TNFα and IL-1β. Mol. Cell. 36:302–314. http://dx.doi.org/10.1016/j.molcel.2009.10.002