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Figure S1.  Mass-spectrometry–based analysis  
of phosphorylated ubiquitin. (A–C) Signals 
derived from the nonmodified peptide (ES-
TLHLVLR; A), the S65-phosphorylated pep-
tide (ES[Phosphoryl]TLHLVLR; B), and the 
K63-GlyGly branch peptide (TLSDYNIQK[di-
GlyGly]ESTLHLVLR) were obtained by MS-based 
analyses from whole cell lysates. The unmodified 
peptide was detected in all fractions examined (A),  
whereas the S65-phosphorylated peptide was 
observed only in CCCP-treated fractions (B), 
and the peptide with the K63-GlyGly branch 
(TLSDYNIQK[di-GlyGly]ESTLHLVLR) was de-
tected in the middle (14,000–55,000) and the 
high (>55,000) molecular weight fractions (C). 
The data shown are from a single MS analy-
sis of three independently prepared samples.  
(D) Extracted m/z 730.89644 ion chromato-
gram corresponding to the doubly charged ubiq-
uitin peptide containing a diglycine branch at 
K48 in anti-K48–linked polyubiquitin chain anti-
body (Apu2) immunoprecipitates or control IgG. 
This experiment was completed once (n = 1).  
(E) The diglycine branch at K48 is demonstrated 
by the MS/MS spectrum of the m/z 730.90 ion 
at a retention time of 17.23 min in Apu2 immuno
precipitates from CCCP-treated cells.
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Figure S2.  Tandem tetra-ubiquitin targeting to mitochondria is stabilized by treatment with the proteasome inhibitor MG-132. (A) HeLa cells expressing 
4×Ub, 4×Ub(S65D), Mt-4×Ub, or Mt-4×Ub(S65D) were treated with MG-132 (10 µM, 3 h) and immunoblotted using the indicated antibodies. In the tan-
dem repeat ubiquitin proteins, a G76V mutation was introduced to impede ubiquitin processing enzymes. 4×Ub and Mt-4×Ub were clearly stabilized by 
MG-132 treatment. (B) The total cell lysates from A were immunoblotted using an anti-ubiquitin antibody P4D1. (C) Immunocytochemistry of HeLa cells ex-
pressing Mt-4×Ub and Mt-4×Ub(S65D) after MG-132 treatment (10 µM, 3 h) confirmed that both Mt-4×Ub and Mt-4×Ub(S65D) localized on mitochondria. 
Bars, 10 µm. (D) HeLa cells expressing Mt-4×Ub and Mt-4×Ub(S65D) were fractionated to obtain cytosolic (Cyt) and mitochondria-enriched (Mt) fractions, 
and immunoblotted with the indicated antibodies.
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Figure S3.  Colocalization between Parkin and tetra-ubiquitin chain. (A and B) HeLa cells expressing WT GFP-Parkin (A) or the indicated GFP-Parkin mu-
tants (B) were coexpressed with Mt-4×Ub or Mt-4×Ub(S65D), treated with MG-132 (10 µM, 3 h), and subjected to immunocytochemistry using an anti-GFP 
antibody and an anti-V5 antibody that detects Mt-4×Ub. Bars, 10 µm.
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Figure S4.  Generation of PINK1 KO HeLa cell line. (A and B) WT HeLa cells, HeLa cells treated with the CRISPR/Cas9 system for PINK1 KO, and the result-
ing candidate clonal cells (#1–4) were transfected with GFP-Parkin and treated with CCCP (10 µM, 6 h). Mitochondrial localization of GFP-Parkin in these 
cells was observed with a fluorescence microscope (A), and PINK1 expression and Parkin E3 activity were detected by immunoblotting with the indicated 
antibodies (B). Bars, 10 µm. (C and D) Mislocalization of GFP-Parkin in clone #4 was complemented by reintroduction of PINK1. (C) The subcellular local-
ization of GFP-Parkin in the indicated cells was observed with a fluorescence microscope after CCCP treatment (10 µM, 6 h). Bars, 10 µm. (D) The rate of 
Parkin mitochondrial localization in 100 cells was calculated in three independent experiments. Error bar represents the mean ± SD (error bars). (E) Restora-
tion of Parkin E3 activity by exogenous PINK1. PINK1 KO HeLa cells expressing PINK1 and GFP-Parkin were treated with 10 µM CCCP for 6 h, and then 
immunoblotted with the indicated antibodies.
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Figure S5.  Immunocytochemical analyses suggest recruitment of Parkin by mitochondrial phosphorylated ubiquitin and recruitment of LC3 and p62 by a 
mitochondrial ubiquitin chain. (A) In PINK1 KO HeLa cells, GFP-LC3 does not merge with mitochondria under steady-state conditions (1), whereas Mt-4×Ub 
and Mt-4×Ub(S65D) trigger obvious accumulation of LC3 on energized TMRE-stainable mitochondria (2 and 3). (B) Endogenous p62 is dispersed through-
out the cytosol (1), whereas it accumulates on mitochondria in Mt-4×Ub– or Mt-4×Ub(S65D)–expressing cells (2 and 3). (C) HeLa cells stably expressing 
PINK1 were transfected with WT GFP-Parkin or phosphomimetic GFP-Parkin (S65E mutant), treated with CCCP and LLOMe, and then immunostained with 
the indicated antibodies. WT and phosphomimetic Parkin were transported to mitochondria (see also Fig. 5 C) regardless of LLOMe treatment. (D) HeLa 
cells expressing GFP-Parkin(S65E/C431S) with or without WT HA-Parkin were treated with CCCP (10 µM, 1.5 h), and immunostained with anti-GFP and 
anti-Tom20 antibodies. Mislocalization of the GFP-Parkin(S65E/C431S) mutant after CCCP treatment was complemented by coexpressing WT Parkin in 
trans. Bars, 10 µm.
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Table S1.  List of plasmids used

Vector Description Source

pGEX-6P-1-TcPINK1 For expression of TcPINK1 in E. coli Koyano et al., 2014
pEGFP-C1-Parkin WT For expression of GFP-Parkin WT Matsuda et al., 2010
pEGFP-C1-Parkin S65E For expression of GFP-Parkin S65E Iguchi et al., 2013
pEGFP-C1-Parkin C431S For expression of GFP-Parkin C431S Iguchi et al., 2013
pEGFP-C1-Parkin S65E/C431S For expression of GFP-Parkin S65E/C431S Iguchi et al., 2013
pcDNA3.1-HA-Parkin WT For expression of HA-Parkin WT Matsuda et al., 2010
pcDNA3.1-Mt-Parkin WT For expression of Mt-HA-Parkin WT This study
pcDNA3-4×Ub For expression of V5-Ub G76V This study
pcDNA3-4×Ub S65D For expression of V5-Ub S65D/G76V This study
pcDNA3-Mt-4×Ub For expression of Tom20 N33-V5-Ub G76V This study
pcDNA3-Mt-4×Ub S65D For expression of Tom20 N33-V5-Ub S65D/G76V This study
pcDNA3-Mt-4×Ub S65A For expression of Tom20 N33-V5-Ub S65A/G76V This study
pCMVTNT(d1)-PINK1 WT -3HA For weekly expression of PINK1 WT -3HA Okatsu et al., 2012
pMXs-puro-PINK1 WT -3FLAG For expression of PINK1 WT -3FLAG Matsuda et al., 2010
pMXs-puro-PINK1 KD -3FLAG For expression of PINK1 KD -3FLAG Matsuda et al., 2010
pMXs-puro-PINK1 N155 -3FLAG For expression of PINK1 N155 -3FLAG Matsuda et al., 2010
pGEX-6P-1-GST-Parkin WT For expression of GST-RnParkin WT in E.coli Trempe et al., 2013
pGEX-6P-1-GST-Parkin S65E For expression of GST-RnParkin S65E in E.coli Koyano et al., 2014
pcDNA3-Ubr-L40-IRES-HA-Ubr-S27a For inducible expression of Ubr-L40 and HA-Ubr-S27a Xu et al., 2009
pcDNA3-Ubr S65A-L40-IRES- HA-Ubr S65A-S27a For inducible expression of Ubr S65A-L40 and HA-Ubr S65A-S27a This study

KD, kinase dead; Ubr, siRNA-resistant ubiquitin; IRES, ribosomal entry site
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