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S1 Estimation of conditional marginal probabilities from

local alignments

As discussed in the main text, the conditional marginal probabilities for each col-

umn can also be estimated from a collection, A+, of local alignments sampled

according to their probability. Unlike with the global alignment case discussed

in the main text, a common normalising factor of |A+| can no longer be used

for all columns, such that the marginal probability for a column, p(X), cannot be

estimated from the collection of local alignments. However, due to the mutual

exclusivity of the columns following a particular equivalence class as defined by

equation (2) in the main text, the normalised conditional marginals can still be

recovered from the expression

p̂C(X | P(X)) = p̂C(X | EP(X)) =
nC(X,A+)

nC(EP(X),A+)
(S1)

where nC(EP(X),A+) =


X′∈EP(X) nC(X′,A+), and

nC(X,A+) =


A∈A+

�(C(X) ∈ C(A)) (S2)

In the case where alignments are sampled by iteratively modifying subalign-

ments, the efficiency of the estimators for the conditional marginals may be im-

proved by considering the changed portion of the alignment as a local alignment

sample, rather than counting the modified alignment as a new global alignment.

We postpone a more thorough investigation of the properties of these different

estimators for future research.

S2 Derivation of posterior risk

Beginning with the following general loss function as in equation (17) in the main

text

L f (X || A) =λFP(1 − �( f (X) ∈ f (A)))

− ρT P�( f (X) ∈ f (A))
(S3)

=λFP − (ρT P + λFP)�( f (X) ∈ f (A)) (S4)



the posterior risk can be written as

R f (A) =


A′

p(A′)


X∈A′

λFP − (ρT P + λFP)�( f (X) ∈ f (A))

=


A′

p(A′)


X∈A

λFP − (ρT P + λFP)�( f (X) ∈ f (A′))

=

LA


j=1



A′

p(A′)[λFP − (ρT P + λFP)�( f (X) ∈ f (A′))]

where the second line interchanges A and A′, which relies on the bijective nature

of f . Defining a weighted marginal probability under a function, f , as

p f (X) =


A

p(A) �( f (X) ∈ f (A)) (S5)

this can be rewritten as

R f (A) =

LA


j=1

λFP − p f (A
( j))(ρT P + λFP) (S6)

∝

LA


j=1

λFP

(ρT P + λFP)
− p f (A

( j)) (S7)

as presented in equation (18) in the main text.

S3 Pairwise loss functions
As mentioned in the main text, it is possible to describe several different types of

pairwise accuracy scores using a loss function of the form

Lpw(X || A) =

N−1


i=1

N


j=i+1

ρT P(Xi, Xj)�((Xi, Xj) ∈ A) (S8)

where N is the number of sequences. With

ρT P(Xi, Xj) = −�(Xi � gap)�(Xj � gap)

this is equivalent to the commonly used sum-of-pairs score [1], and the AMA

alignment metric of Schwartz [2, 3] can be obtained by setting

ρT P(Xi, Xj) = − �(Xi � gap)�(Xj � gap)

−G f�(Xi = gap)�(Xj � gap)

−G f�(Xi � gap)�(Xj = gap)

(S9)

where G f > 0.

S4 Kullback-Liebler divergence of factored approximations
The deviation between the true distribution over alignments, p(A), and an approx-

imation, q(A), can be measured using the Kullback-Liebler (KL) divergence

d(p || q) =


A

p(A)
log p(A)

log q(A)
(S10)

= const. −


A

p(A) log q(A) (S11)



Minimising the KL divergence for a fixed p(A) is equivalent to maximising the

relative entropy,


A p(A) log q(A), subject to restrictions on the form for q.

For DAG-based representations, q(A) can be factored along the edges of the

DAG; writing the log of the product of conditionals as a sum of logs, the relative

entropy can be written in the form



A

p(A) log q(A) =


A

p(A)


X



X′�X

�(X ∈ A)�(X′ ∈ A) log q(X | X′) (S12)

=


X



X′�X

p(X | X′) log q(X | X′) (S13)

Using a Lagrange multiplier to enforce the normalisation of q(X | X′), the distri-

bution maximising equation (S13) satisfies the following equation, for all X, X′

0 =
∂

∂q(X | X′)
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(S14)

=
p(X | X′)

q(X | X′)
− λ (S15)

such that the divergence is minimised with q(X | X′) = p(X | X′), which corre-

sponds to setting the pairwise distributions in equation (6) in the main text to be

equal to the true pair marginals. This is equivalent to the result stated in Theorem

11.1 of Cowell et al. [4].

For the mean-field approximation, replacing q(X | X′) by q(X | P(X)) in equa-

tion (S15), and summing over X′, it is clear that the KL divergence is also min-

imised by writing these conditionals in terms of the corresponding marginal dis-

tributions:

q(X | P(X)) = p(X | P(X)) (S16)

where p(X | P(X)) is the probability of column X given that one of its possible

predecessors is in the alignment (cf. equation (8) in the main text).

While in the more general context marginalisation over the distribution p may

be intractable, in this work consider the empirical distribution, p̂(A), rather than

constructing a parametric form for p(A). Hence consistent marginals can be com-

puted by simply taking the empirical marginals, without recourse to iterative pro-

cedures.

S5 Dynamic programming algorithm for summing over

paths in the DAG
In order to compute the sum of probabilities for all alignments contained within

the DAG, we first define the partial sum for column X as

z(X) =





























X′�X

z(X′)p(X | X′) (pair marginals)

z(EP(X′)) p(X)/p(EP(X)) (mean field)

(S17)

where z(X(0)) = 1 and

z(EP(X)) =


X′∈EP(X)

z(X′) (S18)



The total sum for the whole DAG is then given by z(X
(T )

A
), with X

(T )

A
denoting the

terminal column in the DAGD(A), as defined in the main text. This quantity can

be computed in time and space linearly proportional to the number of columns

in the DAG, in contrast to the O(LN) time and space taken for filling the full

N-dimensional dynamic programming table. Replacing p(X) with �(p(X) > 0)

results in an algorithm for computing the number of paths through the DAG.

S6 Stochastic traceback through the DAG
The traditional stochastic traceback algorithm described by Durbin et al. [5] al-

lows for alignments to be sampled according to their posterior distribution. How-

ever, this type of approach can only be used in cases where the full dynamic

programming matrix can be filled out, limiting the application to alignments with

larger numbers of sequences.

An analogous algorithm can be constructed to stochastically sample paths

through the DAG, allowing for alignments to be sampled according to the pos-

terior distribution described by the DAG. This simply involves building up an

alignment according to the following recursive formula

p(A(i) = X | A(i−1) = X′) = p(X | X′)z(X′)/z(X) (S19)

where z(X) is defined as in equation (S17), and p(X | X′) can be derived using

either the pair-marginal or mean-field expression, as desired.

S7 Assembly and analysis of datasets
S7.1 Simulated alignments & BAliBASE

The dataset of simulated alignments used for assessing the minimum risk sum-

mary algorithm was generated using the sequence evolution simulation tool dawg

[6]. A random phylogeny of 10 sequences was chosen and fixed (see Figure S6),

and sequences were simulated under the GTR substitution model (rates of substi-

tution for AC, AG, AT, CG, CT and GT were set at 1.5, 3.0, 0.9, 1.2, 2.5 and 1.0;

equilibrium frequencies for A, C, G and T were set at 0.20, 0.30, 0.30, 0.20), with

the G+I rate heterogeneity model (γ = 0.9, ι = 0.05), and an indel process with

lengths distributed according to a negative binomial NB(3, 0.7) distribution. The

indel rate was set to three different values [0.01 (low), 0.02 (medium) and 0.03

(high)], to generate datasets of varying alignment uncertainty. For each indel rate,

50 alignments were generated, yielding 150 datasets overall.

The BAliBASE alignments were taken from subsets RV11 and RV12 of version

3.0 of the database. Both the simulated and BAliBASE datasets can be found in

Additional file 2.

StatAlign v1.1 was run using the default settings for nucleotides (for the simu-

lated data), and amino acids (for the BAliBASE data), with a burnin of 500, 000,

and 2 million sampling steps, taking alignment samples every 2000 steps, thus

producing 1000 alignment samples for each test case.

S7.2 OXBench alignments

For the larger datasets, reference alignments were obtained from version 1.3 of

OXBench, downloaded from

www.compbio.dundee.ac.uk/downloads/oxbench/oxbench_1_3.tar.gz

One of the largest alignments was chosen, found in the directory

oxbench 1 3/data/align/fasta/12. In order to assess the affect of the num-

ber of sequences while controlling for other factors, we opted to analyse sub-

sets of this alignment. To avoid ending up with subsets containing highly sim-

ilar proteins corresponding to clades within the original set, we used a greedy



algorithm to choose maximally dissimilar sets of particular sizes, producing sub-

sets of sequences of size 15, 33 and 60, in addition to the full set of 122 se-

quences. These alignment samples, along with an example script for computing

the minimum-risk summary and alignment accuracy across the samples, are avail-

able at https://github.com/statalign/WeaveAlign.

Sets of alignments were generated using an approximate iterative MCMC pro-

cedure [7], generating 2000 samples for each dataset. This algorithm iterates be-

tween sampling of substitution matrices, and computation of the optimal score-

based alignment using a program such as MUSCLE [8], generating a set of align-

ments according to an simplified posterior distribution.

S7.3 Globin alignments for marginal topology computations

The alignments used for computing the marginal topology probabilities were gen-

erated by running StatAlign v3.2 on four globin sequences (human cytoglobin,

myoglobin and α-haemoglobin, as well as lupin leghaemoglobin) for 200, 000 it-

erations using the Dayhoff rate matrix, taking samples every 100 iterations. These

2000 alignment samples were then further thinned down by a factor of 20 to yield

100 alignments.

The marginal probability of each tree topology was computed by averaging over

500 tree samples, as discussed in the main text. These marginal probabilities were

computed on each of these alignment samples individually, as well as on the DAG

formed from the 100 alignment samples.

The script marginal tree posterior analysis/example-analysis.sh

in Additional file 2 carries out the above analyses using the program WeaveAlign

(available at http://statalign.github.io/WeaveAlign, and also contained

in Additional file 2), requiring 1-2 minutes on a 2.3GHz core. It should be noted

that with the current version of the code the analysis of individual alignments re-

quires the set of tree samples to be read in multiple times, hence some simple

optimisations to the code would likely increase the efficiency of this process.

S7.4 Comparison to other alignment programs for downstream topology

inference

For comparisons with MUSCLE, T-Coffee and CLUSTALW2 the default settings

were used, and MAFFT was run with the --auto setting.

References

1. Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive

multiple sequence alignment through sequence weighting, position-specific gap penalties and

weight matrix choice. Nucleic Acids Research 1994, 22(22):4673–4680.

2. Schwartz AS, Myers EW, Pachter L: Alignment metric accuracy. arXiv:q-bio/0510052 2005.

3. Schwartz AS: Posterior decoding methods for optimization and accuracy control of multiple

alignments. PhD thesis, University of California, Berkeley 2007.

4. Cowell R, Dawid P, Lauritzen S, Spiegelhalter D: Probabilistic networks and expert systems. Information

Science and Statistics, Springer, New York 2007.

5. Durbin R, Eddy SR, Krogh A, Mitchison G: Biological Sequence Analysis : Probabilistic Models of

Proteins and Nucleic Acids. Cambridge University Press, Cambridge 1998.

6. Cartwright RA: DNA assembly with gaps (DAWG): Simulating sequence evolution. Bioinformatics

2005, 21(Suppl 3):31–38.
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Figure S1 The probability mass contained within the individual samples increases relatively slowly, and encapsulates only a very small
fraction of the total. In contrast, the proportion of the posterior mass encapsulated in the set of paths through the alignment DAG increases
much more rapidly.
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Figure S2 If gaps are not distinguished based upon their position in the alignment, it is effectively the same as replicating all gap-containing
columns onto all parallels in the graph; in the pairwise case, this is equivalent to replicating each gapped column onto all horizontal and
vertical parallels (shown by dotted grey columns and edges in the figure above). This means that the graph in general becomes maximally
dense, such that the complexity of any algorithms scales in the same way as the full dynamic programming problem. In contrast, by
differentiating between columns based upon where the gaps occur, a sparse graph is retained. NP-hardness of finding minimum-risk
alignments among all valid column orderings under the C+ coding can be proven more rigorously by reduction from the Hamiltonian Cycle
problem. We omit details here for brevity.
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Figure S3 A set of 100 pairwise alignments sampled directly from the pair-HMM shown in Figure S4, for two globin sequences. Overlaid in
red is the structural alignment taken from the homstrad database [9]. Despite strong similarity between the alignments, each sample is
unique, such that it is not possible to estimate posterior alignment probability on the basis of whole alignment frequency.
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Figure S4 The pair-HMM used to sample pairwise alignments between the two globin sequences, as illustrated in Figure S3. The states
correspond to: B = begin, E = end, M = match, I1 = indel, and I2 = indel. We have used the shorthand µ = 1 − 2δ and λ = 1 − ǫ − σ − τ. For
the analyses described in the text, we set δ = 0.03 and ǫ = 0.3, corresponding to an affine gap model; τ was set to the expected sequence
length, i.e. 2/(L1 + L2). The parameter σ, representing the probability of independent adjacent insertions, was set to 0.1, reflecting the fact
that insertions may be more common in certain regions of a protein, such as flexible loops. Very similar results were observed with small
variations on these parameter values. Sampling was carried out using the algorithms described by Durbin et al. [5].
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23/12 ≈ 1.92

21/11 ≈ 1.91

30/14 ≈ 2.14

28/13 ≈ 2.15

Choosing the best path at an earlier position may not

yield the overall optimal path when using the MergeAlign

algorithm of Collingridge and Kelly (2012).

Numbers below each column (in blue) denote the cumu-

lative path length, and above (in red) are cumulative fre-

quencies; in each case, the cumulative sums are computed

over all the columns in the optimal sub-path leading to a

particular column. At any given point, the partial modeller

C+ score is given by the cumulative frequency divided by

the cumulative length, and the optimal sub-path at any

point is the path maximising this partial score.

In the case illustrated here, choosing the optimal sub-path

with score 1.92 at the first decision point yields an over-

all path with score 2.14, whereas choosing the suboptimal

sub-path with score 1.91 at the first decision point will

then lead to the global optimum of 2.15.
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Figure S6 The tree used to generate simulated data as described in Section S7.
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Figure S7 Mean squared error in the approximation to the true posterior, as a function of the number of alignment samples, for the pairwise
globin example, with δ = ǫ = σ, such that the likelihood is completely site-independent. In this case, the mean-field, single-column marginal
estimate always dominates the two-state, pair marginal estimate, due to the increased effective sample size.
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Figure S9 Total runtime (black) and time spent creating the DAG structure (red) when generating a minimum-risk summary alignment, as a
function of the number of alignments used as input, showing the expected linear scaling. Results shown for alignments generated on 20
globin sequences, timed on a single AMD Opteron 2.3GHz core, on a system with 7200rpm disks. It should be noted that the figures here
include the time for creation of the DAG and execution of the minimum-risk summary algorithm, but do not include the time taken to generate
the set of alignments.
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Figure S10 Total runtime for marginal likelihood computations for 2000 trees for the 4-globin example discussed in the main text, versus the
number of alignments in the DAG (left), and the total number of columns (right), showing the expected linear scaling.


