
DDiMAP and DDiMapIterate.py User Guide

System Requirements:

Your system should be capable of running a NGS mapper such as bwa, SHRiMP,
BFAST, Novoalign, CUSHAW3, or the like. We are able to run on a Linux or Mac
workstation class machine with a multicore 64 bit processor and 2GB RAM per core for
datasets containing 10M reads and an approximately 100Kbp reference sequence. The
major memory footprint is driven by the mapper and the target reference sequence size,
with DDiMAP analysis typically having a lower memory footprint.

Installation of DDiMAP and Associated Software

Required software and packages:

Compiler: gcc 4.8 or higher, cmake; these are commonly installed, to see if they are
present and the version info, try the commands: “gcc --version” and “cmake /V” to see
what you have

Scripting language: Python 2; it is likely already installed on your system, try the
command “python --V” to see what version you have

Helper tools: BioPython 1.65 or later, possibly installed on your system.

DDiMAP and DDiMapIterate.py installation:

In a command shell, cd into a directory that will contain the software such as your
$HOME/bin or another directory in which you have write access.

Get the software from github using the command

git clone https://github.com/jpspence/DDiMAPpublic.git

This will create a directory DDiMAPpublic. You can change the name of the directory.
Then cd into the directory and make the software. The “make setup” command will get
the supporting C/C++ packages needed by DDiMAP, including bamtools. The “make”
command will compile the code and create the DDiMAP executable in the bin
subdirectory.

Using DDiMAP and DDiMapIterate.py

Configuration File

A sample configuration file is provided in the bin directory (DDiMap.cfg) and in each of
the example directories in the data directory .. Such a file may be used to completely
specify all parameters for use by the DDiMapIterate.py script, also found in the bin
directory, which fully implements the iterative workflow shown in Figure 1 of the paper.

A single pass of mapping using a configured mapper and DDiMAP analysis may be run
by setting the maximum number of iterations to 1.

Reference Sequence Files

Reference sequences must be in fasta format, containing all sequences to use for mapping
the read data. Multiple reference sequence files may be provided and will be combined
into a single reference sequence file for use by the mapper. The identifiers for each of the
sequences in your provided files must not contain underscore "_" characters: use a
hyphen "-" instead as DDiMapIterate.py reserves the underscore characters to construct
reference sequence IDs for use by DDiMAP.

Read Data Files

Read data files are typically provided in fastq format for use by the mapper routine along
with reference sequence file(s). Single end read data is always in a single file. Mappers
vary in how they expect to see paired-end data presented. A pair of files is most common,
but some require interleaving of read data into a single file. DDiMapIterate.py can be
configured to deal with either, but the currently supported mapper configurations are all
of the two file variety. See "How to Add a New Mapper" below for details.

Output Files

Each run uses a single specified output directory to contain intermediate results in
separate subdirectories for each iteration and final results, including comma separated
value (csv) formatted files containing coverage data, dictionary data, and variant data
along with fasta formatted files containing alternate reference sequence fragments
generated by DDiMAP and the complete set of reference sequences used for the final
mapping and analysis iteration. Each of the intermediate result directories contain these
files for that particular iteration as well as log files for the mapper/samtools/DDiMap
steps of the process for error tracing. Currently, other files are kept in these directories
such as mapper indexes and the aligned read bam files. Additionally, a copy of the
configuration file used (including the selected settings used for analysis) is provided in
the main output directory as a record.

Command Line Interfaces and Configuration File

DDiMAP may be run directly using a command line interface against a fasta/bam file
combination resulting from running a mapper on a fasta/fastq file combination.
However, the DDiMAP program uses specific patterns in the reference sequence names
(see the discussion of the Enhanced Reference Sequence File below) and spacing in the
file (only single line between reference sequences) that are enforced by the
DDiMapIterate.py script. It will not run correctly if you use a noncompliant reference
sequence file. Sample MATLAB scripts that implement an alternate interface are also
provided in the matlab directory along with associated shell scripts used to run the
mappers; they will not be described here. It is recommended that the python script
interface be used to run your mapper and DDiMAP even if a single iteration is desired.

The DDiMapIterate.py script may be completely configured using a configuration file
placed in the current working directory in which the script is invoked or in a location
specified by the -c command line parameter. Overrides may be provided in a command
line format for ease of scripting multiple runs. The output of "python DDiMapIterate.py
--help" is complete and somewhat daunting at first, but the bulk of these parameters are
typically set in the config file.

Typical Config File

[Files]

outputDir = output ; directory to contain output, relative path ok

mappingRefSeqFiles = ./myRefs.fa ; comma separated list of fasta file(s) containing

reference sequences for mapping

junctionRefSeqFiles = ; optional, used only if sample prep included amplicon

concatenation, fasta file(s) of amplicon reference sequences

pairedEnd = False ; set to True for use with paired end reads

fastqFiles = ./myReads.fq ; single file or comma separated list of two files (if

pairedEnd is true and if mapper uses two files)

[Settings]

alignerOrder = C ; valid chars are B (BFAST), C (CUSHAW3), S (SHRiMP2), W

(BWA-MEM), N (Novoalign)

firstIter = 1 ; can restart using this

maxIters = 10 ; MAXIMUM number of iters (will be adjusted to accomodate

length of alignerOrder)

readLength = 50 ; nominal max read length (used to make junction sequences)

readType = NT ; read type is 'CS' (ABI SOLiD) or 'NT' (Illumina, etc.) Few

aligners can handle CS.

nProcs = 8 ; number of processors to use

reqFragConv = False ; Set to True if you want the Frags to converge as well as

the SNVs

[DDiMap]

minAbsoluteCover=2 ; threshold used for assembling frags

fragMakerThresh=0.01 ; word frequency threshold used for accepting words for

making frags

fragThresh=0.1 ; threshold used for assembling frags using unverified cores

roaSize = 32 ; must be even, if odd it will be incremented

SNVthresh=0.000400 ; threshold used for keeping words for SNV candidate

identification

SNVtype2thresh=0.001600 ; threshold used for type 2 SNV candidate identification

SNVtype3thresh=1.0 ; threshold used for type 3 SNV candidate identification

useDI = False ; reads with CIGARs containing both I and D are processed

[MapperOptions]

cushawOpts = ; extra options for cushaw3

shrimpOpts = ; extra options for shrimp2 gmapper step, for illumina data

use --qv-offset 33

bwaMemOpts = ; extra options for bwa-mem

novoOpts = ; extra options for novoalign

In this file, info beyond a semicolon on each line is a comment. The names of the
parameters may not be changed, but the value to the right of the equal sign may be edited
to suit your needs. If you wish to use a default value of a parameter, a “#” in the first
column will comment out the entire line. Certain parameters are required - the output
directory (outputDir), the mapping reference sequence files (mappingRefSeqFiles), the
read data fastq files (fastqFiles) - and so if they are not provided in the config file, they
must be provided on the command line.

How to Run DDiMapIterate.py

Set up your environment

Make sure you can access the code you need. You or your sysadmin may need to create
shortcuts to files and/or modify your environment variables.

To find out if you can access the code, at a command line, run the following command,
adding your mapper command(s) at the end of the list (I left in the SHRiMP2 “gmapper”
command as an example)

$ which DDiMAP samtools bamtools gmapper

All the programs it is able to find are in your PATH and will appear in the command
output. If one is missing, you need to fix it.

For example, if you installed DDiMAP in your home directory,

$ export PATH=$PATH:$HOME/DDiMAP/bin

will modify your PATH to include the directory containing DDiMAP for the terminal
session you are running.

Now try to run DDiMAP to see if all the libraries it needs are in place. It is not unusual
to have some missing runtime libraries depending on how your system is configured.

$ DDiMAP --help

If the libraries are all available you will see the help output. If not, it will complain about
not finding a particular .so file, and you will need to give it a hand. One way that works
is to use the LD_LIBRARY_PATH environment variable. For example,

$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib/bamtools

will modify the search path for the current session to enable access to bamtools.

These and other examples are provided in the DDiMAPpathSetup.sh shell script in the
scripts directory. You may edit this script to correspond to the locations of code on your
system and then run it using the command (your path will vary at the command line and
in the script).

$ source $HOME/DDiMAP/scripts/DDiMAPpathSetup.sh

Set up your data directory structure

The examples provided in the data directory provide a typical pattern. You will have a
directory (or a subdirectory of a directory) with a set of read data in fastq file(s),
reference sequence data in fasta file(s), and one or more DDiMapIterate config files that
you have edited to set up one or more runs. An output directory associated with each of

these config files will be created, typically as subdirectories of the read data directory, but
they may be placed anywhere you choose by specifying an appropriate path. This output
directory may be defined in the config file or by using a -o /path/to/your/outputDir
command line option.

Run the DDiMapIterate.py script

At the command line, you will invoke python and direct it to run the script. Python needs
to be told where the script is located using either an absolute or relative path - your path
may vary, mine is $HOME/DDiMAP/bin/ DDiMapIterate.py; when running the
examples in the data directory such as “data/IterativeTest”, a relative path of
../../bin/DDiMapIterate.py can be used.

$ python /path/to/DDiMapIterate.py

If no additional command line arguments are provided, the DDiMAP.cfg file in the
present working directory is used if present. If the file is named differently, specify it
using the -c option.

$ python /path/to/DDiMapIterate.py -c /path/to/myConfig.cfg

How to interpret the output files

Coverage File (coverage.csv)

This file, when opened in a spreadsheet program such as Excel or Libre Office Calc
shows three columns of data. The first contains the reference sequence ID, the second
the one-based location within that reference sequence, and the third contains the average
coverage obtained after DDiMAP filtering from the two ROA collection start position
analyses. For example, the first few lines look like

RefSeqID Loc

Coverage

VH1-69-01-J1 9 2203

VH1-69-01-J1 10 2203

VH1-69-01-J1 11 2203

VH1-69-01-J1 12 2203

VH1-69-01-J1 13 2203

VH1-69-01-J1 14 2203

VH1-69-01-J1 15 2203

VH1-69-01-J1 16 2203

VH1-69-01-J1 17 6517

Variant File (snv.csv)

This file, when opened in a spreadsheet program, shows 8 columns of data.

 1. reference sequence ID
2. call reason (1 = verified at both starts, 2=verified at one start, 3=not verified

but present at high frequency),
3. location of the variant (relative to provided reference sequence),
4. reference base at that location,
5. variant base call at that location,
6. frequency at which the variant is present,
7. section of the reference sequence centered at the upper case variant location,
8. coverage at that location (as the average from the 2 start sites).

 1 2 3 4 5 6 7 8
RefSeqID CallReason Loc RefBase CallBase Freq LocalSeq Coverage

 Bcl2 1 41 T C 0.345277 tcctgcggattgacatCtctgtgaagcagaagt 153.5

 Bcl2 1 45 G T 0.345277 gcggattgacatttctTtgaagcagaagtctgg 153.5

 Bcl2 1 61 G A 0.380567 gtgaagcagaagtctgAgaatcgatctggaaat 247

 Bcl2 1 104 G C 1 tttactccctctccccCcgactcctgattcatt 239.5

 Bcl2 2 113 G C 0.0952381 tctccccgcgactcctCattcattgggaagttt 252

 Bcl2 2 164 A G 0.351852 agagtgctgaagattgGtgggatcgttgcctta 324

 Bcl2 1 179 T G 0.307851 gatgggatcgttgcctGatgcatttgttttggt 242

Dictionary File (dictionary.csv)

The dictionary file contains multiple columns of information for each of the words that
pass the frequency threshold(s) that were set in the config file, regardless of their
verification status. These columns contain:

 1. Reference sequence ID
 2. 1st base identifying the start position of the ROA
 3. Word
 4. Total coverage of the ROA
 5. Edit distance of the word from reference sequence (# of base changes from ref)
 6. Is the left ‘half’ of the word verified above threshold for fragment generation?
 7. Is the right ‘half’ of the word verified above threshold for fragment generation?
 8. Is the left ‘half’ of the word verified above threshold for SNV call?
 9. Is the right ‘half’ of the word verified above threshold for SNV call?
10. # occurrences of the word (total word coverage)
11. Word coverage – forward sequence direction
12. Word coverage – reverse sequence direction
13. Count of reads with no indels matching the word
14. Count of reads with deletions but no insertions matching the word
15. Count of reads with insertions but no deletions matching the word
16. Count of reads with both insertions and deletions matching the word

The example below was created using a DDiMAP dictionary verbosity setting of 1. A
setting of 0 removes the four CIGAR count data columns. A setting of 2 adds columns
showing coverage contributions of the various fragments for that reference sequence to
the word coverage. Note that the presence of indels in the CIGAR string type does not

mean that the indels were in the portion of the read used to generate the word, only that
the read contained an indel somewhere in its sequence.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
RefSeqID ROAstart Sequence ROAcover EditDist LVerFrag RVerFrag LVerSNV RVerSNV WordCover FwdCover RevCover #NoIndel #DelOnly #InsOnly #InsAndDel

Bcl2 9 GATCTCCGGTTGGGATTCCTGCGGATTGACAT 378 0 0 0 0 1 378 348 30 363 14 1 0

Bcl2 17 GTTGGGATTCCTGCGGATTGACATcTCTtTGA 119 2 0 0 0 1 44 28 16 42 2 0 0

Bcl2 17 GTTGGGATTCCTGCGGATTGACATTTCTGTGA 119 0 0 0 0 1 71 44 27 69 1 1 0

Bcl2 17 GTTGGGATTCCTGCGGATTGACATTTCTtTGA 119 1 0 0 0 0 4 2 2 4 0 0 0

Bcl2 25 TCCTGCGGATTGACATcTCTtTGAAGCAGAAG 106 2 1 1 1 1 39 19 20 39 0 0 0

Bcl2 25 TCCTGCGGATTGACATTTCTGTGAAGCAGAAG 106 0 1 1 1 1 67 31 36 67 0 0 0

Bcl2 33 ATTGACATcTCTtTGAAGCAGAAGTCTGaGAA 102 3 1 1 1 1 31 7 24 31 0 0 0

Bcl2 33 ATTGACATTTCTGTGAAGCAGAAGTCTGGGAA 102 0 1 1 1 1 71 23 48 69 2 0 0

Bcl2 41 cTCTtTGAAGCAGAAGTCTGaGAATCGATCTG 99 3 1 1 1 1 36 14 22 36 0 0 0

Bcl2 41 TTCTGTGAAGCAGAAGTCTGGGAATCGATCTG 99 0 1 1 1 1 63 17 46 61 2 0 0

Bcl2 49 AGCAGAAGTCTGaGAATCGATCTGGAAATCCT 139 1 1 1 1 1 60 25 35 58 2 0 0

Bcl2 49 AGCAGAAGTCTGGGAATCGATCTGGAAATCCT 139 0 1 1 1 1 79 23 56 78 1 0 0

Words that are not verified at the fragment inclusion threshold are not used for fragment
generation unless they exceed the associated unverified inclusion threshold, typically set
below 1.0 so that words that appear at high frequency may be used in mapping to build
coverage in highly mutated regions.

SNV candidates are typically identifed using words that are fully verified using
dictionaries formed at the variant calling threshold. Words that are not verified at the
variant calling threshold may only be used for variant calling if they exceed the
associated unverified word threshold. We recommend that this threshold be set at 1.0 so
that no such identifications are made in the snv.csv file with call reason 3.

Words that occur within a single ROA that are verified at the variant calling threshold are
useful for examining the number and relationship of local allelic variants. In the
sequence field, the variant(s) are shown in lowercase.

Fragment File (fasta.fa)

DDiMAP generates these sequence fragments for the purpose of augmenting the
reference sequences for iterative remapping. Each fragment is associated with a
reference sequence and its position therein. These values, along with a counter, are
combined to form a unique identifier for each fragment using a pattern of
<refSeqID>_Frag_<startPosition>_<fragCounter> to enable DDiMAP post-remapping
analysis. For example, the first few lines of such a file look like this:

>Bcl2_Frag_1_1

GCTCTTGAGATCTCCGGTTGGGATTCCTGCGGATTGACATCTCTTTGAAGCAGAAGTCTGAGAA

>Bcl2_Frag_1_2

GCTCTTGAGATCTCCGGTTGGGATTCCTGCGGATTGACATTTCTGTGAAGCAGAAGTCTGGGAA

>Bcl2_Frag_9_3

GATCTCCGGTTGGGATTCCTGCGGATTGACATCTCTTTGAAGCAGAAGTCTGAGAATCGATCTG

>Bcl2_Frag_9_4

GATCTCCGGTTGGGATTCCTGCGGATTGACATTTCTGTGAAGCAGAAGTCTGGGAATCGATCTG

>Bcl2_Frag_17_5

GTTGGGATTCCTGCGGATTGACATCTCTTTGAAGCAGAAGTCTGAGAATCGATCTGGAAATCCT

>Bcl2_Frag_17_6

GTTGGGATTCCTGCGGATTGACATTTCTGTGAAGCAGAAGTCTGGGAATCGATCTGGAAATCCT

>Bcl2_Frag_25_7

TCCTGCGGATTGACATCTCTTTGAAGCAGAAGTCTGAGAATCGATCTGGAAATCCTCCTAATTT

>Bcl2_Frag_25_8

TCCTGCGGATTGACATTTCTGTGAAGCAGAAGTCTGGGAATCGATCTGGAAATCCTCCTAATTT

Enhanced Reference Sequence File (refSeqEnhanced.fa)

The enhanced reference sequence file includes the original reference sequences, using an
ID line pattern of <refSeqID>_Ref, the generated fragments from the fasta.fa file of the
previous iteration, and optionally, chimeric junction sequences that may be present in the
specimen library using an ID line pattern of Junction_<tailRefSeqID>_<headRefSeqID>.
These are present only if junctionRefSeqFiles are provided. They may be useful if
amplicons are concatenated prior to shearing in DNA library preparation as they
represent in-vitro tail to head recombinants which would lead to mapping and
interpretation difficulties, especially when full head-to-tail ("global") mapping of reads is
used rather than soft clipping ("semi-local"). Reads mapped to these junctions are not
currently used in DDiMAP analysis as they typically are dominated by primers used to
generate the amplicons.
Sample lines from such a file would look like this:

>Bcl2_Ref

GCTCTTGAGATCTCCGGTTGGGATTCCTGCGGATTGACATTTCTGTGAAGCAGAAGTCTG

GGAATCGATCTGGAAATCCTCCTAATTTTTACTCCCTCTCCCCGCGACTCCTGATTCATT

...
TCGCCGCTGCAGACCCCGGCTGCCCCCGGCGCCGCCGCGGGGCCTGCGCTCAGCCCGGTG

CCACCTGTGGTCCACCTGACCCTCCGCCAGGCCGGCGACGACTTCTCCCGCCGCTACC

>Bcl6_Ref

...
>Bcl2_Frag_25_7

TCCTGCGGATTGACATCTCTTTGAAGCAGAAGTCTGAGAATCGATCTGGAAATCCTCCTAATTT

...
>Junction_Bcl6_Bcl2

TCGTGTCTACTATTTCCTTTCAGAGCCGTGATCTTCCTAATGAGAGCCGGCTCTTGAGAT

CTCCGGTTGGGATTCCTGCGGATTGACATTTCTGTGAA

Advanced Topic: How to Add a New Mapper to the Python Script

If you are not using one of the mapper configurations provided in the distributed
DDiMAPIterate.py script, you will need to edit the script to provide information needed
to run the mapper and add information regarding any parameters provided from the

configuration file and/or command line. The areas in which changes need to be made are
described below. Needless to say, saving the modified script under a new name or at
least keeping a backup copy is highly recommended...

Mapper abbreviation:

A single character abbreviation needs to be provided in this line of code following the
format provided.

mapperAbbrs = {'C':'cushaw', 'S':'shrimp', 'B':'bfast', 'W':'bwa-mem', 'N':'novoalign'}

Commands needed to run the mapper:

A set of command line prototypes must be provided for each scenario. A scenario
includes the mapper, read type NT or CS (nucleotide space or color space) indicating the
form of the data (all but SOL1D NGS platforms use NT), and a single or paired end data
indicator (P or S). These go into the aligner_dict name/value paired list following the
pattern in the examples shown below. In these lines, there are variables that are
substituted when the command is to be run (in the examples below, these are DDiFasta,
DDiFastq1, DDiFastq2, DDiProcs, DDiSAM for example, more on this later). Multiple
command lines are needed for some mappers, typically one or more for index generation
and one or more for alignment using this index. The complete set of specifications for
the currently supported configurations are included.

These command lines must account for data compatibility (CS vs NT and P vs S) as well
as DDiMAP compatibility, including output to a SAM formatted file and output of only
one example of alignment per read in that file if by chance a read aligns equally well to
more than 1 separate locations in the reference sequences provided. In cases of a tie, it is
preferable that the mapper be directed to randomly break the tie if it does not do so by
default.

aligner_dict = {

 'C,CS,S':[

 'cushaw3 index DDiFasta -c -p bwtindex',

 'cushaw3 calign -r bwtindex -f DDiFastq1 -t DDiProcs -multi 1 CushawOpts -o DDiSAM'

],

 'C,NT,S':[

 'cushaw3 index DDiFasta -p bwtindex',

 'cushaw3 align -r bwtindex -f DDiFastq1 -t DDiProcs -multi 1 CushawOpts -o DDiSAM'

],

 'C,NT,P':[

 'cushaw3 index DDiFasta -p bwtindex',

 'cushaw3 align -r bwtindex -q DDiFastq1 DDiFastq2 -t DDiProcs -multi 1 CushawOpts -o DDiSAM'

],

 'S,CS,S':[

 'gmapper-cs -N DDiProcs -Q -o 1 --strata --all-contigs ShrimpOpts DDiFastq1 DDiFasta > DDiSAM'

],

 'S,NT,S':[

 'gmapper-ls -N DDiProcs -Q -o 1 --strata --all-contigs ShrimpOpts DDiFastq1 DDiFasta > DDiSAM'

],

 'S,NT,P':[

 'gmapper-ls -N DDiProcs -Q -o 1 --strata --all-contigs ShrimpOpts -1 DDiFastq1 -2 DDiFastq2 DDiFasta >

DDiSAM'

],

 'W,NT,S':[

 'bwa index DDiFasta',

 'bwa mem -t DDiProcs BwaMemOpts DDiFasta DDiFastq1 > DDiSAM'

],

 'W,NT,P':[

 'bwa index DDiFasta',

 'bwa mem -t DDiProcs BwaMemOpts DDiFasta DDiFastq1 DDiFastq2 > DDiSAM'

],

 'N,NT,S':[

 'novoindex DDiNIX DDiFasta',

 'novoalign -r Random -n 100 -o SAM -d DDiNIX -f DDiFastq1 > DDiSAM'

],

 'N,NT,P':[

 'novoindex DDiNIX DDiFasta',

 'novoalign -r Random -n 100 -o SAM NovoOpts -d DDiNIX -f DDiFastq1 DDiFastq2 > DDiSAM'

],

 'B,CS,S':[

 'bfast fasta2brg -f DDiFasta -A 0',

 'bfast fasta2brg -f DDiFasta -A 1',

 'bfast index -f DDiFasta -m 1111111111111111111111 -w 14 -i 1 -A 1 -n DDiProcs',

 'bfast index -f DDiFasta -m 111110100111110011111111111 -w 14 -i 2 -A 1 -n DDiProcs',

 'bfast index -f DDiFasta -m 10111111011001100011111000111111 -w 14 -i 3 -A 1 -n DDiProcs',

 'bfast index -f DDiFasta -m 1111111100101111000001100011111011 -w 14 -i 4 -A 1 -n DDiProcs',

 'bfast index -f DDiFasta -m 111111110001111110011111111 -w 14 -i 5 -A 1 -n DDiProcs',

 'bfast index -f DDiFasta -m 11111011010011000011000110011111111 -w 14 -i 6 -A 1 -n DDiProcs',

 'bfast index -f DDiFasta -m 1111111111110011101111111 -w 14 -i 7 -A 1 -n DDiProcs',

 'bfast index -f DDiFasta -m 111011000011111111001111011111 -w 14 -i 8 -A 1 -n DDiProcs',

 'bfast index -f DDiFasta -m 1110110001011010011100101111101111 -w 14 -i 9 -A 1 -n DDiProcs',

 'bfast index -f DDiFasta -m 111111001000110001011100110001100011111 -w 14 -i 10 -A 1 -n DDiProcs',

 'bfast match -f DDiFasta -A 1 -i 1-10 -k 18 -K 100000 -w 0 -t -n DDiProcs -Q 100000 -l -r DDiFastq1 >

DDiBMF',

 'bfast localalign -f DDiFasta -m DDiBMF -A 1 -n DDiProcs -U -q 20 -Q 100000 -t > DDiBAF',

 'rm DDiBMF',

 'bfast postprocess -f DDiFasta -i DDiBAF -o DDiAligned -O 1 -a 3 -z -n DDiProcs -q 20 -Q 100000 -t >

DDiSAM',

 'rm DDiBAF'

]

 }

Mapper specific optional parameters:

A novel command line option may be added to provide access to this feature from the
command line by adding a new line in the parser definition section following the pattern
shown for the currently supported mappers. This is not a required feature.

 parser.add_argument('--cushaw_opts', type=str, metavar="'options'", help='cushaw

specific options', dest='cushawOpts')

 parser.add_argument('--shrimp_opts', type=str, metavar="'options'", help='shrimp

specific options', dest='shrimpOpts')

 parser.add_argument('--bwamem_opts', type=str, metavar="'options'", help='bwa-mem

specific options', dest='bwaMemOpts')

 parser.add_argument('--novo_opts', type=str, metavar="'options'", help='novoalign

specific options', dest='novoOpts')

Variable substitutions:

A name/value paired list is defined in which a new entries can be added as needed.
Values only used when more than one fastq file is provided are set in the "if" clause
below the initial definition. These variable substitutions are made in the aforementioned
command line prototypes at the time the script is run.

 # set substitutions for aligner commands

 commandsubs={'DDiFastq1':fastqFiles[0],

 'DDiProcs':nProcs,

 'DDiFasta':enhancedFastaFile,

 'DDiBMF':thisAligned + '.bmf',

 'DDiBAF':thisAligned + '.baf',

 'DDiSAM':thisAligned + '.sam',

 'DDiNIX':thisAligned + '.nix',

 'DDiAligned':thisAligned,

 'CushawOpts':cushawOpts,

 'ShrimpOpts':shrimpOpts,

 'BwaMemOpts':bwaMemOpts,

 'NovoOpts':novoOpts}

 if (len(fastqFiles) > 1):

 commandsubs['DDiFastq2']=fastqFiles[1]

