Supplementary Information

Supplementary Figure 1

Supplementary Figure 1. In vitro regulation of FMO3 in primary rat hepatocytes.

Primary rat hepatocytes were pre-treated with PI-103, an inhibitor of PI 3-kinase or rapamycin, an inhibitor of the mTORC1 complex, for 30 minutes prior to insulin stimulation. Data represent the mean \pm SEM of triplicate wells; representative results of three independent experiments are shown. * p < 0.05 (Student's t-test) insulin treated versus untreated or vehicle treated cells.

Fmo5

Supplementary Figure 2. Knockdown of FMO3 reduces FoxO1 in vivo and in vitro.

Four to six week old male Flox and LIRKO mice were treated with control or FMO3 ASO for seven weeks and sacrificed in the non-fasted state, at which point body weight was measured (**a**) and plasma was taken for measuring chemistries (**b**). Gene expression in liver (**c**, **j**) or other tissues (**d**) was measured by real-time PCR. Cholesterol and triglycerides were measured in both plasma drawn after a four-hour fast (**e**) and liver (**f**). Data represent the mean \pm SEM; n = 5 - 7; * p < 0.05 (Student's t-test), LIRKO versus Flox mice treated with the control ASO; [#] p < 0.05 control versus FMO3 ASO treated LIRKO mice. (**g**) Schematic of the shRNAs and ASOs against FMO3 used in this study. (h) 293A cells were transfected with wildtype mouse FMO3 and either shlacZ, shFMO3#1, shFMO3#2 or shFMO3#3, to show knockdown of FMO3. A representative western blot shown on left, and quantification of two independent experiments is shown on right. Data represent the mean \pm SEM; * p < 0.05 (Student's t-test) versus control shRNA transfected wells. (**i**, **k**) H2.35 hepatoma cells were transfected with shRNAs as indicated. (**i**) Whole cell lysates were prepared and subjected to western blotting. Representative western blot shown on left, and quantification of thet, and quantification of three independent experiments is shown on right. (**k**) Alternatively, gene expression was measured using real-time PCR; representative results of three independent experiments are shown; n = 3 replicates per condition. Data represent the mean \pm SEM; * p < 0.05 (Student's t-test) versus control shRNA transfected wells. (**k**) Alternatively, sentence of three independent experiments are shown; n = 3 replicates per condition. Data represent the mean \pm SEM; * p < 0.05 (Student's t-test) versus control shRNA transfected wells.

Supplementary Figure 3. Knockdown of FMO3 in LIRKO mice on atherogenic diets.

(**a** to **c**) Four to six week old male Flox and LIRKO mice were placed on an atherogenic Paigen diet and treated with control or FMO3 ASO for 16 weeks. Mice were sacrificed in the non-fasted state, at which time body weights were measured (**a**) and livers collected for measurement of lipids (**b**) and gene expression (**c**). Data represent the mean \pm SEM; n = 5 - 7; * p < 0.05 (Student's t-test) LIRKO versus Flox mice treated with the control ASO; [#] p < 0.05 (Student's t-test) control versus FMO3 ASO treated LIRKO mice. (**d** to **g**) Four to six week old male (**d**, **e**) and female (**f**, **g**) Flox and LIRKO mice were placed on a Western diet and treated with control or FMO3 ASO for five weeks. Glucose tolerance testing was performed after four doses of ASO (**d**, **f**) and four-hour fasted plasma was collected for cholesterol measurement after five doses of ASO (**e**, **g**). Data represent the mean \pm SEM; n = 5; * p < 0.05 (Student's t-test) LIRKO versus Flox mice treated with the same ASO; [#] p < 0.05 (Student's t-test) control versus FMO3 ASO treated LIRKO mice.

Supplementary Figure 4. FMO3 and glucose metabolism.

(a) Six week old male *ob/ob* mice were treated with control ASO (Con) or ASO targeting the insulin receptor (INSR) for four weeks and were sacrificed in the non-fasted state. Protein levels were measured by western blotting whole cell lysates. (b, c) Four to six week old female Flox and LIRKO mice were treated with control or FMO3 ASO for seven weeks and sacrificed in the non-fasted state. Hepatic gene expression (b) was measured by real-time PCR. Pyruvate tolerance testing (c) was performed after six weeks of ASO administration. Data represent the mean \pm SEM; n = 5; * p < 0.05 (Student's t-test) Flox versus similarly treated LIRKO mice; [#] p < 0.05 (Student's t-test) control versus FMO3 ASO treated LIRKO mice. (d) LocusZoom¹ was used to query the Meta-Analysis of Glucose and Insulin-related traits Consortium (MAGIC)² data set (n = 15,234 nondiabetic individuals) for associations between the FMO3 locus and glucose levels. Shown above are associations with glucose levels measured two hours after a glucose challenge and adjusted for body mass index. The purple diamond indicates the lead SNP (p = 4.51 x 10⁻⁵). Evaluated SNPs are colored based on their correlation with the lead SNP.

Fig. 2p

Fig. 2s

Supplementary Figure 5. Uncropped scans of key western blots.

Supplementary Table 1. Real-time PCR primers used in this study.

Gene	Sequence	
Mouse-Fmo3-F	GGAACTTGCACTTTGCCTTC	
Mouse-Fmo3-R	TAGGAGATTGGGCTTTGCAC	
Mouse-Fmol-F	AAACAAGCATAGCGGGTTTG	
Mouse-Fmol-R	ATCCGGTTTTGCGTTGATAG	
Mouse-Fmo2-F	AGCTGTGGTCTTCGAGGATG	
Mouse-Fmo2-R	GGCAAGCTACACAAGCCTTT	
Mouse-Fmo4-F	CGGAGCAGCTCATTAAAAGG	
Mouse-Fmo4-R	CTGAGTGAGCTCGTCCATGT	
Mouse-Fmo5-F	TGCCCTCACAAAGTGAAATG	
Mouse-Fmo5-R	GCTGGCTGTCCACATACCTT	
Mouse-FoxO1-F	TCCCATCATGACAGAGCAGGATGA	
Mouse-FoxO1-R	CAGACTGGGCAGCGTAGACGC	
Mouse-Pck1-F	ATCCCAACTCGAGATTCTGC	
Mouse-Pck1-R	CATGGCTGCTCCTACAAACA	
Mouse-G6pc-F	TGGCTTTTTCTTTCCTCGAA	
Mouse-G6pc-R	TCGGAGACTGGTTCAACCTC	
Mouse-Igfbp1-F	ATTAGCTGCAGCCCAACAGA	
Mouse-Igfbp1-R	GACACACCAGCAGAGTCCAG	
Mouse-Srebp-2-F	GCGTTCTGGAGACCATGGA	
Mosue-Srebp-2-R	ACAAAGTTGCTCTGAAAACAAATCA	
Mouse-Ldlr-R	GAGGAGCAGCCACATGGTAT	
Mouse-Ldlr-F	GCTCGTCCTCTGTGGTCTTC	
Mouse-Hmgcr-F	CTTGTGGAATGCCTTGTGATTG	
Mouse-Hmgcr-R	AGCCGAAGCAGCACATGAT	
Mouse-Fdps-R	ATGGAGATGGGCGAGTTCTTC	
Mouse-Fdps-F	CCGACCTTTCCCGTCACA	
Mouse-Fdft1-F	CCAACTCAATGGGTCTGTTCCT	
Mouse-Fdft1-R	TGGCTTAGCAAAGTCTTCCAACT	
Mouse-Cyp51-F	AGCTGTACGCAGACCTGGAT	
Mouse-Cyp51-R	ACGCCCGTCCTTGTATGTAG	
Mouse-Srebp-1c-F	GGCCCGGGAAGTCACTGT	
Mouse-Srebp-1c-R	GGAGCCATGGATTGCACATT	
Mouse-Fasn-F	GCTGCGGAAACTTCAGGAAAT	
Mouse-Fasn-R	AGAGACGTGTCACTCCTGGACTT	
Mouse-Cyp27a1-F	GGAGGATTGCAGAACTGGAG	
Mouse-Cyp27a1-R	TGCGGGACACAGTCTTTACTT	
Mouse-Cyp7a1-F	GTCCGGATATTCAAGGATGCA	
Mouse-Cyp7a1-R	AGCAACTAAACAACCTGCCAGTACTA	
Mouse-Cyp8b1-F	GGAACAGCCTATCCTTGGTGA	
Mouse-Cyp8b1-R	GGCCCCAGTAGGGAGTAGAC	
Mouse-Abcal-F	CATCCTCTCCCAGAGCAAAA	
Mouse-Abcal-R	CCACATCCACAACTGTCTGG	
Mouse-Abcg5-F	TGCCCATTCCTTTAAAAATCC	
Mouse-Abcg5-R	GATGAACTGGACCCCTTGG	

Mouse-Abcg8-F	GGGGCTGATGCAGATTCA		
Mouse-Abcg8-R	GTAGCTGATGCCGATGACAA		
Mouse-Bsep-F	AAGGACAGCCACACCAACTC		
Mouse-Bsep-R	CCAGAACATGACAAACGGAA		
Mouse-Oatp1-F	TAATCGGGCCAATCTTC		
Mouse-Oatp1-R	ACTCCCATAATGCCCTTGG		
Mouse- <i>Ntcp</i> -F	TCCGTCGTAGATTCCTTTGC		
Mouse- <i>Ntcp</i> -R	AGGGGGACATGAACCTCAG		
Mouse- <i>Mrp2</i> -F	TCTGTGAGTGCAAGAGACAGGT		
Mouse- <i>Mrp2</i> -R	TCCAGGACCAAGAGATTTGC		
Mouse-Lxr-F	ACTTCAGTTACAACCGGGAAGA		
Mouse-Lxr-R	GAGCAAACTCAGCATCATTGAG		
Mouse-Fxr-F	CACGGTTGTAAATACAGACTAGATAG		
Mouse-Fxr-R	TTGATTTAATTAGGCCAAAAGG		
Mouse-Shp-F	CTGCCTGGAGTCTTTCTGGA		
Mouse-Shp-R	GGTACCAGGGCTCCAAGACT		
Mouse-36b4-F	AGATTCGGGATATGCTGTTGGC		
Mouse-36b4-R	TCGGGTCCTAGACCAGTGTTC		
Mouse-18s-F	GTAACCCGTTGAACCCCATT		
Mouse-18s-R	CCATCCAATCGGTAGTAGCG		
Mouse-Tat-F	CACGGCTAGACACAGCTCAA		
Mouse-Tat-R	CTATCCAGTCGGGAGGAGGT		
Rat-36b4-F	TTCCCACTGGCTGAAAAGGT		
Rat-36b4-R	CGCAGCCGCAAATGC		
Rat-Fmo3-F	GTGTTTTCCAGACTTCCC		
Rat-Fmo3-R	ATACCACCAGTCAGAAAT		
Rat-Fmo1-F	GGTCCTGAAAGGTGCGACTA		
Rat- <i>Fmo1</i> -R	CCAAATCCGCTATGCTTGTT		
Rat-Fmo2-F	CCTGGTGCCTCAGAACAAAT		
Rat-Fmo2-R	CTTTGATGGCTCCGTACAGC		
Rat-Fmo4-F	CAGTGGAATAGCAGCACAGG		
Rat-Fmo4-R	TTCAAAGGGTAGCCACCAAC		
Rat-Fmo5-F	TGAAGGTGAAAGGCAATGTG		
Rat-Fmo5-R	TGTAGCCTGTGGCAAAGATG		
Rat-Pck1-F	ATGAAGTTTGATGCCCAAGG		
Rat- <i>Pck1</i> -R	ACCCCCATCACTTGTCTCAG		
Rat-Srebp-1c-F	GCGCTACCGTTCCTCTATCA		
Rat-Srebp-1c-R	ACATCTGTGCCTCCTCCACT		
Rat-Tat-F	AGCTTCCTCAAGTCCAATGC		
Rat- <i>Tat</i> -R	TTCATCTCAAGTCCAATGC		

	Flox or Wildtype Male Mice				Primary Rat	
_	Liver	WAT	Lung	Spleen	Muscle	Hepatocytes
Fmo3	31	28	23	31	28	27
Fmol	20					26
Fmo2	24					32
Fmo4	25					26
Fmo5	19					23
FoxO1	20					
Pck1	15					25
Igfbp1	21					
Srepb-2	20					
Hmgcr	20					
Fdps	21					
Fdft1	19					
Cyp51	20					
Ldlr	19					
Srebp-1c						24

Supplementary Table 2. C_T values of genes measured by real time PCR.

Supplementary Table 3. Antibodies used in this study.

Protein	Catalog #	Company	
FMO3	Ab126790	Abcam	
FoxO1	2880	Cell Signaling	
NUP98	2598	Cell Signaling	
INSR	sc-711	Santa Cruz Biotechnology	
SR-B1	NB400-101	Novus Biologicals	
Sortilin	Ab16640	Abcam	
Beta-actin	sc-47778	Santa Cruz Biotechnology	
Alpha-tubulin	sc-8035	Santa Cruz Biotechnology	

References

1. Pruim, R.J. et al. LocusZoom: regional visualization of genome-wide association scan results. *Bioinformatics* **26**, 2336-7 (2010).

2. Saxena, R. et al. Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge. *Nat Genet* **42**, 142-8 (2010).