>

400 5
’é 350 ° 5
g ;
o 300 ) =
© [
S o 91 &)
= 250 ofl ‘
] T 50
2 e
5 |
< 200 ‘ I i o
© 00 [0e
130
150 o 6°
8 o o
100 E8.5, 0 hours) alE9-5. +24 hours) 4E10.5, +48hours)
10 15 20 25 30 35 40
Somites
200
DV position
180 w— 0-10%
10-20%
160 e 20-30% |
= s 30-40%
= 140 — o
< 40-50%
a 120
&
o 100
m
G 80
60 7\
40 x ,
N A
0

100 150 200 250 300 350 400
NT Size (um)

Supplementary Figure 1 Comparing Shh with GBS-GFP at different developmental
times reveals a non-linear relationship.

A To provide more accurate staging of neural tube development we exploited the linear
relationship between somite number and neural tube size after E9.5 of development
(along the ventral-dorsal axis). The mean is indicated by the red cross, the standard
deviation by the error bar and the max and min by the blue circles. Each somite
represents approximately 2 hours of developmental time, hence somite stage and
embryonic day staging are related as labeled on the x-axis.

B A section from an embryo at the 30 somite stage immunostained for Shh (C) and
Nkx2.2 (C). The ventral limit of Nkx2.2 expression at this stage corresponds to the floor
plate boundary as shown in Supplementary Figure 1B.

C An independent data set was derived for the GBS-GFP. The data were collected from
23 differently staged embryos and comprises 65 sections. The plot was derived in the
same way as in Figure 2 (in this case there is no interpolation of the curves and error
bars). The figure reveals the same temporal adaptation over time for each different

position of the neural tube (data has been reproduced from ref. 1).
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Supplementary Figure 2 Bayesian model analysis and posterior parameter
distributions.

A The full set of reactions used in the model. The reaction schema for each protein or
RNA are illustrated (left) alongside a set of ordinary differential equations (ODE)s
(right) which detail the dynamics and regulatory functions associated with each
reaction. Degradation rates are denoted deg_, transcription rates tr_, translation rates
tl, protein conversion rates conv_, protein activation rates act_, forward reaction rates
k_, and binding affinities K_. Shh binds to Ptch1 (abbreviated to Ptc) by mass action
binding. Ptch1 inhibits GliFL conversion to GliA via a first order Hill function.
Thermodynamic regulation functions are used to determine gene expression in all cases
- binding of all the transcription factors is assumed to occur at two independent sites.
(Note that GliR is assumed to always act as a strong repressor with ¢_GIiR=0 hence these
terms are not shown in the regulatory function).

B The full set of parameters used in the model and their associated units. The prior
ranges used in the Bayesian analysis are shown for each of the model mechanisms. Log
uniform ranges were used in all cases - hence a value of 0 indicates 1, where a zero value
was used in the model this is indicated by the null value in the table. When the Gli
degradation mechanism was disabled the degradation rates of GliA and GliR were set to
equal the degradation rate of GliFL.

C-AF The marginal posterior distribution is shown for each of the derived parameters in
the different models, coloured according to the key in W. The box plots show the median
(central bar), 25-75 percentiles (box) and ~1-99 percentiles (whiskers) of the marginal
distribution for each of the parameters indicated. Note that in the cases where no
boxplot is shown this indicates that the parameter did not feature in that particular
mechanism (i.e was fixed at zero). The parameters are described in full in

Supplementary Figure 2B where the prior ranges and units are specified.
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Supplementary Figure 3 Gli2 transcriptional regulation in the neural tube

This figure is reproduced from ref. 2. G-] In situ staining of Gli2 transcripts reveals that
Gli2 transcriptional down regulation between E9.5 and E10.5 is restricted to ventral

regions of the neural tube.
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