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SUMMARY

Post-translational ribosomal protein hydroxylation is
catalyzed by 2-oxoglutarate (2OG) and ferrous iron
dependent oxygenases, and occurs in prokaryotes
and eukaryotes. OGFOD1 catalyzes trans-3 prolyl
hydroxylation at Pro62 of the small ribosomal subunit
protein uS12 (RPS23) and is conserved from yeasts
to humans. We describe crystal structures of the hu-
man uS12 prolyl 3-hydroxylase (OGFOD1) and its
homolog from Saccharomyces cerevisiae (Tpa1p):
OGFOD1 in complex with the broad-spectrum 2OG
oxygenase inhibitors;N-oxalylglycine (NOG) and pyr-
idine-2,4-dicarboxylate (2,4-PDCA) to 2.1 and 2.6 Å
resolution, respectively; and Tpa1p in complex with
NOG, 2,4-PDCA, and 1-chloro-4-hydroxyisoquino-
line-3-carbonylglycine (a more selective prolyl hy-
droxylase inhibitor) to 2.8, 1.9, and 1.9 Å resolution,
respectively. Comparison of uS12 hydroxylase struc-
tures with those of other prolyl hydroxylases, in-
cluding the human hypoxia-inducible factor (HIF)
prolyl hydroxylases (PHDs), reveals differences be-
tween the prolyl 3- and prolyl 4-hydroxylase active
sites, which can be exploited for developing selec-
tive inhibitors of the different subfamilies.

INTRODUCTION

The discovery that collagen biosynthesis involves oxygenase

catalyzed hydroxylation of prolyl residues was important

because it expanded the field of post-translational modifica-

tions. Subsequently, C-3 and C-4 prolyl hydroxylations were

identified in collagen-like domains of multiple other proteins

and non-protein natural products (Hausinger, 2004; Myllyharju

and Kivirikko, 2004; Gorres and Raines, 2010). More recently,

prolyl 4-hydroxylation of hypoxia-inducible factor (HIF) a sub-

units as catalyzed by the HIF prolyl hydroxylases (PHDs or

EGLNs) has been shown to play a central role in enabling the

hypoxic response in humans and other animals (Kaelin and Rat-

cliffe, 2008; Schofield and Ratcliffe, 2004). All identified C-3 and
C-4 prolyl hydroxylases (P3H and P4H, respectively) are part of

the 2-oxoglutarate (2OG) and ferrous iron dependent oxygenase

superfamily (Hausinger, 2004; Loenarz and Schofield, 2008,

2011). 2OG oxygenases catalyze hydroxylation (and N-deme-

thylation via hydroxylation) reactions of a diverse set of sub-

strates, and in eukaryotes have roles in metabolism, transcrip-

tional regulation, epigenetics, and nucleic acid modification

and repair (Hausinger, 2004; Schofield and Ratcliffe, 2004; Klose

et al., 2006; Falnes et al., 2007; Loenarz and Schofield, 2008,

2011; Jia et al., 2013).

The range of functions identified for 2OG oxygenases has

recently expanded to include the post-translational modification

of ribosomal and ribosome-associated proteins as catalyzed by

ribosomal oxygenases (ROXs) (Ge et al., 2012; Feng et al., 2013;

Katz et al., 2014; Loenarz et al., 2014; Singleton et al., 2014;

Figure 1). OGFOD1 in Homo sapiens, Sud1 in Drosophila

melanogaster, and Tpa1p in Saccharomyces cerevisiae were

found to catalyze prolyl 3-hydroxylation of the highly conserved

Pro62 and Pro64 of uS12 (RPS23) in humans and yeast, respec-

tively (Ban et al., 2014; Katz et al., 2014; Loenarz et al., 2014;

Singleton et al., 2014). Although the biological roles for uS12 hy-

droxylation are still emerging, it has been reported that in yeast it

can regulate translation in a sequence context dependent

manner and that it is involved in stress responses (Saito et al.,

2010; Katz et al., 2014; Loenarz et al., 2014; Singleton et al.,

2014). Ofd1, a homolog of OGFOD1/Tpa1p from Schizosacchar-

omyces pombe, binds to the helical repeat protein Nro1 in an

O2-dependent manner (Rispal et al., 2011; Yeh et al., 2011),

thus inhibiting Ofd1 binding to Sre1N, a homolog of the sterol

regulatory element binding protein (Lee et al., 2009). In humans,

a distinct ROX subfamily, more closely related to the JmjC

domain subfamily, comprising MYC-induced nuclear antigen

53 kDa (MINA53) and nucleolar protein 66 kDa (NO66) catalyzes

histidyl hydroxylation of human ribosomal proteins uL15 (L27A)

and uL2 (L8), respectively. A prokaryotic homolog of MINA53/

NO66, YcfD, catalyzes arginyl hydroxylation of ribosomal protein

uL16 (L16) (Ge et al., 2012; Figure 1). These findings have led to

the proposal that 2OG oxygenases are widespread regulators of

ribosomal processivity, translation rate, and translational accu-

racy (Keeling et al., 2006; Wehner et al., 2010; Katz et al.,

2014; Loenarz et al., 2014; Singleton et al., 2014).

The first human prolyl hydroxylase (PH) crystal structures to

be reported were of the HIF PH (PHD2) (McDonough et al.,
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Figure 1. Post-Translational Hydroxyl-

ations Catalyzed by Ribosomal Protein

Prolyl- and Related 2-Oxoglutarate Oxy-

genases

(A and B) OGFOD1 catalyzes trans C-3 prolyl hy-

droxylation (A), whereas yeast Tpa1p and Ofd1

catalyze trans C-3 and/or C-4 hydroxylations (B).

The Leprecan subfamily of animal collagen PHs

(CP3H) also catalyze C-3 prolyl hydroxylation

(Vranka et al., 2004).

(C) The HIF PHs (PHDs) and collagen P4Hs

(CP4Hs) catalyze trans C-4 prolyl hydroxylation

(Gorres and Raines, 2010).

(D)MYC-induced nuclear antigen 53 (MINA53) and

nucleolar protein 66 (NO66) are human ribosomal

protein hydroxylases catalyzing C-3 histidyl hy-

droxylation.

(E) YcfD is a bacterial ribosomal hydroxylase that

catalyzes C-3 arginyl hydroxylation.

(F) Lysyl hydroxylases with different regio-

and stereoselectivities have been identified:

pro-collagen lysyl hydroxylases (PLODs) (Myllyharju and Kivirikko, 2004), a eukaryotic release factor 1 (eRF1) hydroxylase (JMJD4) (Feng et al., 2013),

and a splicing regulatory protein (U2AF) hydroxylase (JMJD6) (Webby et al., 2009).

All hydroxylations are coupled to the oxidation of 2OG to give succinate and CO2.
2006). These studies revealed that the PHs contain a ‘‘distorted’’

double-stranded b helix (DSBH) fold characteristic of 2OG

oxygenases, and possess a mobile b2-b3 ‘‘finger’’ loop and

C-terminal helix that are important for substrate recognition.

Structures of other PHs, including those acting on collagen-

like proteins (Koski et al., 2007) and a recently identified bacte-

rial trans-4 PH (PPHD) (Scotti et al., 2014), have led to the

proposal that PHs comprise a distinctive subfamily of 2OG oxy-

genases that share a common ancestor (Eriksson et al., 1999;

Clifton et al., 2001). Prior to its assignment as a uS12 P3H, crys-

tal structures of Tpa1p revealed that it contains tandem DSBH

domains, only one of which, the N-terminal domain, was pre-

dicted to harbor the catalytic machinery (Kim et al., 2009; Henri

et al., 2010).

We report crystal structures of human OGFOD1 and its yeast

homolog Tpa1p in complex with inhibitors. Combined with struc-

turally informed activity analyses on active site variants in cells,

the results provide a basis for a detailed molecular understand-

ing of the regio- and stereoselectivity for different subfamilies of

the PHs, further inform on their evolution, and will enable the

design of selective PH inhibitors.

RESULTS

Following optimization of hits from high-throughput crystalliza-

tion trials, diffraction quality crystals for full-length H. sapiens

OGFOD1 (542 amino acids [aa], 63 kDa) and S. cerevisiae

Tpa1p (644 aa, 74 kDa) in complex with Mn(II) and inhibitors

were obtained (catalytically inactive Mn(II) was used as an

Fe(II) surrogate) (Table S1). We determined structures for

OGFOD1 and Tpa1p in complex with the broad-spectrum 2OG

oxygenase inhibitors N-oxalylglycine (NOG) and pyridine-2,4-di-

carboxylate (2,4-PDCA) (Rose et al., 2011). In addition, a struc-

ture of Tpa1p in complex with 1-chloro-4-hydroxyisoquinoline-

3-carbonylglycine (IOX3), a 2OG competitive inhibitor closely

related to compounds in clinical trials as a PHD inhibitor, was

determined (Chowdhury et al., 2013).
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OGFOD1 crystallized in both trigonal (OGFOD1:Mn(II):NOG)

and orthorhombic (OGFOD1:Mn(II):2,4-PDCA) crystal systems

with either one or four molecules per asymmetric unit (ASU),

respectively. Tpa1p crystals were easier to obtain than OGFOD1

and were more amenable to crystallization with several inhibi-

tors, including IOX3. Tpa1p crystals were monoclinic and con-

tained one molecule in the ASU as for the reported Tpa1p struc-

tures (Kim et al., 2009; Henri et al., 2010). Structures were

determined by molecular replacement using Tpa1p as a search

model followed by iterative cycles ofmodel fitting and refinement

(Table 1).

We investigated the importance of selected residues of

OGFOD1 and Tpa1p, using a yeast cell assay that qualitatively

assesses the functional consequence of variants of OGFOD1

or Tpa1p catalyzed yeast uS12 prolyl hydroxylation (Loenarz

et al., 2014). In wild-type S. cerevisiae, or S. cerevisiae in which

the gene encoding for TPA1 is replaced byOGFOD1, a decrease

in uS12 hydroxylation activity leads to decreased synthesis of a

red pigment due to the inhibition of nonsense codon read-

through of an adenine biosynthesis gene (Namy et al., 2003).

Overall Architecture of OGFOD1
The structure of OGFOD1 consists of nine a helices, six 310 he-

lices, and 24 b strands that fold into two distinct DSBH domains

(Figures 2 and S1A). The ‘‘catalytic’’ metal binding N-terminal

domain (NTD, 24–238) and the C-terminal domain (CTD, 270–

542) are connected by a linker region (239–269) and pack tightly

against each other via their ‘‘minor’’ b sheets (as defined below).

The NTD of OGFOD1 contains six helices (3101, 3102, a1–a4)

and 13 b strands (b1–b13) (Figures 2 and S1A). The DSBH core

of the NTD comprises 8 b strands (I–VIII), which form two b

sheets (major and minor) that fold to form a b sandwich within

which the 2OG binding pocket and metal binding site are

located. Four antiparallel b strands (b7(II)-b12(VII)-b9(IV)-b10(V))

form the minor b sheet. Nine antiparallel b strands (b1-b2-

b3-b11(VI)-b8(III)-b13(VIII)-b6(I)-b5-b4) form the major b sheet.

b Strands b4 and b5 form a ‘‘hairpin’’ (b4-b5 hairpin) that outlines



Table 1. Crystallographic Data Collection and Refinement Statistics

Protein OGFOD1 Mn2+ NOG OGFOD1 Mn2+ 2,4-PDCA Tpa1p Mn2+ NOG Tpa1p Mn2+ 2,4-PDCA Tpa1p Mn2+ IOX3

X-Ray source Diamond Light

Source beamline I04

Diamond Light Source

beamline I04-1

In-house Diamond Light Source

beamline I04

Diamond Light

Source beamline I04

Wavelength (Å) 0.83440 0.97949 1.5418 0.83440 1.2716

PDB acquisition code 4NHX 4NHY 4NHL 4NHK 4NHM

Resolutiona (Å) 45.2–2.10 (2.18–2.10) 48.2–2.60 (2.69–2.60) 29.7–2.84 (2.94–2.84) 48.6–1.90 (1.97–1.90) 46.9–1.90 (1.97–1.90)

Space group P3221 P21212 C2 C2 C2

Unit Cell Dimensions

a, b, c (Å) 64.4, 64.4, 232.0 108.7, 130.5, 175.8 168.2, 67.3, 71.0 168.0, 67.7, 70.9 169.4, 67.6, 71. 5

a, b, g (�) 90, 90, 120 90, 90, 90 90, 105.1, 90 90, 104.9, 90 90, 105.3, 90

Molecules per ASU 1 4 1 1 1

Wilson B factor (Å2) 43.8 42.3 44.5 35.3 34.6

Total no. of reflections

observed

536,556 419,736 68,118 396,484 404,304

No. of unique

reflectionsa
33,097 (2,981) 76,983 (7,587) 18,332 (1,806) 59,886 (5,937) 61,321 (6,037)

Multiplicitya 16.2 (6.1) 5.5 (5.5) 3.7 (3.7) 6.6 (5.9) 6.6 (6.3)

Completenessa (%) 99.1 (91.7) 100.0 (100.0) 100.0 (100.0) 99.0 (98.2) 99.4 (98.5)

I/s(I)a 17.4 (2.5) 12.7 (1.9) 7.4 (2.1) 24.7 (2.5) 26.5 (2.3)
bRcryst 0.1887 0.1854 0.1810 0.1546 0.1449
cRfree 0.2154 (6.1) 0.2278 (2.6) 0.2425 (10.0) 0.1758 (3.3) 0.1704 (3.3)

Deviation from Idealized Geometry

Bond lengths (Å) 0.006 0.007 0.011 0.010 0.010

Bond angles (�) 1.0 0.9 1.3 1.2 1.3

Average B factord (Å2)

All atoms 50.8 (3,970) 61.1 (15,237) 42.7 (4,467) 44.8 (4,776) 42.4 (4,974)

Protein 50.6 (3,777) 61.2 (15,084) 42.9 (4,382) 44.6 (4,380) 41.5 (4,407)

Inhibitor 35.2 (10) 50.7 (48) 33.0 (10) 34.5 (12) 35.1 (19)

Metal (Mn2+) 31.9 (1) 47.4 (4) 34.3 (1) 28.3 (1) 23.5 (1)

Water 54.9 (175) 43.7 (83) 31.4 (74) 46.2 (359) 49.7 (535)

Ramachandran Plot

Favored (%) 96.7 96.0 95.7 98.0 98.3

Allowed (%) 3.3 4.0 4.3 2.0 1.7

Disallowed (%) 0 0 0 0 0
aHigh-resolution shell in parentheses.
bRcryst =

PjjFobsj � jFcalcjj/jFobsj.
cPercentage of the total reflections used for Rfree calculation in parentheses.
dNumbers of atoms in parentheses.
approximately half of the proposed substrate binding groove

near the active site (see below). A cluster of five helices (3101,

a1–a4) buttress the major b sheet of the NTD.

The CTD of OGFOD1 lacks a metal binding site and contains

nine helices (3103–3106, a5–a9) and 11 b strands (b14–b24) (Fig-

ures 2 and S1A). Seven antiparallel b strands (b14-b22(bVI0)-
b19(bIII0)-b24(bVIII0)-b17(bI0)-b16-b15) form the major b sheet,

and four antiparallel b-strands (b18(bII0)-b23(bVII0)-b20(bIV0)-
b21(bV0)) form the minor b sheet at the CTD DSBH core. In addi-

tion, a cluster of six helices (3103, 3104, a6–a9) buttress the major

b sheet of the CTD. Despite the common DSBH fold, the NTD

and CTD display relatively low sequence and structural similarity

to each other (sequence identity 12%; root-mean-square devia-

tion [rmsd] value of 2.6 Å over 187 Ca atoms).
Comparison of OGFOD1 and Tpa1p
Superimposition of the OGFOD1 and Tpa1p structures reveals

that the NTDs are well conserved (sequence identity 33%;

rmsd 1.8 Å over 201Ca atoms) (Figure 3). At least in the crystalline

state, the CTD of OGFOD1 appears to be more compact than

that of Tpa1p (sequence identity 23%; rmsd 2.0 Å over 186 Ca

atoms). OGFOD1 also has a shorter loop (313–318OGFOD1) linking

a7 and the b15-b16 hairpin corresponding to 383–402Tpa1p. The

helices and loops (417–470Tpa1p) between 3104 and a8 and the

extension (518–532Tpa1p) between the b strands bII0(b18) and
bIII0(b19) in the CTD DSBH of Tpa1p are absent from OGFOD1

(Figures 3 and 4).

The CTD of OGFOD1 differs from that of Tpa1p by the pres-

ence of an additional 310 helix, 3106 (518–531OGFOD1) that links
Structure 23, 639–652, April 7, 2015 ª2015 The Authors 641



Figure 2. Ribbon Representations Showing

an Overall View of the OGFOD1 Crystal

Structure

Coloring scheme: a helices and 310 helices (blue),

b strands forming the core double-stranded

b-helix (DSBH) fold (pink), b strands forming the

b4-b5 hairpin (green), and all other strands (yel-

low). The DSBH b strands are additionally labeled

with Roman numerals as in Clifton et al. (2006). A

hypothetical position of the disordered acidic

region (60 residues) linking a9 and b17 in the

OGFOD1 C-terminal domain (CTD) is represented

by a dashed line.
b23 and b24, and an ‘‘acidic’’ disordered region (371–430OGFOD1)

of unknown function that is not observed in the OGFOD1 elec-

tron density maps (Figures 2 and 3). The CTD helices (3103–

3105, a6–a9) that buttress the major b sheet are structurally

conserved in both OGFOD1 and Tpa1p. In general, the catalytic

NTDs of OGFOD1 and Tpa1p are very similar, but the CTDs are

less so, possibly highlighting differences in regulatory mecha-

nisms that may exist between the human and yeast uS12 hy-

droxylases (Lee et al., 2009; Yeh et al., 2011; Katz et al., 2014;

Loenarz et al., 2014; Singleton et al., 2014; Figure 4).

There are clear structural differences between the NTD-CTD

linker regions of OGFOD1 and Tpa1p (Figure 3). In OGFOD1,

the NTD-CTD linker region comprises 31 residues (239–269),

eight of which are prolines, and has loop secondary structure.

The high proline residue content apparently serves to rigidify

the linker conformation. The linker region in Tpa1p is longer

than in OGFOD1, comprising 95 residues (247–341) with four a

helices (residues 259–266, 269–277, 294–304, and 332–339)

and one 310 helix (279–282), and low proline content. In OG-

FOD1, the buried surface area between the NTD and CTD is

�700 Å2, and involves four hydrogen bonds and two salt bridges.

In contrast, in Tpa1p the buried surface area is�1000 Å2, with 17

hydrogen bonds and four salt bridges (excluding the NTD to CTD

linker region). Despite the presence of more intramolecular inter-

actions at the domain interface, there is no substantial difference

in the relative positions of the NTD and CTD in OGFOD1

and Tpa1p structures (sequence identity 27%; rmsd 2.5 Å over

408 Ca atoms).

Previous structural studies on Tpa1p, which is reported to be a

homodimer in solution, identified a large dimerization interface

between the CTDs of two protomers (buried surface area

�1900 Å2) (Kim et al., 2009; Henri et al., 2010; Figure 3B). In
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contrast, the OGFOD1 structure does

not share an intermolecular interface in

this region despite having a crystal pack-

ing arrangement similar to that of Tpa1p

(Figure 3). This observation correlates

with our native PAGE results showing

that OGFOD1 does not form oligomers,

whereas Tpa1p forms a dimer under

non-denaturing conditions (Figure 5H).

The observed Tpa1p CTD dimerization

interface comprises structural elements

that are absent from OGFOD1, including
the elongated NTD-CTD linker region (Tpa1p residues 247–

341, 417–470, and 518–532) (Figures 3 and 4).

Structurally informed sequence comparison reveals that the

S. pombe Ofd1 has, like OGFOD1, a relatively short NTD-CTD

linker sequence, and that structural dimerization elements

observed in Tpa1p are absent from Ofd1 (Figure 4). Sequence

analysis indicates that the loop linking the b strands b(II0) and
b(III0) in Ofd1 and OGFOD1 (414–420Ofd1, 450–458OGFOD1, 518–

532Tpa1p) is shorter than in Tpa1p, where it is involved in dimeriza-

tion (Kim et al., 2009; Figure 4). Thus, overall Ofd1 is more like

OGFOD1 than Tpa1p in the observed Tpa1p dimerization regions.

OGFOD1 and Tpa1p Active Site and Inhibitor Binding
The active site of OGFOD1 is similar to that of Tpa1p (Figures 5A–

5E). The OGFOD1 active site contains an HXD.Hmetal binding

facial triad (residues His155, Asp157, and His218), the side

chains of which octahedrally coordinate the metal along with

the inhibitor and a water molecule (W1, Figure 5A). His155 and

Asp157 are positioned on b strand bII(b7) and the loop region be-

tween b strands bII(b7) and bIII(b8), respectively; the ‘‘distal’’

metal binding histidine, His218, originates from b strand

bVII(b12). In all of the OGFOD1 and Tpa1p structures, the inhib-

itors ligate the metal in a bidentate manner (Figures 5A–5E).

OGFOD1 and Tpa1p bind NOG similarly. With OGFOD1 the

C-5 carboxylate of NOG is positioned to form hydrogen bonds

to the side chains of Tyr169 and Arg230 (analogous interactions

occur with Tpa1p); the latter is part of a conserved RXSmotif that

binds to the 2OG C-5 carboxylate in a large subfamily of 2OG

oxygenases (e.g. deacetoxycephalosporin C synthase) (Ser232

Og and NOG C-5 carboxylate oxygen distance is 4.4 Å) (Clifton

et al., 2006; Aik et al., 2012; Figures 5A and 6A). A glycerol mole-

cule is observed in the apparent OGFOD1 substrate binding site



Figure 3. Structural Comparison of OGFOD1 and Tpa1p

(A and B) Comparison of OGFOD1 (PDB ID: 4NHX) (A) and Tpa1p (PDB ID:

3KT4) (B) (Kim et al., 2009) structures reveals differences in the linker regions in

OGFOD1 (residues 239–269) and Tpa1p (residues 247–341) (red).

(C and D) The Tpa1p dimer interface (D) includes residues 383–402 (cyan),

417–470 (green), and 518–532 (yellow), corresponding to OGFOD1 residues

313–318, 332–339, and 456–458, respectively (C).
and forms a hydrogen bond to the NOG oxalyl carboxylate

(2.3 Å).

The OGFOD1:2,4-PDCA structure reveals slight variations in

the inhibitor hydrogen bonding patterns between the four chains

in the ASU, suggesting flexibility within the 2OG binding pocket

(Figures 5G and 6B). OGFOD1 and Tpa1p bind 2,4-PDCA slightly

differently (Figure 5F). In the Tpa1p:Mn(II):2,4-PDCA structure

the 2,4-PDCA C-4 carboxylate is positioned to form a hydrogen

bond to the side chain hydroxyl of Ser240, yet surprisingly is not

positioned to form a salt bridge to the side chains of Arg238 or

Tyr173 (corresponding to Arg230/Tyr169OGFOD1), respectively;

in part this appears to be due to the unusual conformation of

Arg238. These observations provide further evidence of flexibility

within the 2OG binding pocket of the uS12 hydroxylases, a

feature that might be exploited in selective inhibitor design.

In Tpa1p, IOX3 binds similarly to NOGwith its glycyl side chain

carboxylate positioned to form a salt bridge with the Arg238 side
chain (3.1 Å) (Figure 5E) and a hydrogen bond to the Tyr173 hy-

droxyl (2.6 Å). The Tyr150 hydroxyl forms a hydrogen bond

(2.8 Å) to the IOX3 bicyclic ring C-9 hydroxyl (Figure 5E). All the

residues of Tpa1p that interact with IOX3 are conserved in

OGFOD1, suggesting that IOX3 will bind to the 2OG binding

pocket of OGFOD1 in the same way.

For OGFOD1 the IC50 value of IOX3 inhibition was 520 ±

80 nM, which is comparable with the value for PHD2 inhibition

(IC50 1.4 mM), and lower than the value for several histone lysine

demethylases (KDMs) (IC50 >20mM) (Chowdhury et al., 2013; Fig-

ure 6C). Comparison of the Tpa1p and PHD2 structures in com-

plex with IOX3 reveals highly similar bindingmodes reflecting the

general conservation in the 2OG binding pocket of PHs (Chowd-

hury et al., 2009; Figures 7B, 7G and 7H). Thus, IOX3 along with

related inhibitors are likely relatively potent inhibitors of both

OGFOD1 and PHD2 (PHD2 is the most important PHD in the hu-

man hypoxic response), information that may be relevant to the

interpretation of ongoing clinical trials with PHD inhibitors. How-

ever, in contrast to crystallographic results, nuclear magnetic

resonance studies of an IOX3 analog binding to PHD2 indicated

the presence of two different binding modes in solution (Poppe

et al., 2009). Thus we cannot rule out the possibility of flexibility

in the coordination mode to OGFOD1 in solution. Differences in

the identity of residues positioned near the active site opening

(Tpa1p/PHD2: Leu156/Tyr310, Gln242/Thr387) may permit the

design of selective inhibitors by substitutions at positions be-

tween C-1 to C-6 and C-10 of the IOX3 heteroaromatic scaffold

or by similar modifications to other 2OG competitive inhibitors. In

both Tpa1p and PHD2, IOX3 forms an internal hydrogen bond

between its C-9 hydroxyl and N-15 amide, likely contributing to

rigidity and promoting inhibition.

Active Site Comparison of OGFOD1 with Other PHs
The metal and NOG in the OGFOD1 active site are positioned

similarly to those in the PHD2 active site (Figures 4 and 8).

With PHD2, one of the NTD metal ligands, i.e. the Asp315

carbonyl oxygen, is also positioned to hydrogen bond with a

metal-bound water (W1); this interaction is proposed to

stabilize the interaction between the water and metal, thus

increasing the ability of water to compete with O2 for Fe(II) bind-

ing and rendering O2 binding to PHD2 generally slow, a property

proposed to be relevant to its hypoxia sensing role (Neidig et al.,

2007; Flashman et al., 2010; Flagg et al., 2012; Figure 8C). Anal-

ysis of the active site water molecules in the vicinity of the metal

also reveals similarity betweenOGFOD1 and PHD2 (McDonough

et al., 2006; Figures 8A and 8C). Like PHD2, OGFOD1 has a

‘‘second shell’’ water (W2) (second shell in relation to metal bind-

ing) positioned to hydrogen bond with the metal-bound water

(W1) and the amide carbonyl of Gly235OGFOD1 (in PHD2, the

Thr387PHD2 hydroxyl apparently plays an analogous role). How-

ever, in the available OGFOD1 structures a distinct ‘‘third shell’’

water (W3) is observed at the active site that forms a hydrogen

bond to the hydroxyl of Ser234OGFOD1 (Figure 8A); the electron

density maps, distance, and geometry indicate thatW3 is weakly

bound. Compared with OGFOD1 and PHD2, the structures of

other 2OG oxygenases shown in Figure 8 (including Factor-in-

hibiting HIF [FIH], which is active at lower O2 levels than the

PHDs [Koivunen et al., 2004; Tian et al., 2011]) lack or show

weaker first and second shell active site water interactions,
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Figure 4. Structure-Based Sequence Alignment

Structure-based sequence alignment of Homo sapiens OGFOD1 (GI 94536836), Saccharomyces cerevisiae Tpa1p (GI 731462), Homo sapiens PHD2 (GI

32129514), andChlamydomonas reinhardtiiP4H (GI 159478673) (STRAP) (Gile and Frömmel, 2001). Clustal W-generated (Larkin et al., 2007) sequence alignment

(legend continued on next page)
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consistent with the proposal that in the case of PHD2 and

perhaps the other PHDs and OGFOD1, metal solvation by water

slows the reaction with oxygen (Figure 8).

Ofd1 activity in cells is affected by O2 levels and is proposed to

act as a hypoxia sensor (Lee et al., 2009; Loenarz et al., 2014),

although the mechanism of its O2-dependent role is unclear.

Ofd1 is similar toOGFOD1with respect to the presenceof a serine

residue (Ser225Ofd1) at the same position as the W3 coordinating

Ser234OGFOD1. However, in Tpa1p, where no W3 is observed,

the corresponding residue is a glutamate (Glu242Tpa1p), which

may reflect the relatively lower O2 sensitivity observed for Tpa1p

activity in cells (Loenarz et al., 2014). In PHD2 the equivalent

residue is Thr387PHD2, but this residue is not observed to bind

to a third shell water. Instead the Thr387PHD2 hydroxyl directly in-

teracts with a second shell water W2 (Figure 8).

Substrate Binding Groove Comparison of
OGFOD1/Tpa1p/PHD2/CrP4H
Superimposition of the NTD structure of OGFOD1with the struc-

tures of PHD2 in complex with HIF substrate, and a collagen-like

P4H from C. reinhardtii (CrP4H) in complex with a proline-rich

substrate, enabled the identification of a substrate binding

groove in OGFOD1 lined by residues Trp236, Arg162, Leu152,

Asp140, Gln100, Tyr96, Lys91, Leu95, Leu159, and Asp156

(McDonough et al., 2006; Koski et al., 2007; Chowdhury et al.,

2009; Koski et al., 2009; Figures 7C and 7F). A more global anal-

ysis of conserved residues using ConSurf, which projects a

color-based residue conservation level among homologous

protein sequences onto the structure (Landau et al., 2005), im-

plies high conservation in and around the immediate vicinity of

the proposed OGFOD1 substrate binding groove (Figure 9).

Studies employing variants in yeast cells support the proposed

substrate binding groove: OGFOD1 R162A exhibited partially

reduced activity, and the variants L95A and Y96A from the

b4-b5 hairpin, and L152Y from b(II), produced to make OGFOD1

more PHD-like, all showed significantly reduced activity (Figures

7I and S2B).

The OGFOD1 b4-b5 hairpin (14 residues, 88–101) is in the

equivalent region of the mechanistically important b2-b3 finger

loop of the P4Hs, PHD2 (23 residues, 235–257) and CrP4H (25

residues, 74–98) (Chowdhury et al., 2009; Koski et al., 2009; Fig-

ures 7A and 7D). The flexible b2-b3 finger loop forms a lid that

acts to enclose and position the substrate for trans-4 prolyl hy-

droxylation (Chowdhury et al., 2009; Koski et al., 2009). Struc-

tures of PHD2 and CrP4H show the b2-b3 finger loop ‘‘closed’’

in their substrate-bound states and partially disordered in struc-

tures without substrate, demonstrating this region’s flexibility

and supporting an induced-fit mechanism (Chowdhury et al.,

2009; Koski et al., 2009). In contrast, the b4-b5 hairpins of OG-

FOD1 and Tpa1p are involved in interactions at the NTD/CTD

interface. Contrary to the flexible disordered b2-b3 finger loops

in the PHD2/CrP4H structures without substrate, there is well-

defined electron density observed for the relatively short b4-b5
of OGFOD1 and homologs from higher eukaryotes, Canis familiaris (GI 7394982

41054417), Caenorhabditis elegans (GI 17531931), Drosophila melanogaster (GI 7

residues are shown in red, highly conserved residues in yellow, semi-conserved re

the 2OG C-5 carboxylate in green. Boxed regions represent the disordered ac

residues 561–586), and the proposed dimerization interface (red/green/orange).
hairpins of OGFOD1 and Tpa1p (14 residues, 80–93) without

substrate. These observations suggest that the uS12 hydroxy-

lases do not utilize their short and rigid b4-b5 hairpin fingers in

the same induced-fit mechanism as do PHD2 and CrP4H

(Chowdhury et al., 2009; Koski et al., 2009). The C-terminal re-

gions of PHD2 and CrP4H interact with their respective sub-

strates, are flexible, and are also involved in the induced-fit

mechanism (Chowdhury et al., 2009; Koski et al., 2009). The

equivalent regions of OGFOD1 and Tpa1p catalytic NTD form

part of the rigid NTD-CTD linker and are unlikely to play a role

similar to that in the P4Hs.

We tested whether a disordered ‘‘acidic region’’ of OGFOD1

(371–430OGFOD1, with a calculated net charge of �14 at neutral

pH) between a9 and b17 in the CTD might play a role in binding

the highly basic uS12 substrate (Chowdhury et al., 2009; Koski

et al., 2009). We generated OGFOD1 and Tpa1p variants lacking

acidic loop regions near the active site (D374–426OGFOD1 and

D561–584Tpa1p). Both variants retained uS12 hydroxylation ac-

tivity in yeast cells, indicating that the acidic regions are not

essential for catalytic activity. Although a catalytic role for the

acidic region seems unlikely, it may contribute to roles in pro-

tein-protein interactions, e.g. Nro1 (negative regulator of Ofd1)

and Ett1 (Nro1 ortholog) for Tpa1p, and/or protein-nucleic acid

interactions (Lee et al., 2009). Tpa1p does not have an acidic re-

gion in the same region as OGFOD1, but does have a disordered

acidic region (561–586Tpa1p, calculated net charge �8 at neutral

pH), corresponding to a shorter, less acidic, and more ordered

loop between bIV0(b20)-bV0(b21) in OGFOD1 (484–488OGFOD1,

with a calculated net charge of �2 at neutral pH) positioned

near the periphery of the active site (Figures 3 and 4), which

may be involved in substrate binding (Ofd1 and Tpa1p are similar

in this regard) (Figure 4).

DISCUSSION

The uS12 ribosomal hydroxylases are the only 2OG oxygenases

so far identified with tandem DSBH domains. However, tandem

DSBH-containing proteins that are not 2OG dependent include

the human transcriptional cofactor protein Pirin (PDB ID: 1J1L),

Bacillus subtilis oxalate decarboxylase (OXDC; PDB ID: 1J58)

and Aspergillus japonicus quercetin 2,3-dioxygenase (2,3QD;

PDB ID: 1H1I) (Anand et al., 2002; Steiner et al., 2002; Pang

et al., 2004). A notable structural difference between OGFOD1/

Tpa1p and the 2OG independent tandem DSBH proteins is

that the two domains of OGFOD1/Tpa1p pack against each

other via their minor b sheet, whereas for Pirin and related tan-

dem DSBH structures the two domains pack against each other

via their major b sheet (Figure S1). The CTDs of OGFOD1, Tpa1p,

Pirin, and 2,3QD do not have metal ion binding sites while OXDC

has metal binding sites in both the NTD and CTD (Anand et al.,

2002). These major differences suggest that the OGFOD1 sub-

family emerged independently rather than from the other tandem

DSBH proteins mentioned above.
6), Mus musculus (GI 34850072), Gallus gallus (GI 118096214), Danio rerio (GI

4942745), and Schizosaccharomyces pombe (GI 2894283). Strictly conserved

sidues in gray, the conservedmetal binding triad in blue, and residue that binds

idic loops in OGFOD1 (light green; residues 371–430) and Tpa1p (light blue;
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Figure 5. Wall-Eyed Stereoviews of the Active Sites of OGFOD1/Tpa1p Inhibition Complexes

(A–E) OGFOD1:NOG (A), OGFOD1:2,4-PDCA (B), Tpa1p:NOG (C), Tpa1p:2,4-PDCA (D), and Tpa1p:IOX3 (E). The electron density maps OMIT jmFo � DFcj
(shown in green mesh) are contoured to 3.0s.

(F) Superimposition of OGFOD1:2,4-PDCA (chain A) (pink) and Tpa1p:2,4-PDCA (silver) active site views reveal different binding modes for 2,4-PDCA and

conformations of Arg230OGFOD1/Arg238Tpa1p.

(G) Superimposition of OGFOD1 chains A (green), B (cyan), C (magenta), and D (yellow) in complex with 2,4-PDCA. Active site residues are shown as sticks and

Mn(II) as a sphere (purple).

(H) Non-denaturing PAGE analysis of OGFOD1 and Tpa1p. x, y0 represent monomers; y00 is proposed to be the Tpa1p dimer.
Bioinformatics analysis indicates that most, if not all, prokary-

otic prolyl and proline hydroxylases are single-domain enzymes

(Clifton et al., 2001; Koketsu et al., 2014; Scotti et al., 2014). The
646 Structure 23, 639–652, April 7, 2015 ª2015 The Authors
OGFOD1 subfamily PHs are found only in eukaryotes and may

have branched off from other single DSBH domain PHs during

evolution from a common ancestor, possibly by a gene



Figure 6. Kinetic Characterization of

OGFOD1

(A–C) Kinetic characterization of OGFOD1 toward

NOG (A), 2,4-PDCA (B), and IOX3 (C). The data

points represent the average, and error bars the

SD of triplicate samples.

(D–G) The concentrations of the assay conditions,

optimized based on the Km values of 2OG (D),

RPS2351-70 (E), Fe(II) (F), and ascorbate (G).
duplication event (Scotti et al., 2014). Having lost catalytic poten-

tial due to redundancy, the CTD may have retained or gained

function(s) in substrate and/or binding partner recognition, stabi-

lization, and/or oligomerization. A role for the non-catalytic CTD

in the OGFOD1 subfamily in binding to the uS12 substrate, or

other binding partners, seems likely; it is reported that the

CTDs of both Ofd1 and Tpa1p interact with Nro1 and Ett1,

respectively (Lee et al., 2009; Rispal et al., 2011). Non-DSBH do-

mains have been shown to be important in oligomerization and

substrate binding selectivity in the case of other 2OG oxy-

genases, e.g. in some N-methyl lysine demethylases (KDMs)

(Horton et al., 2010). Other 2OG oxygenases, such as the

collagen PHs CPH and Leprecans, have an all helical repeat

domain, tetratricopeptide repeat (TPR), that functions in sub-

strate recognition (Pekkala et al., 2004; Koski et al., 2009). TPR
Structure 23, 639
domains are also found in the epidermal

growth factor-like domain aspartyl/aspar-

iginyl hydroxylase and the KDMs UTX and

UTY (ubiquitously transcribed X and Y

chromosome TPR protein, respectively)

(Pollard et al., 2008; Chowdhury et al.,

2014). However, less is known of the func-

tional roles of the additional domains in

these cases. It is possible that the helical

repeat protein Nro1/Ett1 acts as a sub-

strate recognition module for Tpa1p

and/or Ofd1 through its interaction with

the CTD in a similar manner to the TPR

fused to the PH domain, which would

explain why in vitro activity on uS12 pep-

tide fragments using isolated recombi-

nant Tpa1p has not been observed. A

C-terminal winged helix domain of un-

known function has been observed in

the homodimer ROXs (MINA53, NO66,

and YcfD) (Chowdhury et al., 2014); this

may be involved in substrate recognition

and/or other protein-protein interactions,

as proposed for the CTD of the OGFOD1

subfamily.

The results reveal a high degree of

structural conservation between the

catalytic domain of PHDs and OGFOD1/

Tpa1p, consistent with a common an-

cestry. Although the precise biochemistry

underlying their different selectivities will

require further investigations, examination

of the available PH structures provides
potential insight into how stereo- and regioselective hydroxyl-

ation is achieved. All P4Hs and P3Hs have a conserved arginine

(Arg322PHD2, Arg161CrP4H) at their active site opening (Figure 4),

which is positioned to form a hydrogen bond to the backbone

carbonyl oxygen of the substrate proline, as has been observed

for PHD2, CrP4H, and PPHD (Figures 7B, 7E, and 7H). All

P4Hs additionally share a conserved tyrosine (Tyr310PHD2;

Tyr140CrP4H), the side chain hydroxyl of which points toward

the amide nitrogen of the substrate prolyl residues. These resi-

dues apparently help to maintain the substrate in position for

stereoselective (trans-) and regioselective (C-4) hydroxylation

(Scotti et al., 2014; Figure 4). In contrast, P3Hs have a leucine res-

idue at the corresponding position (Leu152OGFOD1; Leu156Tpa1p),

whichmay favor prolyl 3-, over prolyl 4-, hydroxylation by shifting

binding of the substrate backbone with respect to the metal.
–652, April 7, 2015 ª2015 The Authors 647



Figure 7. Comparison of Structures of Human P3H and P4H: OGFOD1/Tpa1p and PHD2/CrP4H, respectively

The coloring scheme is as in other figures. Active site residues are displayed as sticks and Mn as a sphere.

(A and B) Overall structure (A) and active site (B) of OGFOD1:NOG (PDB ID: 4NHX) (pink) superimposed onto the catalytic domain of human PHD2 (PDB ID: 3HQR)

(green) in complex with an HIF-1a C-terminal oxygen-dependent degradation domain (CODD) fragment (558–574) (yellow).

(C) Ribbons and electrostatic surface representations of the OGFOD1:Mn:NOG structure (pink/surface) superimposed on that of PHD2 (green) in complex with

the HIF-1a CODD (yellow) (Chowdhury et al., 2009), highlighting the putative OGFOD1 substrate-binding groove.

(D and E) Overall (D) and active site (E) superimpositions of OGFOD1:NOG (PDB ID: 4NHX) (pink) and C. reinhardtii P4H (Koski et al., 2009) (PDB ID: 3GZE) (pale

yellow) in complex with substrate peptide (cyan).

(F) Ribbons and surface representations of the OGFOD1:Mn:NOG structure (PDB ID: 4NHX) (pink/surface) superimposed on aC. reinhardtii P4H structure (Koski

et al., 2009) (PDB ID: 3GZE) (pale yellow) in complex with its peptide substrate (cyan), highlighting the putative substrate-binding groove of OGFOD1.

(G and H) Overall (G) and active site (H) superimpositions of Tpa1p:IOX3 (PDB ID: 4NHM) (gray) and PHD2 (Chowdhury et al., 2013) (PDB ID: 4BQY) (green) in

complex with inhibitors.

(I) Active site view of OGFOD1 (PDB ID: 4NHX) with ribbons and transparent surface. b4-b5 hairpin and the residues with which variants were made are shown as

ribbons (green) and stick models (cyan/orange). The residues in sticks are those playing critical (cyan) and no (orange) apparent roles in catalysis as shown by

cellular studies.
However, substitution of Tyr152 of OGFOD1 for a leucine residue

ablated activity in cells within limits of detection, indicating that

this residue alone does not determine C-3 versusC-4 regioselec-

tivity (Figure 7I). Furthermore, the OGFOD1 active site is appar-
648 Structure 23, 639–652, April 7, 2015 ª2015 The Authors
ently more open than that of PHD2 (McDonough et al., 2006)

and CrP4H (Koski et al., 2007), in part due to its shorter b4-b5

hairpin and lack of a C-terminal helix (which are important in sub-

strate binding for the P4Hs) (Chowdhury et al., 2009; Koski et al.,



(legend on next page)
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Figure 9. OGFOD1 ConSurf (Landau et al., 2005) Analysis Showing

Residue Conservation

Non-conserved to strictly conserved residues are shown as a gradient from

cyan to magenta, respectively. The most conserved region is located around

the groove near the catalytic site in the NTD. Mn(II) (purple) and NOG (green)

are shown. The active site is located in themiddle of a groove formed by Lys91,

Asp94, Leu95, Tyr96, Phe98, Gln100, Ser101, Asp103, Leu104, Lys105,

Asp140, Ser142, Leu152, Asp156, Glu158, Leu159, Arg162, Trp236, Ile450,

and Asp452. Lys91, Asp94, Leu95, Tyr96, Phe98, Gln100, and Ser101 are

located on the b4-b5 hairpin region of the NTD; Asp103, Leu104, and Lys105

on the loop region between b5 and a3; Asp140 on the loop region between a4

and b6(bI); Ser142 and Leu152 on bI(b6) and bII(b7), respectively; Asp156,

Glu158, and Leu159 on the loop region between bII(b7) and bIII(b8); Arg162

and Trp236 on bIII(b8) and bVIII(b13), respectively; Ile450 and Asp452 on the

loop linking bII0(b18) and bIII0(b19).
2009). Importantly, comparison of the structures also reveals dif-

ferences in and around the active site and substrate recognition

elements, and in information regarding flexibility of residues

forming the 2OG binding site, which will be useful for the identi-

fication of selective inhibitors for theHIF PHDs forwhich there are

compounds presently in late stage clinical trials.
EXPERIMENTAL PROCEDURES

Protein Preparation and Purification

Escherichia coli BL21(DE3) cells were transformed with the pET28b_OGFOD1

(OGFOD1: 542 aa, 63 kDa) or pNIC28_Tpa1p (Tpa1p: 644 aa, 74 kDa) plasmids

(encoding for proteins with an N-terminal hexa-histidine tag) (Loenarz et al.,

2014) and grown (37�C; 180 rpm) to an OD600 of 0.6, after which recombinant

protein production was induced using 0.5 mM b-D-1-thiogalactopyranoside

(IPTG). The cells were then grown overnight at 18�C, harvested by centrifuga-

tion (10,000 3 g; 7 min), and stored at �80�C for protein purification. Cell pel-

lets were resuspended in a solution (100ml) containing 50mMHEPES (pH 7.5),

500 mM NaCl, and 20 mM imidazole, one EDTA-free protease inhibitor tablet

(Roche), and approximately 1 mg DNaseI (bovine pancreas, grade II, Roche) at
Figure 8. Variations in the Active Site Metal Coordination Chemistry o

(A–G) Views from the active sites of (A) OGFOD1 (PDB ID: 4NHX), (B) termination

hydroxylase (PHD2) (PDB ID: 2G1M, 3HQR) (McDonough et al., 2006; Chowdhury

(CrP4H) (PDB ID: 2JIG, 3GZE) (Koski et al., 2007, 2009), (E) Pseudomonas aerugin

(Scotti et al., 2014), (F) factor-inhibiting HIF (FIH) (PDB ID: 1H2N, 2Y0I) (Elkins et al

(PDB ID: 3N6W, 3O2G) (Tars et al., 2010). Waters/metals and residues/inhibitors

The metal ligating water (W1) is in red.

2,4-PDCA, pyridine-2,4-dicarboxylic acid; 4HG, N-[(4-hydroxy-8-iodoisoquinolin
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room temperature with gentle stirring. Cells were lysed on ice by sonication

and the lysates were cleared by centrifugation (50,0003 g; 20min). The super-

natant was then purified with 5 ml of HisTrap Fast Flow column, which had

been pre-equilibrated with the resuspension buffer, using an AKTA FPLC sys-

tem (GE Healthcare). The column was washed with 50 mM HEPES (pH 7.5),

500 mM NaCl, and 50 mM imidazole, and the protein was eluted with

50 mM HEPES (pH 7.5), 500 mM NaCl, and 250 mM imidazole. The purified

sample was then exchanged into 25 mM HEPES (pH 7.5) and 100 mM NaCl

using a PD-10 column (Millipore). Following buffer exchange, 1 mM EDTA

was added and the sample incubated for 3 hr at 4�C. The OGFOD1 or

Tpa1p proteins were then further purified using a Superdex 200 size-exclusion

column (GE Healthcare) that had been pre-equilibrated with 25 mM HEPES

(pH 7.5) and 100 mM NaCl. Further purification was carried out by anion ex-

change chromatography using a 20-ml MonoQ column. Proteins were eluted

using a gradient of 25 mM HEPES (pH 7.5) and 1 M NaCl. Protein-containing

fractions were pooled, concentrated to 20 mg/ml by diafiltration and buffer

exchanged into 10 mM Tris-HCl (pH 7.5), then aliquoted (20 ml), flash frozen

in liquid N2, and stored at �80�C.

OGFOD1 Activity Assays Inhibitor IC50 Determination

Concentrated OGFOD1 used for biochemical assays was stored at �80�C in

50 mM HEPES (pH 7.5), 150 mM NaCl, 1 mM DTT, and 5% (w/v) glycerol after

HisTrap HP (5 ml) column purification. Activity assays were performed as re-

ported (Loenarz et al., 2014), by determining the extent of hydroxylation of a

20-mer fragment of uS12 containing residues 51–70 (H2N-VLEKVGVEAKQPN-

SAIRKCV-CONH2) by MALDI-TOF mass spectrometry using a Waters Micro-

mass MALDI micro MX mass spectrometer and MassLynx 4.1 software, as

previously described (Flashman et al., 2008). The optimized hydroxylation

assay involved incubation of OGFOD1 (1 mM) with inhibitor (1% v/v in

DMSO) in the presence of Fe(II) (50 mM), 2OG (25 mM), ascorbate (100 mM),

and uS1251–70 (25 mM) in HEPES (50mM, pH 7.5) at 37�C for 15min. Reactions

were quenched with formic acid (1% v/v). Samples were prepared by mixing

the reaction mixture (1 ml) with a-cyano-4-hydroxycinnamic acid solution (wa-

ter/acetonitrile 1:1) (1 ml). Dose-response studies employed point assays in

triplicate; data were analyzed with GraphPad Prism 5.04.

Protein Crystallization and X-Ray Crystallography

Crystals of OGFOD1 in complex with NOG and 2,4-PDCA, and crystals of

Tpa1p in complex with NOG, 2,4-PDCA, and IOX3 were grown by the sitting

drop vapor diffusion method (drop size: 200–300 nl) at 293 K in 96-well Intelli-

plates (Art Robbins). Crystals were cryo-protected by transfer to 25% glycerol

in well solution and then harvested using nylon loops (Hampton Research), and

cryo-cooled by plunging into liquid nitrogen. Data were collected at 100 K us-

ing single crystals at Diamond Light Source beamline I04 (OGFOD1:Mn(II):

NOG, Tpa1p:Mn(II):2,4-PDCA, Tpa1p:Mn(II):IOX3) and Diamond Light Source

beamline I04-1 (OGFOD1:Mn(II):2,4-PDCA). In-house data were collected at

100 K for single crystals of Tpa1p:Mn(II):NOG using a Rigaku FR-E+ Super-

bright copper rotating anode diffractometer equipped with Osmic HF optics

and a Saturn 944+ CCD detector. Data were then integrated and scaled using

HKL3000 (Otwinowski andMinor, 1997). All Tpa1p structures and the structure

of OGFOD1:Mn(II):NOG were determined by molecular replacement (MR) us-

ing the MR-PHASER (McCoy et al., 2007) subroutine in PHENIX (Adams et al.,

2010) and the reported S. cerevisiae Tpa1p structure (PDB ID: 3KT4 [Kim et al.,

2009]) as the search model. An OGFOD1:Mn(II):2,4-PDCA structure was sub-

sequently determined byMR using the refined OGFOD1:Mn(II):NOG structure.

Model building and refinement were performed iteratively using Coot (Emsley

and Cowtan, 2004) and PHENIX until the decreasing R and Rfree no longer

converged. Mn(II), NOG, 2,4-PDCA, and IOX3 and water molecules were
f Selected Human 2-Oxoglutarate Oxygenases

and polyadenylation protein 1 (Tpa1p) (PDB ID: 4NHK, 4NHM), (C) HIF prolyl

et al., 2009), (D) a collagen-like prolyl 4-hydroxylase enzyme fromC. reinhardtii

osa prolyl hydroxylase domain containing protein (PPHD) (PDB ID:4J25, 4IW3)

., 2007; Yang et al., 2011), and (G) Human g-butyrobetaine hydroxylase (BBOX)

/2OG are spheres and stick models, respectively. Distances are in angstroms.

-3-yl)carbonyl]glycine; EF-Tu, elongation factor Tu; NOG, N-oxalylglycine.



modeled in the final stages of refinement based on the Fobs � Fcalc electron

density maps.
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Figure S1, related to Figure 2. Topological fold diagrams of (A) OGFOD1 (PDB ID: 4NHX) and (B) Pirin 

(Pang et al., 2004) (PDB ID: 1J1L), α-helix and 310-helix (blue), β-strand (pink/green/yellow). The eight β-strands 

forming the core DSBH fold (pink), the β-strands forming the β4-β5 hairpin (green), all other strands (yellow) are 

shown. The eight DSBH β-strands of OGFOD1 are additionally labelled with Roman numerals as in Clifton et al. 
(Clifton et al., 2006). The long disordered ‘acidic’ loop is represented by a dashed line. 



 

  
 

Figure S2, related to Figure 7. Yeast cell assays of OGFOD1 and Tpa1p variants for assessing yeast uS12 trans-
3-hydroxylation. Di-hydroxylation of Pro64 was observed for Tpa1p activity but not OGFOD1 (Loenarz et al., 
2014). We analysed the structures for active site differences between OGFOD1 and Tpa1p in pursuit of 
identifying residues responsible for mono- versus di-hydroxylation. Substitution of OGFOD1 residues to the 
corresponding Tpa1p residues (F98V, A144N, and A165S) (within 11 Å of the active site metal in the substrate 
binding groove) (Figure 7I) did not appear to affect trans-P3H activity in the cellular assays, suggesting these 
changes are tolerated (A) and that lack of di-hydroxylation activity by OGFOD1 may be influenced by factors 
other than/additional to immediate active site differences. 



 

Table S1, related to Table 1. Details of crystallization conditions. 
 
 
 OGFOD1:NOGa

 OGFOD1:2,4-PDCAa Tpa1p:NOGa
 Tpa1p:2,4-PDCAa Tpa1p:IOX3a 

Protein solution ~10 mg/mL OGFOD1, 

0.7 mM MnCl2, 1.0 mM 

NOG, 1.0 mM C036 

peptide 

~10 mg/mL OGFOD1, 

2.0 mM MnCl2, 2.0 mM 

2,4-PDCA 

~9.5 mg/mL TPA1, 0.8 

mM MnCl2, 1.1 mM NOG  

~6 mg/mL TPA1, 0.8 

mM MnCl2, 1.1 mM 2,4-

PDCA 

~6 mg/mL TPA1, 0.8 

mM MnCl2, 1.1 mM IOX3 

Reservoir solution 0.1 M MIB buffer pH 6.5, 

0.1 M glycine, 25% PEG 

1500 

0.1 M HEPES pH 7.0, 0.2 

M MgCl2, 20% PEG 6000 

0.1 M succinic acid pH 

7.0, 12% PEG 3350 

0.1 M SPG buffer pH 8.0, 

25% PEG 1500 

0.2 M trisodium citrate, 

20% PEG 3350 

Abbreviations: PEG; polyethylene glycol, SPG buffer; succinic acid, phosphate, glycine, MIB buffer; malonic 
acid, imidazole, boric acid. C036 peptide; LEKLGIESKQPNSAIRKAVR(D-Cys)(D-Cys, D-cysteine residue). 
a All crystals were soaked in cryoprotectant containing reservoir solution diluted with 25% glycerol.  
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