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S1. General framework

In this section we recall briefly some fundamentals of the Dirichlet process mixture model.

For simplicity, we start setting out briefly a standard finite mixture model (McLachlan and Peel, 2000; Fraley and

Raftery, 2002; McLachlan and Baek, 2010) which is a probabilistic approach to clustering that works by partitioning

a data set according to statistical features shared by members of the same group. Let a data set of random values

x = (x1, . . . , xn) be drawn independently from some unknown distributions. In a finite mixture model, the density

for x is modelled as a mixture of K component densities fk(x; θk) on some unknown proportions w1, . . . ,wK , that is

p(x) =
∑K

k=1 wk fk(x, θk). Here, θ = (θ1, . . . , θK) are the cluster parameters and w = (w1, . . . ,wK) are the mixture

probabilities (or mixing weights) which must be positive and sum to one. fk(·, θk) is a distribution belonging to a

parametric family, characterised by finite-dimensional θk.

The density of x can be written as an integral p(x) =
∫

p(x|θ)F(θ)dθ, where F is a mixing distribution, F =
∑K

k=1 wkδθk ,

with δθ be a Dirac distribution (atom) centered at θ. To bypass the problem of choosing K, we can assume a Bayesian

nonparametric approach and let K = ∞ (Neal, 1992; Rasmussen, 2000). Assuming that the mixture distribution, F,

follows a Dirichlet process (DP), we obtain the DP mixture models (Escobar, 1994; Escobar and West, 1995).

To briefly review the DP introduced in Ferguson (1973) (for a comprehensive introduction, refer to Ghosal 2010;

Neal 2000; Teh 2010), let (Ω,A) be a measurable space. Suppose F0 is a probability distribution (measure) with

support in space Ω and α is a positive real number. Thus, F is distributed according to the DP with base distribution

F0 and concentration parameter α, if for any finite measurable partition (A1, . . . , AK) of Ω, with A ∈ A, a random

vector (F(A1), . . . , F(AK)) is distributed as a finite-dimensional Dirichlet distribution:

(F(A1), . . . , F(AK)) ∼ Dir(αF0(A1), . . . , αF0(AK))

In notation, we write F ∼ DP(α, F0) to denote that the random probability measure F follows a DP. The α parameter

(often called the mass parameter) controls the number of components of the mixture and F0 specifies the mean of the

process, E(F) = F0.

Draws from a DP are almost surely discrete probability distributions, thus it can be a good candidate for the probability

distribution F that has been shown to be discrete with probability one (Blackwell, 1973). This feature of the DP

explains its use for dimension reduction and clustering, where xi and x j are member of a common cluster if θi = θ j.

S2. Prediction details

The main goal in performing prediction was to obtain a posterior predictive distribution of the response under a

new input scenario (s) of exposure.
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The posterior predictions were carried out according to the method proposed by Liverani et al. (2015) using

simple allocations where, at each sweep r of the MCMC sampler, is assigned µ̂r
s = µr

k. In particular, an additional

latent indicator variable ĝr
s was defined, corresponding to each predictive scenario. Let z∗t = (z∗t,1, . . . , z

∗
t,P) be the new

profile of exposure, the posterior probabilities are computed as: p(ĝr
s = k|z∗t ,Θ

r, y, zt). Given these probabilities, a

predicted averaged cluster-specific estimate of the response is performed, for each new profile of particles at each

sweep: µ̂r
s =
∑∞

k=1 p(ĝr
s = k|z∗t ,Θ

r, yt, zt)µr
k.

S3. Time series plot of respiratory mortality and airborne particle metrics

Fig. S3.1 shows the time series of daily mortality counts for respiratory diseases and daily concentrations of

airborne particle metrics from London (UK) for the years 2002-2005. The data for both mortality and particles

exhibited a pronounced seasonal pattern, for example, with mortality increasing during winter months and decreasing

during summer months.

Figure S3.1: Daily mortality counts and daily airborne particle metrics in London, 2002-2005.

Note: Airborne particle metrics are plotted in the original measurement units as reported in the main paper.

S4. Cross-validation

We predicted the respiratory counts of deaths for the year 2005 (here used as validation sample) using the data

2002-2004 as training sample. We compared the observed mortality and validation predictions in the year 2005 using

the adjusted R2 and the root mean squared error (RMSE) given by
√

1
Tv

∑Tv
t=1(y∗t − yt), where Tv is the number of

observations for the validation set (i.e., 365 days), y∗t and yt are respectively the predicted and observed mortality.
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The cross-validation produced a R2 of 0.61 and a RMSE of 8.92. Fig. S4.1 provides the scatter plot of validation

predictions for the count number of deaths in 2005 against the corresponding observations.

Figure S4.1: Scatter plot of validation predictions against observations.
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