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Here we report the main results and details of the mathematical analysis summa-
rized in the main manuscript.

In section 1, we outline the relationship between more complex models and
the simpler Stuart-Landau and Kuramoto models, demonstrating that the simple
models used in the main manuscript are general lowest-order approximations of
the more detailed neural mass models. In support of this, we show results of the
derivation from the popular and complex Wilson-Cowan model as an example.
In section 2, we describe the behavior of the Kuramoto model on complex net-
works. We also derive results of the directed phase lag index (dPLI) for the model
on the networks. In section 3, we describe the Stuart-Landau model on complex
networks, and derive the dPLI results for the model on the networks. In section 4,
we also show with the simulation that the result from the dPLI and other measures
such as Granger causality (GC) and symbolic transfer entropy (STE) qualitatively
matches each other, suggesting that our results are independent from the choice of
measures.

The mathematical analysis shown here provides a basis for the thesis of the
main manuscript: nodes with higher degrees are information sinks and lag in
phase, whereas nodes with lower degrees are information sources and lead in
phase.

1 Relationship between complexmodels and Stuart-
Landau/Kuramoto model

In this section we describe the relationship between more complex neural mass
model, and the simpler Stuart-Landau and Kuramoto model. We also summarize
the derivation from the popular and more detailed Wilson-Cowan model as an ex-
ample.

Our investigation focuses on networks of coupled oscillators:

ẋj = fj(xj) + ϵjgj(x1, ..., xN , ϵ, t), j = 1, 2, ..., N, (S1)

where N is the number of oscillators, xj ∈ Rn is the state of the jth oscillator,
therefore making x = (x1, x2, ..., xN) the vector describing the state of all oscilla-
tors of the network. fj describes the intrinsic dynamics of the xj , and gj describes
the interaction of xj with other oscillators. ϵj is the coupling strength for xj .
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If the following condition is satisfied between two oscillators xj and xk they
are called frequency locked,

nωj = mωk, (S2)

where n andm are relatively prime nonnegative integers (they do not have a com-
mon divisor other than 1), and ω is the frequency of each oscillator. If n : m is 1
: 1, then the oscillators are called entrained.

Suppose the oscillators are frequency locked. If they further satisfy the fol-
lowing condition,

|nθj −mθk| = constant, (S3)

where θ is the phase of each oscillator, they are called phase locked. Note that fre-
quency locking does not always imply phase locking; frequency locking without
phase locking is called phase trapping.

If oscillators are both entrained and phase locked, they are then called syn-
chronous. The quantity θjk = θj − θk is defined as phase difference, and when the
phase difference between oscillators is zero, they are said to be synchronized in-
phase. If not only their phases but also their amplitudes are also synchronized, they
are completely synchronized (Amplitude synchronization means that their ampli-
tudes are the same after transient period). When the phase difference is π they are
called synchronized anti-phase, and if other than 0 or π, they are called synchro-
nized out-of-phase [1, 2, 3].

If an entire network of oscillators satisfies such conditions, then the network
can be said to be frequency locked, entrained, phase locked, synchronized, com-
pletely synchronized, etc.

Depending on its function fj , each oscillator in eq. (S1) can undergo various
bifurcations as the parameters in their function change. One commonly observed
bifurcation is termed the Hopf bifurcation. Near the Hopf bifurcation point, func-
tion fj of each oscillator can be approximated well as the following pair of equa-
tions [4, 5]:

ẋj = λjxj − ω − jyj ∓ (σjxj − γjyj)(x
2
j + y2j ),

ẏj = λjyj + ωjxj ∓ (σjyj + γjxj)(x
2
j + y2j ),

(S4)

or, in complex coordinates, taking z = reiθ = x+ iy,
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żj = {λj + iωj ∓ (σj + iγj)|zj|2}z. (S5)

In polar coordinates, it can be written as,

ṙj = {λj ∓ σj|zj|2}rj,
θ̇j = ωj ∓ γj|zj|2.

(S6)

Here, λ, ω, σ, and γ are nonnegative coefficients. These equations are the normal
form for the Hopf bifurcation and are called Stuart-Landau equation. ∓ deter-
mines whether the bifurcation be supercritical or subcritical: − for superciritical
Hopf bifurcation, and + for subcritical. Dynamics of the equations for γ = 0 and
γ ̸= 0 are topologically equivalent, so the value of γ is often irrelevant.

With coupling terms, we rewrite the above equations as:

ẋj = λjxj − ωjyj ∓ (σjxj − γjyj)(x
2
j + y2j ) +

N∑
k=1

Kjkxk,

ẏj = λjyj + ωjxj ∓ (σjyj + γjxj)(x
2
j + y2j ) +

N∑
k=1

Kjkyk,

(S7)

in complex coordinates,

żj = {λj + iωj ∓ (σj + iγj)|zj|2}z +
N∑
k=1

Kjkzk, (S8)

in polar coordinates,

ṙj = {λj ∓ σj|zj|2}rj +
N∑
k=1

Kijrk cos(θk − θj),

θ̇j = ωj ∓ γj|zj|2 +
N∑
k=1

Kij
rj
rk

sin(θk − θj),

(S9)

describing the state of node j. Here,Kjk is the coupling strength from k to j. We
refer to this system of equations as the Stuart-Landau model. More details on the
Hopf bifurcation and the Stuart-Landau model will be discussed in section 3.
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Reduction of eq. (S1) to simpler equations can bemade even further. If ϵj ≪ 1,
fj in eq. (S1) can be reduced to a phase equation describing the state of node j only
by its phase [1]:

θ̇j = ωj. (S10)

With the coupling term, we have the following equation:

θ̇j = ωj +
N∑
k=1

Kij sin(θk − θj). (S11)

This is the generalization of the well-known Kuramoto model [6, 7]. Although
this equation is a generalization and not exactly the same as the original form of
the Kuramoto model (in whichKij is equal for all is and js), for brevity, we refer
to this equation as Kuramoto model hereafter. Notice that this equation can be
derived simply from the phase equation of the Stuart-Landau model, eq. (S9), by
setting all the amplitudes of the oscillators to be equal and static.

It is known that the long-term behavior of any coupled oscillatory systems, not
only the systems with the Hopf bifurcation, can be approximated by coupled phase
oscillators of the form,

θ̇j = ωj +
N∑
k=1

KjkH(θk − θj), (S12)

as long as the coupling is not too strong and the subsystems are nearly identi-
cal [1, 6, 7, 12]. We arrive at the Kuramoto model, eq. (S11), by setting H(θk −
θj) = sin(θk − θj). The Kuramoto model is the first-order approximation to the
general form of coupled phase oscillators eq. (S12). In this sense, the Kuramoto
model is the canonical model of coupled oscillators.

The Wilson-Cowan model is one of the most popular neural mass models
with two equations describing the state of excitatory and inhibitory cell popula-
tions [8, 9]. We state the results of the derivation of the Stuart-Landau model and
Kuramoto model from the Wilson-Cowan model as an example of the described
approximation scheme. The results adopted here come from references [10, 11]
and [12].

We define the Wilson-Cowan model as a network of oscillators with dynamics
at node j described as:
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Ėj = −Ej + S[aE(cEEEj − cIEIj − ρE + Pj + η
N∑
k=1

AjkEk)],

İj = −Ij + S[aI(cEIEj − cIIIj − ρI +Qj)],

(S13)

here, aE , ai, cEE , cEI , cIE , cII , ρE , ρI , Pj , and Qj are the positive coefficients, η
is the coupling strength, and Ajk is the coupling strength between j and k. S is a
sigmoid function, usually given as S[x] = (1− e−x)−1. Here, the interaction term
is only added to the equation describing the excitatory population, Ej , because
non-local neural mass connections are usually made by the excitatory cells.

If the parameters are given suitably eq. (S13) will yield a stable limit cycle,
i.e., a stable oscillatory trajectory. The strategy is to expand the sigmoid func-
tion S of eq. (S13) in this oscillatory regime, removing the higher-order terms.
Then, the resulting approximated equations will be averaged over one cycle. This
is made possible by the assumption that the amplitude and the phase of the oscil-
lators will change slowly compared to the oscillators' frequency. For the averag-
ing, time-dependent amplitude and phase are fixed, and the system is integrated
over one period. Subsequently, amplitude and phase are again considered to be
time-dependent: this procedure is called the method of averaging. The resulting
equations reproduces the normal form of Hopf bifurcation. The equations can be
further simplified into phase equations by assuming that the amplitudes do not
change (or change very little compared to the phases).

After 1) expanding eq. (S13) around the unstable fixed-point (E(0)
j , I

(0)
j )within

the stable limit cycle, with respect to the sigmoid function S[x], 2) abandoning
higher order terms of the expansion S[x], and 3) averaging over a cycle t =
[0, 2π/Ω), where Ω is the mean frequency of the whole oscillators, we get:

ṙj ≈ λjrj + σjr
3
j +

N∑
k=1

aES
′[χ

(0)
E,j]rkAjk cos(θk − θj),

θ̇j ≈ ωj +
1

2

N∑
k=1

aES
′[χ

(0)
E,j]

rk
rj
Ajk sin(θk − θj),

(S14)

where
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ωj ≈ −Ω +
1

2
(aEcIES

′[χ
(0)
E,j] + aIcEIS

′[χ
(0)
I,j ]),

λj =
1

2
(aEcIES

′[χ
(0)
E,j]− aIcEIS

′[χ
(0)
I,j ]− 2),

σj =
1

16
(a3EcEE(c

2
EE + c2IE)S

′′′[χ
(0)
E,j]− a3IcII(c

2
II + c2EI)S

′′′[χ
(0)
I,j ]− 2).

(S15)

S ′[x] and S ′′′[x] are first and third derivatives of S at x. We used the abbreviation:

χ
(0)
E,j = aE(cEEE

(0)
j − cIEI

(0)
j − ρE + Pj + η

N∑
k=1

AjkE
(0)
k ),

χ
(0)
I,j = aI(cEIE

(0)
j − cIII

(0)
j − ρI +Qj).

(S16)

This is exactly the normal form of Hopf bifurcation, i.e., Stuart-Landau model,
and if σj < 0 the oscillator will undergo the supercritical Hopf bifurcation.

If we assume that all amplitudes rj are small (and equal to each other), such
that we can discard all the terms with rj or higher-order (and to set rj/rk = 1), we
finally arrive at the Kuramoto model:

θ̇j = ωj +
1

2

N∑
k=1

aES
′[χ

(0)
E,j]Ajk sin(θk − θj). (S17)

In this context, i.e., Stuart-Landau and Kuramoto models as the approxima-
tions for more complex neural mass models, we use these models to explain the
directionality of the information flow across networks.

2 Directed phase lag index of Kuramoto model on
complex networks

In this section we apply the Kuramoto model to complex networks with an broad
degree distribution such as random and scale-free networks [13], and calculate
directed phase lag index (dPLI) of the model on the network. The model used here
is similar to that of reference [14], and the method used to solve the model in that
reference can be adopted here to solve our model. The analysis of reference [14]
includes a similar line of arguments as reference [15].
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Kuramoto model on complex networks
As shown in section 1 and in the references [1, 6, 7, 12], systems of coupled os-
cillators can be reduced to the following general form of phase-only equations as
the lowest order approximation:

θ̇j = ωj +
N∑
k=1

KjkH(θk − θj), j = 1, 2, ..., N, (S18)

where θ̇j(t) is the phase of oscillator j at time t, ωj is the natural frequency of the
oscillator j, and N is the total number of oscillators. Kjk is the coupling strength
from oscillator k to oscillator j. H(θ) is the coupling function. This is the most
general form of the phasemodel for coupled oscillators. In ourmodel, the coupling
function H(θ) is sin(θ).

Our model also requires finite transmission delays τ between different oscil-
lators, emulating the delay of signal propagation between two neural mass popu-
lations:

θ̇j(t) = ωj +
N∑
k=1

Kjk sin(θk(t− τ)− θj(t)), j = 1, 2, ..., N. (S19)

This is the equation we use in our simulation as the neural mass model for brain
networks. The natural frequencies in our simulation are given as a Gaussian distri-
butionwith amean at 10Hz and standard deviation 1, makingωj about 10·2π rad/s.
Time delay is varied between 2 ∼ 50 ms in our simulation, but the value of delay
does not bring about qualitative differences of the outcome, as long as it is less
than a quarter of the time of one cycle for the natural frequency (in this case, given
the frequency of 10 Hz, the time for one cycle is 100 ms).

In order to analyze this model, we follow the mean-field technique used by Ko
et al. [14]. As an approximation of the model in Eq. (S19), we write

θ̇j(t) = ωj +Kj

N∑
k=1

sin(θk(t− τ)− θj(t)), j = 1, 2, ..., N, (S20)

where Kj corresponds to the average coupling strength to oscillator j. Through
this mean-field approximation, the coupling inhomogeneity is incorporated inKj ,
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and the model becomes easier to analyze. We analyze this model to study coupling
inhomogeneity, and relate the simulation results to networks with inhomogeneous
degree distribution (e.g., random network, scale-free network and brain network).

Reference [16] states that if the time delays between the oscillators are similar
or smaller in their order of magnitude compared to their oscillatory period, there
will be no explicit time delay term but rather represented as a phase delay term β
in the coupling function: H(θ−β). Normalization factor 1/N will be added to the
coupling strength for the ease of analysis. Taking into account of these changes,
we finally arrive at our equation of analysis:

θ̇j = ωj +
Kj

N

N∑
k=1

sin(θk − θj − β), j = 1, 2, ..., N, (S21)

at time t.
Our model Eq. (S21) is a simplified version of Ko et al.'s from the refer-

ence [14]. Analytic techniques and results from the reference can also be applied
to our model. We summarize the behaviors of the model that are necessary in
explaining the phase-lead/lag relationship between oscillators of the model. Com-
pared to the given natural frequencies ωj , the nonzero phase delay β is going to
be small enough to assume that β ∈ (0, π/2). With this condition, we obtain a so-
called partially locked state as the possible solution of Eq. (S21) [14]. In terms of
our original model in Eq. (S19), if the coupling strength K between each node is
increased from 0, the system as a whole will change from an incoherent state to a
partially locked state before reaching phase locked state. What follows is a more
detailed description of the nontrivial state, i.e., the partially locked state.

In a partially locked state, the oscillators are divided into a phase locked group
oscillating together, and a drifting group with different frequencies and phases
than the locked group. This partially locked state can be analyzed using a self-
consistency argument [10, 11, 14]. We first introduce a parameter R:

ReiΘ =
1

N

N∑
k=1

eiθk . (S22)

R is an order parameter having values between 0 and 1; 0 indicates uniform inco-
herence, and 1 indicates in-phase synchrony.

Let Ω denote the frequency of the population oscillation of Eq. (S22) after the
system approaches a stationary state and let ϕj = θj − Ωt represent the phase of
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oscillator j relative to the average oscillation. The Eq. (S21) can then be rewritten
using the order parameter defined in Eq. (S22) as follows:

ϕ̇j = ωj − Ω +KjR sin(Φ− ϕj − β), j = 1, 2, ..., N, (S23)

where Φ = Θ − Ωt. When the system reaches a stationary state, R and Φ do not
depend on time.

The condition for the oscillators to be phase locked is ϕ̇j = 0.Then the ampli-
tude of the coupling terms must be larger than the inherent terms:

KjR > |ωj − Ω|. (S24)

From the simulation result, we found thatωj−Ω > 0, whichmeans that the average
frequency of the oscillators will be lower than the initially given frequencies: the
oscillators slow down as they synchronize with each other. We can also show this
analytically.

The oscillators satisfying the above condition in Eq. (S24) will asymptotically
approach a stable fixed point ϕj

∗ obtained from the following equation:

ωj − Ω = KjR sin(ϕj
∗ − Φ + β). (S25)

Three cases are possible:

case i) ωj − Ω < 0 implying π < ϕj
∗ − Φ + β < 2π,

case ii) ωj − Ω = 0 implying ϕj
∗ − Φ + β = 0 or π,

case iii) ωj − Ω > 0 implying 0 < ϕj
∗ − Φ + β < π.

(S26)

Also, the stability condition for the fixed point is

cos(ϕj
∗ − Φ + β) > 0, (S27)

leading to,

ϕj
∗ − Φ + β ∈ (−π/2, π/2). (S28)

Applying Eq. (S28) reduces Eq. (S26) into:

case i) 3π/2 < ϕj
∗ − Φ + β < 2π,

case ii) ϕj
∗ − Φ + β = 0,

case iii) 0 < ϕj
∗ − Φ + β < π/2,

(S29)

10



or,

case i) 3π/2− β < ϕj
∗ − Φ < 2π − β,

case ii) ϕj
∗ − Φ = −β,

case iii) 0− β < ϕj
∗ − Φ < π/2− β.

(S30)

Since Φ represents the phase of the average oscillation of all oscillators, ϕj
∗ − Φ

must be able to have both negative values and positive values. With β ∈ (0, π/2),
the only case yielding such possibility is case iii. Therefore, avoiding contradic-
tion, ωj − Ω > 0.

Applying this result to the above condition Eq. (S24), we can state the condition
for node j to phase lock as:

KjR > ωj − Ω. (S31)

We also find

ϕj
∗ − Φ + β ∈ (0, π/2). (S32)

We will use these findings in the calculation of the dPLI for the model.
The oscillators satisfying the above condition Eq. (S31) are phase locked at

frequency Ω in the original frame. The oscillators with KjR < ωj − Ωj will not
be able to lock and will drift monotonically.

If we assume that the initial frequencies for each node j are given identically
(ωj = ω for j = 1, 2, ..., N ), we can further write the following expression as the
condition for the oscillators to phase lock:

Kj >
ω − Ω

R
≡ Kl. (S33)

From this condition, the oscillators that phase lock are the ones with theirKj > Kl,

Dl =

{
Kj : Kl < Kj

}
, (S34)

and the oscillators that drift are the ones with theirKj < Kl,

Dd =

{
Kj : Kj < Kl

}
. (S35)
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As noted, these results are applicable to the Kuramoto model on networks [14].

θ̇j = ωj + S
N∑
k=1

Ajk sin(θk − θj − β), j = 1, 2, ..., N, (S36)

where S is the coupling strength, and A is the adjacency matrix describing the
coupling topology of the network. We will denote the incoming degree (number of
connections from other nodes) of node j by kj , and letAjk be either 1 (if there exits
a connection from k to j) or 0 (if there is no connection between j and k). If the
oscillator connections are random, we can use the following approximation [14,
17]:

S

N∑
k=1

AjkH(θk − θj) ≈
Skj
N

N∑
k=1

H(θk − θj). (S37)

With such relation, Eq. (S36) is approximately equivalent to the following equa-
tion:

θ̇j = ωj +
Skj
N

N∑
k=1

sin(θk − θj − β), j = 1, 2, ..., N, (S38)

which is equivalent to Eq. (S21) withKj = Skj .
Whether a specific given network indeed satisfies the above approximation

can be confirmed by comparison with simulation results. However, provided there
exist sufficient connections between different "communities" of the network, and
because of its small-world property that allows short-cuts across the network, it
is known that the above mean-field approximation approach holds well for suf-
ficiently strong coupling strength S such that clusters of entrained oscillators are
being formed [17].

The condition for a node j to phase lock is:

SkjR > ωj − Ω, (S39)

and when ωj = ω for j = 1, 2, ..., N , Eq. (S33) can be restated:

Skj >
ω − Ω

R
≡ Skl, (S40)
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kl being the critical degree. Nodes with degree larger than kl will phase lock,
and less than kl will drift. As the coupling strength S gets larger, the system will
eventually reach the fully locked state.

Directed phase lag index of the Kuramotomodel on complex net-
works
We use directed phase lag index (dPLI) as the measure of direction of information
flow. Building on phase lag index (PLI) from reference [18], dPLIwas first defined
in reference [19].

If two oscillators are phase locked, the condition Eq. (S3) is satisfied. More-
over if their frequencies are 1:1, Eq. (S3) can be rewritten:

|θjk| = |θj − θk| = constant, (S41)
where θjk is the phase difference between node j and k. Given a time series, phase
differences at each time can be computed: θjk(t) for t = 1, 2, ..., T . PLI between
two oscillators j and k is defined as the absolute value of the time average of the
sign of θjk(t):

PLIjk = |⟨sign{θjk(t)}⟩|. (S42)
The PLI ranges between 0 and 1: a PLI of zero indicates no coupling or coupling
with a phase difference centered around 0 mod π, and a PLI of 1 indicates perfect
phase locking at a difference other than 0mod π. The stronger this nonzero phase
locking is, the closer to 1 PLI will be. The PLI does not reflect the magnitude of
the phase difference, or the direction.

dPLI was defined to indicate the direction of information flow. This measure
reflects which of the two signals is leading and which is lagging in phase. Here
we define dPLI as the PLI without taking the absolute value of:

dPLIjk = ⟨sign{θjk(t)}⟩, (S43)
or, equivalently, as the following:

dPLIjk =
1

T

T∑
t=1

H̃(θjk(t)), (S44)

here, H̃(x) ≡ 2H(x) − 1, where H(x) is the Heaviside step function yielding
values either 0 (if x < 0) or 1 (if x ≥ 0 ). H̃jk(x) will yield values either -1
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(if j is phase lagging compared to k) or 1 (if j is phase leading compared to k).
Therefore, dPLIjk will yield 1 if j is always phase leading compared to k, and
-1 if j is always phase lagging. If a phase-lead/lag relationship between two arbi-
trary nodes can be analyzed, we can automatically predict whether the dPLI values
will be positive or negative between those nodes. In this sense, finding dPLI and
phase-lead/lag relationship is equivalent.

We now derive phase-lead/lag relationships among oscillators of the network.
From the previous subsection, we know oscillators that are phase locked to each
other satisfy Eq. (S25),

ωj − Ω = KjR sin(ϕj
∗ − Φ + β). (S45)

We also know that ϕj
∗ − Φ + β ∈ (0, π/2). Given two oscillators ϑ and φ, if we

assume their given frequencies are equal to each other, ωϑ = ωφ, and their average
coupling strengths Kϑ andKφ have the relationKϑ < Kφ, we can write:

KϑR sin(ϕϑ
∗ − Φ + β) = KφR sin(ϕφ

∗ − Φ + β). (S46)
From ϕj

∗−Φ+β ∈ (0, π/2), we know that sin terms on both side of the equation
is positive and monotonically increasing. Therefore, for phase locked oscillators,
if Kϑ < Kφ, then ϕϑ

∗ − Φ + β > ϕφ
∗ − Φ + β, which leads to the following

relation: ϕϑ
∗ > ϕφ

∗.
To summarize, for phase locked oscillators,

if Kϑ < Kφ then ϕϑ
∗ > ϕφ

∗. (S47)
We can interpret these results for inhomogeneous networks via step of Eq. (S36)
to Eq. (S38). FromKj = Skj , the higher the degree of node j,kj , is, the larger the
value of Kj becomes. Therefore, if the degree of node j is higher, it will phase
lag, and lower degree nodes will phase lead. If the coupling strength S increases,
more and more oscillators will phase lock to each other. Therefore, the larger the
coupling strength S is, the more apparent the phase-lead/lag relationship will be.

Our simulation results are shown in S3 Figure, and confirm our analytic results.
In the derivations, we assumed constant time delay τ and therefore constant phase
delay β between oscillators. We also assumed that the given natural frequencies
of the oscillators are all equal to each other: ωj = ω. In the simulations however,
distance-dependent time delay as well as constant time delay were applied in the
case of Gong's anatomic human brain network. The result is similar, always show-
ing negative correlation between the node degree and dPLI. The simulations show
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that the analytical results hold well for distance-dependent time delays as long as
the delays are smaller than one quarter of one oscillating cycle, as is the case with
the constant time delays. Additionally, the natural frequencies of the oscillators
were given as a Gaussian distribution with mean at 10 Hz and standard deviation
1 (making ωj around 10∙2π rad/s). The result were again similar in the case where
all natural frequencies were equal (ωj = ω). The variations in the time delay τ
and ωj will act as perturbations to each oscillators while maintaining the overall
tendency of the negative correlation. In addition to above perturbations, we also
added a Gaussian white noise ξj(t) of vanishing mean and standard deviation of 2
to each oscillator's equation to test the robustness of our results against perturba-
tions. Against all these perturbations, as shown in S3 Figure, the main finding of
the analysis was still maintained: higher degree nodes phase-lag, whereas lower
degree nodes phase-lead.

3 Directed phase lag index of Stuart-Landau model
on complex networks

In this section we describe the Stuart-Landau model on scale-free networks [20,
21], and derive dPLI for the model on the network. The method used to analyze
the Kuramoto model can be applied here as well.

Stuart-Landau model on complex networks
As shown in section 1, the Stuart-Landau model can be derived as the normal form
for the Hopf bifurcation. The Wilson-Cowan model was given as an example: the
model was expanded to the range of solutions yielding a stable limit cycle, and the
resulting low-order approximation was equivalent to the Stuart-Landau model.

The Stuart-Landau model is written as:

żj = {λj + iωj − (σj + iγj)|zj|2}zj +
N∑
k=1

Kjkzk, j = 1, 2, ..., N, (S48)

where complex variable żj(t) describes the state of jth oscillator.
For the moment, let us first consider the model without the coupling term, that

is, the inherent part of the model only:
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Illustration 1: Eq. (S49) with σj > 0 and ω > 0. σj > 0 makes it a case of super-
critical bifurcation, chainging from stable focus (a) to stable limit cycle with an
unstable focus at the center. ω > 0 makes the trajectory rotate counter-clockwise.
If ω < 0 the trajectory rotates clockwise. (a) When λj < 0 there is a stable focus
at the center. (b) When λj > 0 stable focus changes to unstable focus, and a stable
limit cycle appears.

żj = {λj + iωj − (σj + iγj)|zj|2}zj. (S49)

In this equation, λj is a parameter controlling how fast the trajectory decays onto
the attractor, ωj is the natural frequency of each oscillator, and γj is the coupling
term between the amplitude and phase of the oscillator. The sign of σj decides
whether the Hopf bifurcation is supercritical (σj > 0) or subcritical (σj < 0).

Here, we assume that λ, ω, σ, and γ are all nonnegative. Then the equation
yields a stable limit cycle from the supercritical Hopf bifurcation [20, 21]. A stable
limit cycle appears via a superciritical Hopf bifurcation when λj > 0, where as
when λj < 0 there is only a stable focus at the center (the point of bifurcation is
λj = 0). Illustration 1 shows the behaviour of the equation Eq. (S49) in the case
of σj > 0. The dynamics of the equations for γ = 0 and γ ̸= 0 are topologically
equivalent, so the value of γ is often irrelevant. For the ease of analysis, we set
γ = 0 and σ = 1. Also, we again add time-delay τ between nodes.

Returning back to the model with the coupling term, for each node j, the dy-
namics will be:
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żj(t) = {λj + iωj − |zj(t)|2}zj(t) +
N∑
k=1

Kjkzk(t− τ). (S50)

This is the form of the model we use in our simulation. We set λj = 2 for all
j = 1, 2, ..., N , and again give a Gaussian distribution with a mean at 10 Hz and
a standard deviation 1 for natural frequencies, making ωj about 10 · 2π rad/s. The
time delay is varied between 2 ∼ 50 ms, but again does not result in qualitative
differences as long as it is smaller than a quarter the time of one cycle for the nat-
ural frequency ( 25 ms).

We again use the mean-field approximation technique of reference [14] as used
in the section 2 to analyze this model. As an approximation of the model Eq. (S50),
we write:

żj(t) = {λj + iωj − |zj(t)|2}zj(t) +Kj

N∑
k=1

zk(t− τ), (S51)

whereKj corresponds to the average coupling strength to oscillator j. Again, the
coupling inhomogeneity is incorporated in Kj . We analyze this model to study
coupling inhomogeneity and relate the simulation results from networks with in-
homogeneous degree distribution (e.g., random network, scale-free network and
brain network).

As in section 2, we use the result from reference [16]: if the time delays be-
tween the oscillators are similar or smaller compared to their oscillatory period,
time delay can be represented generically as a phase delay term β without an ex-
plicit time delay term. Normalization factor 1/N will be added to the coupling
strength for the ease of analysis. We arrive at the following equation for each
node j:

żj = {λj + iωj − |zj|2}z +
Kj

N

N∑
k=1

zk(t)e
−iβ, (S52)

at time t. Eq. (S52) can be separated into two variables:

ṙj = {λj − |zj|2}rj +
Kj

N

N∑
k=1

rk cos(θk − θj − β), (S53)
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θ̇j = ωj +
Kj

N

N∑
k=1

rk
rj

sin(θk − θj − β). (S54)

These are the equations to be used in the analysis. rj(t) is the amplitude of node
j, and θj(t) is the phase of node j at time t.

We define a new parameter for the Stuart-Landau model for our analysis:

R̃eiΘ =
1

N

N∑
j=1

rje
iθj . (S55)

R̃ is a generalization of R defined in Eq. (S22): ReiΘ = 1
N

∑N
j=1 e

iθj . This new
parameter R̃eiΘ is a sum of all the zjs in the network, and R̃ can have values near
0 (when they are in uniform incoherence), to 1

N

∑N
j=1 rj , the mean of amplitude of

the oscillators (when they are in-phase synchronized). When they are completely
synchronized, their amplitudes are all equal to each other (like the phases are) and
the value R̃ will equal their amplitudes, rj .

Denoting Ω the frequency of the population oscillation of Eq. (S55) after the
system approaches a stationary state and settingϕj = θj−Ωt the phase of oscillator
j relative to the average oscillation, the Eq. (S53) and (S54) can be written using
the new order parameter Eq. (S55) as follows for each node j:

ṙj = {λj − rj
2}rj +KjR̃ cos(Φ− ϕj − β), (S56)

ϕ̇j = ωj − Ω +Kj
R̃

rj
sin(Φ− ϕj − β), (S57)

where Φ = Θ− Ωt. R̃ and Φ will not depend on time when the system reaches a
stationary state. We can also write in one equation form,

żj = {λj + i(ωj − Ω)− |zj|2}z +KjR̃ei(Φ−β). (S58)

The result is in the form of a Stuart-Landau equation with a forcing term; such
an equation has been studied in references [22, 23, 24]. Here we focus on the
relations between the amplitude rj , the strengthKj and the phase-lead/lag of node
j compared to each other.

The phase equation Eq. (S57) is similar to the equation for the Kuramotomodel
Eq. (S23): ϕ̇j = ωj −Ω+KjR sin(Φ−ϕj −β), with the difference being a factor
1/rj , and R̃ instead ofR. The simulation shows similarity to the Kuramoto model
such that ωj − Ω > 0, as synchronized frequency of the oscillators is lower than
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the initially given frequencies. However, we do not have to rely on the simulation.
Similar analysis done for Eq. (S23) in the previous section can also be applied to
Eq. (S57). When the system reaches a stationary state, R̃ and Φ do not depend on
time. Repeating the analysis done from Eq. (S24) to Eq. (S30) for Eq. (S57), we
again find ωj − Ω > 0. Also, we find the condition for node j to phase lock:

Kj
R̃

rj
> ωj − Ω. (S59)

We also find, again,

ϕj
∗ − Φ + β ∈ (0, π/2). (S60)

As the coupling strength gets larger, the synchronized frequency decreases.
However, there exists a notable difference between the Stuart-Landau model and
the Kuramoto model. For a sufficient coupling strength the population is divided
into two groups in the Kuramoto model, a phase locked group and a drifting
group, before they phase lock as one group for even larger coupling strength. For
the Stuart-Landau model, the oscillators phase lock as one group more instanta-
neously. The reason for this difference will become apparent later.

If the system indeed reaches the stationary state so that the oscillator j of the
model asymptotically reaches a stable value (r∗j , ϕ∗

j), Eq. (S56) and (S57) can be
written as:

−{λj − r∗j
2}r∗j = KjR̃ cos(ϕ∗

j − Φ + β), (S61)

ωj − Ω = Kj
R̃

r∗j
sin(ϕ∗

j − Φ + β). (S62)

The solution (r∗j , ϕ∗
j) to the equations is the stable fixed point we sought after.

If we square both equations and add them together, we arrive at the following
expression:

r∗j
2{(λj − r∗j

2)2 + (ωj − Ω)2} = (KjR̃)2. (S63)

This is a cubic equation for r∗j 2. Being a cubic equation with real coefficients, up to
three real solutions are possible, and at least one real solution exists [22, 23]. The
Tartaglia explicit formula for cubic equations are available to solve this equation,
but is extremely involved. However we can utilize graphical methods to draw out
useful information [24].

19



We first rearrange the equation with substitutions. With
x ≡ r∗j

2,

A ≡ λj,

B ≡ ωj − Ω,

(S64)

we set

g(x;A,B) ≡ x{(A− x)2 +B2}. (S65)
The squared amplitude of the phase locked solution x ≡ r∗j

2 is obtained from
the solutions to g(x) = (KjR̃)2. We look for positive real solutions. Graphically,
we look for intersections of the function g(x)with a horizontal line drawn at height
(KjR̃)2 above the x-axis. There exists at least one intersection always. There
are two possible cases for the intersections to occur as depicted in Illustration 2,
depending on the parametersA andB. g(x)may be monotonically increasing and
there will exist one positive real solution (case i), or g(x)may have local maximum
and minimum at positive x values xmax and xmin before monotonically increase
(case ii). In the case ii, if g(xmin) < (KjR̃)2 < g(xmax) there will exist three
positive real solutions. the proof of existance for such solutions for both cases are
well documented in the reference [22].

We can calculate the condition for the case ii. If we take the derivative of g(x),

∂g(x;A,B)

∂x
= 3x2 − 4Ax+ (A2 +B2). (S66)

The condition for the g(x) to be case ii is, for the following equation to have two
solutions which are non-imaginary:

∂g(x;A,B)

∂x
= 0. (S67)

The solution to Eq. (S67) is

x± =
2A

3
±

√
A2 − 3B2

3
, (S68)

and for x± to be two different non-imaginary values,

A2 > 3B2, (S69)
or,

λj
2 > 3(ωj − Ω)2. (S70)
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Illustration 2: Possible cases for g(x) = (KjR̃)2. g(x) is a blue curve, and (KjR̃)2

is a red dashed-line. (a) g(x) may monotonically increase, or (b) g(x) may have
local maximum and minimum at positive x values xmax and xmin before mono-
tonically increase. If g(xmin) < (KjR̃)2 < g(xmax) there will exist three positive
real solutions.

Because ωj − Ω > 0, we arrive at the following condition:

ωj − Ω <
λj√
3
. (S71)

Simulation results show that this condition is not satisfied with our parameters
(λj = 2 and ωj≃10 · 2π), when the coupling strength is sufficiently large. Espe-
cially as the coupling strength gets larger,A2 ≪ 3B2. Once again, we do not have
to rely on the simulation to show that such is the case.

We modify Eq. (S71) slightly:

−r∗j
2 +

√
3(ωj − Ω) < −r∗j

2 + λj. (S72)

FromEq. (S62) and Eq. (S61),We can replace the second term of the left side of
the Eq. (S71) by

√
3Kj

R̃
r∗j
sin(ϕ∗

j−Φ+β) and the right side byKjR̃ cos(ϕ∗
j−Φ+β),

respectively:
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−r∗j
2 +

√
3Kj

R̃

r∗j
sin(ϕ∗

j − Φ + β) < −Kj
R̃

r∗j
cos(ϕ∗

j − Φ + β). (S73)

Rearranging and using trigonometric identities we arrive at:

Kj
R̃

r∗j
sin(ϕ∗

j − Φ + β +
π

6
) <

r∗j
2

2
. (S74)

For largeKj , from Eq. (S79) to Eq. (S82) we can write:

r∗j ≈ (KjR̃)1/3. (S75)

Putting Eq. (S75) into Eq. (S74), we arrive at

sin(ϕ∗
j − Φ + β +

π

6
) <

1

2
. (S76)

Since (ϕ∗
j −Φ+β) ∈ (0, π/2), the left side of this inequality is always larger than

1
2
, and therefore Eq. (S76) cannot be satisfied. In the conclusion,the condition for

case ii cannot be satisfied for largeKj .
Therefore, for large kj , it is the case i the model belong to: g(x)monotonically

increasing with x. In this case, as depicted in Illustration 2 (a), as the value of
(KjR̃)2 gets larger, the intersection between g(x) and (KjR̃)2 will always occur
at a higher value of x:

xφ > xϑ for Kφ > Kϑ, (S77)

where xφ and xϑ are the solutions to

g(xφ) = (KφR̃)2 & g(xϑ) = (KϑR̃)2. (S78)

Using the definition x ≡ r∗j
2, we conclude that the amplitude increases as Kj

increases.
We can also analyze how fast r∗j increases asKj gets larger. We can divide the

curve g(x) for x > 0 into three ranges, and analyze behavior of the curve within
each range: 0 < x < xmax, xmax < x < xmin, and xmin < x. For each range,
we can expand and approximate g(x) by assuming that g(x) is near x = 0, near
x = 2A/3 (the point of inflection where the concavity of the curve changes), and
x ≫ 0 for each range respectively:

22




g(x) ≈ (A2 +B2)x for 0 < x < xmax,

g(x) ≈ (−A2

3
+B2)x for xmax < x < xmin,

g(x) ≈ x3 for x > xmin.

(S79)

If the intersection of g(x) andKjR̃ occurs in each range ( g(x) = KjR̃), using the
definition x ≡ r∗j

2, we can write


(KjR̃)2 ≈ (A2 +B2)r∗j

2 for 0 < x < xmax,

(KjR̃)2 ≈ (−A2

3
+B2)r∗j

2 for xmax < x < xmin,

(KjR̃)2 ≈ (r∗j
2)3 for x > xmin,

(S80)

or, 

r∗j ≈
KjR̃√
A2 +B2

for 0 < x < xmax,

r∗j ≈
KjR̃√

−A2/3 +B2
for xmax < x < xmin,

r∗j ≈ (KjR̃)1/3 for x > xmin.

(S81)

For small x, g(x) ∼ x and for large x, g(x) ∼ x3. Also, because the interception
of g(x) and Kj is bound to occur at a larger value of x as Kj increases, we can
summarize the results as the following:

r∗j ≈ KjR̃ for small Kj,

r∗j ≈ (KjR̃)1/3 for large Kj.
(S82)

We match the above results with the Stuart-Landau model on a network,

żj(t) = {λj + iωj − |zj(t)|2}zj(t) + S
N∑
k=1

Ajkzke
iτ , (S83)

where S is the coupling strength, and A is the adjacency matrix for the network.
The incoming degree (number of connections from other nodes) of node j is de-
noted as kj , and Ajk is either 1 (there exits a connection from k to j) or 0 (there is
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no connection between j and k). We can use the following approximation, if the
oscillator connections are not too biased [14, 17]:

S

N∑
k=1

Ajkzke
iτ ≈ Skj

N

N∑
k=1

zke
iτ . (S84)

Finally,

żj(t) = {λj + iωj − |zj(t)|2}zj(t) +
Skj
N

N∑
k=1

zke
iτ , j = 1, 2, ..., N, (S85)

which is equivalent to Eq. (S52) withKj = Skj .
Again, for networks with sufficient connections between different "communi-

ties" (i.e., small-world networks), for sufficiently strong coupling strength S such
that clusters of entrained oscillators are being formed, the above mean-field ap-
proximation approach holds well [17].
Combining the relationKj = Skj with Eq. (S82),

r∗j ∼ SkjR̃ for small Skj,

r∗j ∼ (SkjR̃)1/3 for large Skj.
(S86)

Therefore, higher degree nodes will have larger amplitudes, and lower degree
nodes will have smaller amplitude.

Before we proceed to calculate the dPLI, we return to Eq. (S61) and (S62).
The necessary conditions for the Eq. (S61) and (S62) to have a solution (r∗j , ϕ

∗
j)

are

KjR̃ ≥ {r∗j
2 − λj}r∗j , (S87)

KjR̃ ≥ {ωj − Ω}r∗j . (S88)

For the Stuart-Landau model on a network, we can write

SkjR̃ ≥ {r∗j
2 − λj}r∗j , (S89)

SkjR̃ ≥ {ωj − Ω}r∗j . (S90)
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If the strength S is small enough, or kj is small, then there may be oscillators
not able to have a stationary solution and drift just as in the case of the Kuramoto
model. However, for large value ofS, as the strengthS increases, r∗j only increases
as much as (KjR̃)1/3. Therefore, when we increase value of S, all oscillators
will eventually satisfy the necessary conditions sooner, and will asymptotically
reach the phase locked solution (r∗j , ϕ∗

j) faster. The difference compared to the
Kuramoto model comes from the factor r∗j .

We can further inspect the stability conditions for the solution (r∗j , ϕ∗
j):

3r∗j
2 − λj > 0, (S91)

cos(ϕ∗
j − Φ + β) > 0. (S92)

With Eq. (S61), (S92), we find that r∗j 2 − λj > 0. This finding will be utilized in
the calculation of the dPLI for the Stuart-Landau model.

Directed phase lag index of Stuart-Landau model on complex
networks
Eq. (S62) and (S61) can be combined to obtain information about the phase of the
oscillators. These equations can be written in the following fashion:

−
λj − r∗j

2

KjR̃
r∗j = cos(ϕ∗

j − Φ + β), (S93)

ωj − Ω

KjR̃
r∗j = sin(ϕ∗

j − Φ + β). (S94)

If we divide Eq. (S94) by Eq. (S93), we arrive at

tan(ϕ∗
j − Φ + β) =

ωj − Ω

r∗j
2 − λj

. (S95)

If r∗φ > r∗ϑ, assuming λ∗
φ = λ∗

ϑ = λ, then (ωφ − Ω)/(r∗φ
2−λ) < (ωϑ − Ω)/(r∗ϑ

2−
λ). Again assuming ωφ = ωϑ = ω, since ω − Ω > 0 and r∗j 2 − λ > 0 for any j ,

tan(ϕ∗
φ − Φ + β) < tan(ϕ∗

ϑ − Φ + β). (S96)

If (ϕ∗
j − Φ + β) ∈ [−π/2, π/2] (which is confirmed in the previous section), the

following holds:
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If r∗φ > r∗ϑ then ϕ∗
φ < ϕ∗

ϑ. (S97)

To summarize, nodes with larger amplitude will will phase-lag compared to nodes
with smaller amplitudes.

From Eq. (S82) and (S86), we know that the amplitude is proportional to the
degree of the node. Therefore, higher degree nodes will phase-lag, whereas lower
degree nodes phase-lead.

Our simulation results are shown in S4 Figure, and confirm our analytic results.
Again, as in the case of the Kuramoto model, we assumed constant time delay τ
and therefore constant phase delay β between oscillators in our derivations, and
assumed that the given natural frequencies of the oscillators are all equal to each
other: ωj = ω. In the simulations on Gong's anatomic human brain network,
both distance-dependent time delay and constant time delay were applied, both
showing the negative correlation between the node degree and dPLI as long as
the delays are smaller than a quarter of one oscillating cycle. For Fig. 4 in the
main text where distance-dependent time delay was used, Spearman correlation
coefficient was -0.61, whereas constant time delay was used, the coefficient was
-0.63 both with p < 0.01. The natural frequencies of the oscillators were given as
a Gaussian distribution with mean at 10 Hz and standard deviation 1 (making ωj

around 10∙2π rad/s) in simulations. The results were similar with the case where
all natural frequencies were equal (ωj = ω). The variations in the time delay τ and
the natural frequency ωj act as perturbations to each oscillators while maintaining
the overall tendency of the negative correlation. In the simulations a Gaussian
white noise ξ(t)j of vanishing mean and standard deviation of 2 was added to
each oscillator's equation, to test the robustness of our results against the noise.
As shown in S4 Figure the main finding of the analysis was still maintained with
these perturbations. Higher degree nodes phase-lag, whereas lower degree nodes
phase-lead. We also supplement our results with S2 Figure highlighting the distinct
local dynamics for the hub nodes and the periphery nodes, regardless of network
type (scale-free network, random network, hierarchical modular network [25], and
brain networks of Gong and Hagmann).
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4 Comparison between different measures for the
Stuart-Landau model

Asmentioned in section 2, dPLI reflects which of two signals is leading and which
is lagging in phase. This phase-lead/lag relationship is used as a surrogate for the
direction of information flow. It can be asserted that all causal influences lead and
resultant effects lag, simply by virtue of the temporal constraints on cause-effect
relationships. However, the converse assertion that every lead/lag relationship re-
flects a causal influence does not hold. As such, we conducted parallel analyses
with the causality measure Granger causality (GC) and the information-theoretic
measure symbolic transfer entropy (STE).

GC is a statistical concept of causality based on whether one time series is use-
ful in predicting another. A signal X "Granger-causes" another signal Y , if past
values of X provide statistically significant information in predicting Y , more so
than the information contained in the past values of Y alone [26, 27].

Transfer Entropy is an analytic technique rooted in information theory, and is
a surrogate for the transfer of information between two signals. Transfer Entropy
from a signal X to another signal Y is the amount of uncertainty reduced in fu-
ture values of Y , by knowing the past values of X given past values of Y . STE
is a simplified version of the Transfer Entropy, that uses the technique of symbol-
ization [28, 29]. Here we used STE to utilize its robustness and computationally
faster speed.

dPLI, GC, and STEwere applied to the Stuart-Landau model on Gong's human
brain networkwith distance dependent time delays between nodes(S1 Figure). The
results with constant time delay was also similar. For GC, Seth's toolbox was used
to compute [27]. The results show qualitatively similar findings across dPLI, GC,
and STE, with quantitative differences relating to the coupling strength at which
the phenomenon is clearlymanifest. All results show that the nodeswith higher de-
gree either phase-lag (dPLI: S1 Figure (A)), Granger-caused (GC: S1 Figure (B)),
or information transferred (STE: S1 Figure (C)). Negative correlations between
node degree, and the measures dPLI, GC and STE are apparent (average Spear-
man correlation coefficients of -0.60, -0.59 and -0.54 respectively, with P<0.01
for the coupling strength of 1.5∼10 for dPLI and GC, and 15∼50 for STE). The
results suggest that the phase-lead/lag relation, causality, and the information flow
transfer are possibly all correlated with each other, supporting the general interpre-
tation that dPLI reflects information transfer despite the fact that it is not a direct
measure of information transfer.
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