Supplementary Files

Figure S1.

UVB radiation enhances CORT plasma levels in C57Bl/6 mice in a dose (a) and time (b) dependent manner.

Figure S2.

Different routes of activation of the central HPA axis by exposure of the skin to UVB energy.

Bulb name	Waveband (nm)	Dose* and of irradiat with SED	l Time ion and MED
USHIO	UVB (290-320)	Dose	400 mJ/cm^2
G15T8E		Time	240 sec
		SED	4
		MED	2.1

Table S1. Specification of the UVB bulb used in this study.

*Fraction delivered. Detailed specifications were described previously (Skobowiat et al., 2013b).

Target	Gene symbol	Forward sequence 5'-3'	Reverse sequence 5'-3'
Corticotrophin releasing hormone from exon 2	CRH Ex2	agcccttgaatttcttgcag	acccatgcggatcagaac
Urocortin	Ucn	cgcgctcctcttgctgttag	atggacagtggagggtcgtc
Proopiomelanocortin	РОМС	agtgccaggacctcacca	cagcgagaggtcgagtttg
Melanocortin receptor 2	MC2R	aaatgattetgetgetteeaa	tggtgtttgccgttgactta
Steroid 11β-hydroxylase	CYP11B1	gccatccaggctaactcaat	cattaccaagggggttgatg
Steroidogenic acute regulatory protein	STAR	ttgggcatactcaacaacca	acttcgtccccgttctcc
β-actin	β-ACTIN	ctaaggccaaccgtgaaaag	accagaggcatacagggaca

 Table S2. Primers sequences used in this study.

Target Name	Symbol, Cat #	Vendor	
Corticotrophin releasing	CRH	Phoenix Pharm.,	
hormone	FEK-019-06	Burlingame, CA	
Urocortin	Ucn	MyBioSource,	
Ulocoltill	MBS941797	San Diego, CA	
ß Endornhin	β-END	Peninsula Lab.,	
p-Endorphin	S-1245	San Carlos, CA	
Adrenocorticotropic	ACTH	Alpco Diagnostic, Salem,	
hormone	21-ACTHU-E01	NH	
Cortigostarona	CORT	Enzo Life Sci.,	
Concosterone	ADI-900-097	Plymouth Meeting, PA	

 Table S3. List of immunoassay kits used in this study.

Primary antibody	Host	Cat #	Vendor	
CRH	rabbit	PBL rC70	Gift from Dr. W. Vale, Salk Institute,	
CMI			La Jolla, CA	
Ucn	goat	sc-1825	Santa Cruz Biotech., Santa Cruz, CA	
ACTU* (DOMC)	rabbit	_	Gift from Dr. T. Allen, Oregon Health	
ACTH [®] (FOMC)			Sciences University, Portland, OR	
ACTH	rabbit	AFP-6328031	Dr. A. F. Parlow, NIDDK,	
β-END	rabbit	AFP-6328031	Torrance, CA	
20 1150	rabbit	_	Gift from Dr. R. Parker, The University of	
эр-нэр			Alabama at Birmingham, AL	
P 450ccc	rabbit	_	Gift from Dr. R. Tuckey, University of	
F450800			Western Australia, Crawley, WA	
Secondary antibody				
and reagents				
Biotinylated anti rabbit IgG	donkey	711-065-152		
Biotinylated anti goat IgG	donkey	705-065-147	Jackson ImmunoResearch,	
Streptavidin-CY3	-	016-160-084	West Grove, PA	
Streptavidin-Alexa488	-	016-540-084	_	
Anti rabbit IgG–HRP	goat	Sc-2030	Santa Cruz Biotech., Santa Cruz, CA	
β-actin IgG–HRP	mouse	A3854	Sigma, St. Louis, MO	

Table S4. List of antibodies and reagents used for IHC and WB.

*Antibody recognize the POMC precursor, used exclusively for WB method.

Materials and Methods

The methodology followed the protocols described previously (Skobowiat *et al.*, 2011; Skobowiat *et al.*, 2013a; Skobowiat *et al.*, 2013b).

Quantitative real time RT-PCR (QRT-PCR)

Total RNA was extracted with TRIZOL[®] (Invitrogen, Carlsbad, CA). One microgram of total RNA was reverse transcribed into cDNA with the high-capacity cDNA reverse transcription kit (Applied Biosystems, Foster City, CA). Primers used for PCR amplification are listed in Table S2. The PCR reactions were performed in triplicate with KAPA SYBR[®] Fast Master Mix (Kapa Biosystems, Inc.,Woburn, MA). The data were collected on the Light Cycler 480 from Roche. The amount of amplified product for each gene was compared to that for reference gene (β -actin) using a comparative $\Delta\Delta$ CT method and presented as a fold change \pm SD.

ELISA/EIA, Peptide extraction

Plasma was diluted 1:100 for CORT, 1:15 for ACTH, 1:13 for β -END with 0.9 % NaCl and processed with commercially available kits, listed in Table S3, according to the manufacturer's directions. Tissues (skin, brain) samples were homogenized with T-PER[®] buffer (Thermo Sci., Rockford, IL) supplemented with protease inhibitor cocktail (10µl/1ml; Sigma, St. Louis, MO), with the use of homogenizer (Polytron PT-MR2100, Swiss) and stand for 30 min, 4 °C and centrifuged at 12,000 g, 25 min, 4 °C. Supernatants containing extracted proteins were normalized, i.e. adjusted to the same concentration (4 µg/µl for brain and 3 µg/µl for skin) after calculation with BCA assay (Thermo Sci., Rockford, IL). Samples were run in triplicate, the OD's or fluorescence was read with spectrometer (SpectraMax M2, Molecular Devices, Sunnyvale, CA) and the concentrations were calculated from the 4 parametric standard curve with the software (SoftMax Pro, Molecular Devices, Sunnyvale, CA) and presented in pg/mL or in ng/mL.

Before CRH assay peptide extraction was performed (required by the manufacturer). 100 μ l of plasma or 100 μ l of adjusted protein extract from tissues were acidified, centrifuged and loaded onto equilibrated SEP-COLUMN containing 200 mg of C18 (RK-SEPCOL-1, Phoenix Pharm., Burlingame, CA). After washing, peptide fraction was eluted by acetonitrile containing 1% trifluoroacetic acid and dried with speed vacuum (SpeedVac[®] Plus, Savant, West Palm Beach, FL) and diluted with sample buffer provided by the manufacturer.

Immunohistochemistry

Skin (3 samples per animal) and brain samples were fixed in 4% buffered (pH=7.4) paraformaldehyde for 12 h. After extensive rinsing in PBS (pH=7.4), tissues were submerged in 18% sucrose, frozen in OTC media and cut on a cryostat (Leica 3050, Bannockburn, IL) using the technique for mouse skin described by Paus et al., 1999 (Paus et al., 1999). The hypothalamus was isolated at the level of anterior Bregma +1 mm up to posterior Bregma -2.70 mm, by the use of the Brain Slicer Matrix (Zivic Instrument, Pittsburgh, PA). Region resembling the whole hypothalamus (Bregma ~ -0.34 to -2.70) were characterized under light microscope based on the The Allen Reference Atlas (http://mouse.brain-map.org/static/atlas) and 10 um coronal sections were mounted onto silanized slides (Dako, Carpinteria, CA), rinsed several times with PBS and subjected to a single immunofluorescence. Blocking was performed with 5% donkey serum, 0.1% BSA, 0.3% Triton X-100 diluted in PBS for 1 h at RT. Following extensive rinsing in PBS, the primary antibody diluted in the same blocking solution was applied overnight, at 4 °C. The next day, tissues were rinsed and biotinylated species-specific IgG, were applied for 1 h. Following rinsing in PBS, the streptavidine-CY3 as red fluorophore or streptavidine-Alexa488 as green fluorophore was applied for 50 min. Next, sections were submerged in fluorescent mounting medium (Dako) and topped with a cover glass. Negative controls were performed the same way except primary antibodies (omission) or serum from non-immunized goats or rabbits was applied (replacement). Antibodies and reagents used in this study are listed in Table S4. At least 3 sections per skin sample, i.e., 9 per animal of each primary antibody were studied under a fluorescent microscope (Leica, Digital DM4000B, Buffalo Grove, IL) equipped with the filter capable of visualization of λ excitation/emission 550/570 nm (red), and 490/525 nm (green) and conjugated to a digital camera. Pictures were further analyzed for quantitative intensity of immunocomplexes (6 measurements per assessment) with the use of ImageJ software (National Health Institute, Bethesda, MD) and presented as mean \pm SD.

References:

Paus R, Muller-Rover S, Van Der Veen C, *et al.* (1999) A comprehensive guide for the recognition and classification of distinct stages of hair follicle morphogenesis. *J Invest Dermatol* 113:523-32.

Skobowiat C, Dowdy JC, Sayre RM, *et al.* (2011) Cutaneous hypothalamic-pituitary-adrenal axis homolog: regulation by ultraviolet radiation. *Am J Physiol Endocrinol Metab* 301:E484-93.

Skobowiat C, Nejati R, Lu L, *et al.* (2013a) Genetic variation of the cutaneous HPA axis: an analysis of UVB-induced differential responses. *Gene* 530:1-7.

Skobowiat C, Sayre RM, Dowdy JC, *et al.* (2013b) Ultraviolet radiation regulates cortisol activity in a waveband-dependent manner in human skin ex vivo. *Br J Dermatol* 168:595-601.