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1. Introduction

1.1 What popRange can do

This package is a forward-in-time Wright Fisher population genetic simulator. It is highly
flexible and probabilistic, incorporating stochastic spatially and temporally explicit
scenarios and chromosome scale data. It allows the simulation of large numbers of
individuals, SNPs, and populations. This combines simulators commonly used in ecology,
which incorporate stochastic demographic scenarios, such as stochastic founding and
extinction of populations, with simulators more commonly used in population genetics that
incorporate large numbers of SNPs.

1.2 How popRange works

This is a grid-based forward-in-time Wright-Fisher population genetic simulator. Itis
highly flexible and incorporates many parameters, as described below. This spatially
explicit simulator is based on a user-defined grid of populations (Supplementary Figure 1).
Most parameters can also be temporally variable. popRange can read its own output file to
start a new simulation where the previous one left off. By running the simulation multiple
times, a user can cause temporal changes to many of the parameters.

*ﬁo

Supplementary Figure 1:Each grid point represents a population habitat. In this example, the initial population (top
left) sends small groups of migrants to the adjacent habitats. Over a long period of time, this process results in the
dynamic peopling of the grid.

Steps of the simulation

Setup
This step initializes the world.

Each generation (in this order):

Catastrophe



Each generation, each population becomes extinct with probability equal to the catastrophe
parameter set by the user. If a population becomes extinct, its population size immediately goes
to 0.

Migration
Migration is grid-based. All populations can have the same migration rate or each set of
populations can have its own migration rate.

If the migration rate parameter is a single value, the code first determines the number of
individuals migrating away from each population (pulled from a binomial distribution with
probability equal to the migration rate parameter). Then each migrant is randomly assigned a
random adjacent population to migrant. The population grid has closed boundaries. A non-edge
population has eight adjacent population grid points.

If migration rate parameter is a matrix (migration rates are specified for particular pairs of
populations), the number of migrants from the initial to final population is chosen from a
binomial distribution with the probability given. These initial and final populations are not
required to be adjacent to each other and may be located anywhere on the grid.

NOTE: The migration rate parameter is the probability of an INDIVIDUAL migrating. Thus if it
is haploid, it’s the probability of each haploid migration and if individuals are diploid, it’s the
probability of a two chromosomes migrating. In all cases, the order of population migrations is
randomly shuffled to ensure no false patterns emerge.

Mutation
Mutations are based on the infinitely many sites model. The number of mutations introduced into
each population in each generation is drawn from a Poisson distribution parameterized by:

A=pxg*N

where u is the mutation rate parameter, g is the number of base pairs in the genome, and N is the
population size.

Selection
In diploid individuals, the fitness of the new allele is equal to 1 — s in homozygotes and 1 — hs
in heterozygotes. In haploid individuals, the fitness of the new allele is 1 — s.

When a mutation is introduced, a selection coefficient, s, and a dominance coefficient, 4, may be
placed on the new allele. The user may define a fixed selection coefficient s or a gamma
distribution (with parameters alpha and beta) for s to be drawn from. Like most parameters in
this framework, selection parameters are very flexible, and is also possible to select spatially and
temporally varying values. The default s is 0, indicating the mutation is neutral, and the default /
is 0.5, indicating that heterozygotes (ex. Aa) have a fitness in between the two homozygotes (ex.
AA and aa).



Drift

Population growth

Populations can maintain a constant size, experience instantaneous population size changes, or
experience logistic growth. If logistic growth parameters are set, the new population size is
determined at this point. The growth rate, r, is drawn from a normal distribution with the mean
and variance provided by the user. This 7 is used in the logistic growth equation:

1-Ney Nei—A
*
K K

Ny =1 Np_q %

where N is the population size, K is the carry capacity and A4 is the Allee effect.

Reproduction

First, if any population has less than 2 individuals at this point, the population goes extinct.
Allele frequencies in the remaining, new populations are then calculated. The new frequencies
of neutral SNPs are drawn from binomial distributions with probability equal to current SNP
frequency. Frequencies of selected SNPs are adjusted to their expected frequencies in the next
generation. The new SNP frequencies are then drawn from these adjusted frequencies.

Lose Zeroes
If SNP_Model = 1, and the derived allele is no longer present in any population, the allele is
removed from the simulations. This is a technical mechanism to reduce simulation time.

Output results
When all generations are complete, output is written to files chosen by the user.

2. Getting Started

2.1 Download and Installation

The R package is available for download from CRAN at
http://cran.r-project.org/web/packages/popRange/index.html. This contains an R
package that calls Python scripts. It requires R, Python, and the Python package NumPy to
run.

Step 1: Download Python

(Windows users only, should already be installed on Macs)

This software was built with Python 2.7.6, but multiple versions of Python 2.7 and Python
3.2-3.4 should be compatible. Mac computers come preinstalled with Python. Windows
users may need to download Python, which is available at
https://www.python.org/downloads/windows/. Download either Python 2.7.* or Python
3.4.x. (It should also be compatible with Python 3.2-3.3.)



Step 2: Download NumPy
NumPy is a popular Python package for scientific computing. It is available here:
http://www.numpy.org/.

Step 3: Download R
R available for download here: http://www.r-project.org/. We also recommend using the
GUI RStudio, available here: http://www.rstudio.com/products/rstudio/

Step 4: Download popRange

popRange can be downloaded from the R website via this link: http://cran.r-
project.org/web/packages/popRange/index.html. Alternatively, the following command
can be entered into R:

install.packages(‘popRange’)

This package currently has just one main command, popRangeSim, which is the command
to run the simulations. It depends on the package “findPython”, which should be
downloaded automatically with the install.packages command.

Step 5: Try it out!

Everything should be set up now. Try out some of the examples and walkthrough this
manual for more information. Questions, comments and suggestions can be directed to
Kimberly McManus at kfm@stanford.edu.

3. Input

3.1 Required Parameters
Below includes all required parameters.

NOTE: There are two main possible SNP models.

* Model 0: User provides starting SNP frequencies. For this model, the user must
provide the total number of SNPs (nSNPs) and the starting SNP frequencies
(SNPs_starting_freq).

* Model 1: Number of SNPs and starting SNP frequencies are determined via a
standard neutral model. If this model is chosen, the user must provide a mutation
rate (mut rate) and genome size (gSize).

Parameter Data Description Example
Type
world matrix This matrix grid defines the grid of world = matrix(0,nrow=3,ncol=3)
populations. Each point in the matrix world[1:2,1:2]=1
defines a potential population. world[3,2:3] =-1




A 1 indicates a population may exist at that | world=
point. -1 indicates no population can existat | 1 1 1
that grid point. This allows the user to 111
define a population grid that is not 1-1-1
rectangular.
nGens int Number of generations for the simulations nGens = 100
to run.
popSize Matrix Starting population size. If int, every Ne = matrix(0, nrow=3, ncol=3)
or int existing population has the same size. If Ne[1,] =¢(30,50,10)
matrix, each population size is defined Ne[2,1:2] = c(10,5)
separately.
Ne =
Input must be an integer >= 0 or a matrix of | 30 50 10
integers >= 0. 105 0
00 O
SNP_Model int There are two options. The first option (0) SNP_Model = 1
indicates that the user will provide starting
SNP frequencies. The second option (1)
determines starting SNP frequencies
according to the standard neutral model
with user provided genome size and
mutation rate.
gSize int Number of base pairs in the simulated gSize = 90000
sequence.
(Required if SNP_Model = 1)
mutRate float Mutation rate per generation per site. mutRate = 1.2*10**-8
If generating sequence data, 1.2*¥10**-8
mutations/bp/generation is a possible
setting.
(Required if SNP_Model = 1)
nSNPs int Number of SNPs, if SNP_Model = 0. nSNPs =200
(Required if SNP_Model = 0)
SNPs_starting | Intor The initial frequency of the SNPs. If int, all SNPs_starting_freq = matrix(0,
_freq matrix SNPs are given the same starting nrows=3, ncols=3)

frequencies. If matrix, columns 1 and 2
indicate the first and last SNPs. Column 3
indicates the allele frequency of these SNPs.

(Required if SNP_Model = 0)

SNPs_starting_freq = ¢(1,100,0.3)
SNPs_starting_freq =
c(101,200,0.2)

SNPs_starting_freq=
1 1000.3
101200 0.2

3.2 Temporally varying Parameters




Most parameters can be made temporally variable by outputting the first simulation run.
Then changing the relevant parameters, reading in the file from the first simulation run,
and running a second simulation. This can be done as many times as necessary (see
Section 4.3 for an example).

3.3 Selection Parameters

There are two possible selection models. The first draws selection coefficients from a
gamma distribution. In this implementation, every SNP has a selection coefficient that is
drawn from the gamma distribution. In the second selection model, the user defines
specific selection coefficients for each SNP. Each SNP can have the same selection
coefficient, or the user may provide a matrix with selection coefficients. NOTE: Provide
EITHER an s input OR gamma_shape, gamma_scale values.

Furthermore, the user may implement spatially varying selection coefficients with the sDiff
option.

Selection Data Description Example

Parameters Type

gamma_shape, | Floats Shape (aka alpha, k) and scale (aka gamma_shape = 0.17

gamma_scale theta) parameters to the gamma gamma_scale = 8
distribution.

In human European populations these
have been estimated at shape=0.206,
scale=1/15400 (Boyko et al. 2008).

S Float or | If numeric, all SNPs have the same s = matrix(c(1,101,100,200,
matrix selection coefficient. If matrix, first 2 0.01,0.02), nrow=2, ncol=3)
columns define starting and ending SNP.
The 3rd column is the selection S=
coefficient for those SNPs. 1 1000.01
101 200 0.02
DEFAULT: 0
h Float Dominance parameter. (Only relevant h=0.6
for diploids).
DEFAULT: 0.5
sDiff Matrix Defines the selection coefficients for sDiff= matrix(0,nrow=4, ncol=6)
each SNP in each population. This sDiff[1,] = c('sSNP", 'fSNF", ‘00", 01", '10°,"11)

1 f iall iabl lecti sDiff[2,] = ¢(1,100,0.01,0.02,0.03,0.04)
allows for spatially variable selection sDIff[3,] = ¢(101,200,0.04,0.03,0.02,0.01)

coefficients. The first line of the matrix
consists of the strings ‘sSNP” and ‘fSNP’. | sDiff=

These are the first and last SNPs with a sSNPSNPOO 01 10 11
o . . 1 100 0.010.02 0.03 0.04
specific set of selection coefficients. The | 191 200 0.04 0.03 002 0.01
coordinates of each population are

subsequently listed.

3.4 Growth Parameters

popRange implements logistic growth and instantaneous population size changes.




Instantaneous size changes can also be simulated by running one simulation at the first
size. You can use this output file as input for the next simulation with a different population
size.

Ex. The below simulations has 100 diploids for 10 generations, and then instantaneously shrinks to
50 diploids for the next 10 generations.

First run:
popRangeSim(world=1, popSize=100, nGens=10, nSNPs=500, SNPs_starting_freq=0.5,
SNP_model=0,outfile="ExampleRun")

Second run (This uses the output file from the first run and changes the size. Be sure to add “results.gen#” to
the input file though!).:
popRangeSim(world=1, popSize=50, nGens=10, infile="ExampleRun.results.gen10", outfile="ExampleRun2")

Growth Data Type | Description Example
Parameters
K Int or Carry capacity. If int, all populations have K=1000
matrix same carry capacity. If matrix, each
population has its own carrying capacity.
DEFAULT: 100
A Int or Allee Effect. If int, all populations have same | A=10
matrix Allee effect. If matrix, each population has
its own Allee effect. Setto 0 if you don’t
want to incorporate the Allee effect.
DEFAULT: 0, no Allee effect
rMean Float or Mean r (from exponential growth equation). | rMean = 0.4
matrix Float between c(0,1). Ifint, all populations
have the same r. If matrix, each population
has its own r.
DEFAULT: 0, no growth
rVar Float or Variance in r. Float between c(0,1). Ifint, all | rVar =0.4
matrix populations have the same variance. If
matrix, each population has its own r. Set to
0 if you want r to be exactly rMean each
generation.
DEFAULT: 0
3.5 Other Parameters
Other Data Type | Description Example
Parameters
diploid binary Ploidy of individuals. Two options: haploid Diploid = TRUE
and diploid. If TRUE, diploid. If FALSE,
haploid.




DEFAULT: TRUE

migration

Float or
matrix

Probability of each individual migrating each
generation. If float, every population has
same migration rate. Each migration
randomly picks an adjacent viable grid point
to migrate to (diagonals included).

Alternatively, a matrix can be provided. The
first 2 columns are the coordinate of the
initial population. The next two columns are
the coordinates of the final population. The
fifth column is the migration rate.
Population pairs not included are assumed
to have no migration.

NOTE: Think of the x coordinate as the

horizontal coordinate and the y as the
vertical coordinate.

DEFAULT: 0

migration =
matrix(c(0,1,0,0,0,0,1,0,0.01,0.01
), nrow=2, ncol=5)

Pop1x poply pop2x pop2y p
0o 0 0 1 0.01
1 0 o0 0 0.02

catProb

Float or
matrix

Probability of population extinction each
generation. If a float, all populations have
the same catProb. If matrix, each population
has its own catProb.

DEFAULT: 0

catProb = 0.01

inFile

string

If you have already ran a simulation, you can
use the results file as input. This allows for
temporally variable parameters and to
output the state of the population at various
time points.

infile = ‘results.1’

3.6 Output parameters

A results file is always output. This can be read back into the program.

Output Data Type | Description Example

parameters

outfile string A string of the outfile names. outfile = “first_run”

GENEPOP Binary If TRUE, write results to GENEPOP GENELAND = FALSE
formatted file

GENELAND Binary If TRUE, write results to GENELAND GENEPOP = FALSE
formatted file

PLINK Binary If TRUE, write results to an PLINK formatted | PLINK = FALSE
file

recordTrag Int If n, this records the trajectory of all of the recordTrag =10




alleles n generations and outputs them to a

single file. #This would record the state
of every allele every 10
NOTE: If you have many SNPs or generations

populations, this option may significantly
increase simulation time. Also if you are
using SNP_model=1, alleles that have a
frequency of 0 in all population will be
dropped from simulation and thus will stop
being recorded in this file. This decreases
simulation time.

DEFAULT = 0, only outputs results at end

4. Examples

4.1 Example 1

In this scenario, we are simulating a 3x3 grid of populations for 1000 generations. Each
population starts with 200 diploid individuals. Each individual has a 0.01 probability of
migrating away from their populations. There are 1000 SNPs that all have a starting
frequency of 0.5, and the program outputs the standard “results” file (see Section 5.1), as
well as a PLINK file (see Section 5.2).

Command:

mat = matrix(1,nrow=3,ncol=3)

popRangeSim (world = mat, popSize = 200, diploid = TRUE, nGens = 1000, mig = 0.01, SNP_model = 0, nSNPs
= 1000, SNPs_starting_freq = 0.5, outfile= "test_outfile", PLINK=TRUE)

4.2 Example 2

In this example, we simulate a grid of 15 populations (no population can exist at (1,1)) with

spatially varying selection coefficients. We are also recording the state of all alleles every 10
generations (recordTrag = 10). The migration rate is set to 0.01, so each individual has 0.01
probability of migrating away from their population in each generation.

Commands:

mat = matrix(1,nrow=4,ncol=4)

mat[1,1] = -1 #This makes a population grid where a population exists at every point, except [1,1]
sDiff= matrix(0,nrow=3, ncol=6) #Since there is no population at [1,1] we set (0,0) to no selection.
sDiff[1,] = c('sSNP’, 'fSNP’, '00','01",'10", '11") #’sSNP’ is the starting SNP and ‘fSNP’ is the ending SNP
sDiff[2,] = ¢(1,100,0,0.02,0.03,0.04)

sDiff[3,] = ¢(101,200,0,0.03,0.02,0.01)

popRangeSim (world = mat, popSize = 100, sDiff = sDiff, nGens = 100, mig = 0.01 , SNP_model = 0, nSNPs =
200, SNPs_starting_freq = 0.1, h = 0.5, outfile = "test_outfile", recordTrag = 10, diploid = TRUE)

10




4.3 Example 3

This is a more complicated example.

Here we simulate 2 populations, where there is 0.01 probability of each individual migrating 1 - 2 each
generation and a 0.02 probability of each individual migration from 2 - 1 each generation. Then, after 500
generations, this reverses.

NOTE: The output file adds “.results.gen__" to the file name you select. Be sure to add this to the file name
when you read in the file in the second simulation.

mat = matrix(1,nrow=2,ncol=1)
mig_mat = matrix(c(0,1,0,0,1,0,0,0,0.01,0.02), nrow=2, ncol=5)

#Pop1lx poply pop2x pop2y p
#0 0 0 1 0.01
#0 1 0 0 0.02

popRangeSim (world = mat, popSize = 100, s = 0.01, nGens = 50, mig = mig_mat, SNP_model = 0, nSNPs = 100,
SNPs_starting_freq = 0.1, h = 0.5, outfile = "test_outfile", diploid = TRUE, GENELAND = TRUE)

mig_mat = matrix(c(0,1,0,0,1,0,0,0,0.02,0.01), nrow=2, ncol=5)
popRangeSim (world = mat, popSize = 100, s = 0.01, nGens = 50, mig = mig_mat, SNP_model = 0, nSNPs = 100,
SNPs_starting_freq = 0.1, h = 0.5, outfile = "test_outfile", diploid = TRUE, infile = "test_outfile.results.gen50")

4.3 Extra Examples

Here we simulation a 3x3 population grid (9 populations), which have varying starting population sizes.
There is a 0.01 probability of each individual leaving their population each generation (for an adjacent
population). This model is initialized with a standard neutral model (SNP_model=1) with a 100,000 bp
sequence, 1*10”"-4 mutation rate per site per generation. Each population has a carrying capacity of 50 and
the Allee effect parameter is set to 2. The average growth rate, rMean is 0.4 with a variance of 0.4.

##Ex 4.
## Testing popSize, SNP Model 1, K, A, rMean, rVar, catProb
## A 3x3 grid of populations

mat = matrix(1,nrow=3,ncol=3)

Ne = matrix(0, nrow=3, ncol=3)

Ne[1,] =¢(30,50,10)

Ne[2,1:2] = ¢(10,5)

popRangeSim(world=mat, popSize=Ne, nGens=50, mig=0.01, SNP_model=1,
gSize=100000, mutRate=1*10"-4, K=50, A=2, rMean=0.4, rVar=0.4,
catProb=0, outfile="test_outfile")

Below we output the state of every allele every 10 generations (recordTrag=10)
#Testing recordTrag
mat = matrix(1,nrow=3,ncol=3)

popRangeSim (world = mat, popSize = 50, diploid = TRUE, nGens = 100,
mig = 0.01, SNP_model = 0, nSNPs = 1000, SNPs_starting_freq = 0.5,
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outfile= "test_outfile_6", PLINK=TRUE, recordTrag=10)
Below we set a gamma distribution for the distribution of fitness effects. Note that when there are many
selected alleles, the simulations may slow down significantly. We initially with a standard neutral model

(SNP_Model=1) where all 9 populations have a starting size of 50.

##Testing gamma distribution of selective factors
mat = matrix(1,nrow=3,ncol=3)

popRangeSim(world=mat, popSize=50, nGens=100, mig=0.01, SNP_model=1,
gSize=100000, mutRate=1*10"-8, gamma_shape=0.17, gamma_scale=1, outfile="test_outfile7")

5. Output

There are multiple possible output formats. File structures are explained below.

5.1 Results file

The results file is a CSV file:
Line 1: max # pops in x direction, max # pops in y direction, # SNPs

Line 2: haploid population size of 15t pop, x coordinate of 15t pop, y coordinate of 15t pop.

-> If population is diploid, this number should be divided by 2 to get the # diploids.
Line 3: SNP positions. (Justa 0 based list from 0 to nSNPs-1)

Line 4: Selection coefficients for each SNP in that population

Line 5: # of each allele in the population

Line 6: The generation where the allele arose. (If set from the beginning, this will be 0)

EXAMPLE:

~

1,2,3,4 #SNP positions
0.0,0.0,0.0 #No selection
#allele frequencies
#All alleles were beginning of this simulation and thus arose at gen 0

.0, 0.

1,2,5 #Two pops. 5 SNPs

3,0,0 #3 individuals, coordinates of this pop: (0,0)
0123,4 #SNP positions

0.0, 0.0,0.0,0.0,0.0 #No selection

3,3,2,1,0 #Allele frequencies

0,0,0,0,0 #All alleles were set at the beginning of this particular simulation
50,1 #5 individuals, coordinates of this pop: (0,1)
0

0

0

0

S -

5.2 GENELAND file
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The GENELAND file has the two alleles. There is one line per individual. If individuals are
diploid, there is a / separating the two alleles. “01” is the ancestral allele and “02” is the
derived allele.

EXAMPLE:

01/01 02/02 01/02 01/01 01/01
02/02 02/01 01/02 01/01 01/01
02/01 02702 02/02 01/02 02/01

5.3 GENEPOP file

First line: Arbitrary

Second line: List of all loci IDs

Third line: The word “POP”

Next, there is a line for each individual in the first population. Each line starts with an
individual ID defined by: POP[x cor of pop][y cor of pop]_[individual number]

The list of alleles has “01” is derived and “02” is ancestral.

EXAMPLE:

Arbitrary first line

Loc1, Loc2, Loc3, Loc4, Locb5

POP

POP00_1,0101 0202 0102 0101 0101
POP00_2,0202 0201 0102 0101 0101
POP00_3,0201 0202 0202 0102 0201
POP

POP01_1,0202 0101 0102 0101 0202
POP01_2,0202 0101 0102 0101 0202
POP01_3,0202 0101 0102 0101 0202
POP01_4,0202 0101 0102 0101 0202
POP01_5,0202 0101 0102 0101 0202

GENEPOP also comes with a coordinate file. There is one line per individual, and it
contains coordinates of the population to which each individual belongs.

EXAMPLE:

00
00
00
01
01
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01
01
01

5.4 PLINK file

See the PLINK website for more detailed information
(http://pngu.mgh.harvard.edu/~purcell /plink/data.shtml#ped)

The PLINK output format contains two files: a .PED file and a .MAP file. The .PED has one
line per individual. If diploid, both alleles are present on the same line. The first six
columns are: FamilyID, IndividualID, PaternallD, MaternallD, Sex, Phenotype. Most of these
columns are not relevant to these simulations, so they are set to 0 or -9.

EXAMPLE:

POP00000-9-911121
POP00100-9-911211
POP00200-9-921211
POP01000-9-921111
POP01100-9-912111
POP01200-9-921111
POP01300-9-921111
POP01400-9-911111

5.5 RecordTrag file

Currently, there is one file that contains the whole history for every allele.

Columns: (1) Generation, (2)siteNumber (siteNum), (3)generation allele arose, (4)
selection coefficient of allele, (5) # derived copies in first population (0,0), (6) # derived
copies in second population (0,1) (7...) Another column for each subsequent population in
the simulations.

gen siteNum genAlleleArose s pop00 popOOne pop01l popOlne pop02 pop02ne

0 0 0 0 16 30 30 50 0 0
0 1 0 0 18 30 30 50 0 0
0 2 0 0 12 30 21 50 0 0
0 3 0 0 17 30 26 50 0 0
0 4 0 0 16 30 29 50 0 0
0 0 0 0 16 30 30 50 0 0
0 1 0 0 18 30 30 50 0 0
0 2 0 0 12 30 21 50 0 0
0 3 0 0 17 30 26 50 0 0
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6. Program Validation

To ensure accuracy of these simulations, multiple metrics have been compared to their
theoretical expectations.

6.1 Heterozygosity

Observed and expected heterozygosity were compared over 1000 generations. (Expected
heterozygosity based on Hartl & Clark 2007):

H =1 )t*Ho

T 2N +1

where H is the heterozygosity, N is the population size, t is the number of generations, and
Hy is initial heterozygosity. Below simulations were based on one population of 100
diploid individuals. There are 500 SNPs with starting SNP frequencies of 0.5. Fifty
simulations were run to determine mean and confidence intervals.

Heterozygosity over generations

0.5

0.4

Mean Heterozygosity
0.2 0.3

0.1

200 400 600 800 1000

Generations
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Supplementary Figure 2 Expected (blue) vs. observed (black) heterozygosity over 1000
generations. Results are based on one population of 100 diploid individuals with 500 SNPs all
starting at a frequency of 0.5. Mean and 95% confidence intervals determined via 50 independent
simulations.

6.2 Fixation Probabilities

The probability of fixation of a new mutation, based on its selection coefficient and
population size, has been determined by Kimura (Kimura, 1962):

1—e5
P(s,N) = T— o2vs

where N is the effective population size and s is the selection coefficient.

This equation assumes randomly mating diploid population with constant population size.
It also assumes each mutation evolves independently and new mutations have a
heterozygous fitness of 1 + 0.5s.

Below results show fixation probabilities in the simulations closely align to their
theoretical expectations. Each simulation was run with one population of 100 diploid
individuals and each SNP had a starting frequency of 1/2N. For each selection coefficient,
simulations were run until 50 SNPs had reached fixation. The standard deviations are
determined from Poisson counts.

Fixation Probabilities by Selection Coefficient

Fixation Probability
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!

gamma (2Ns)
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Supplementary Figure 3. Expected fixation probability (blue) and observed fixation probability
(black).

6.3 Fst
Expected Fst over generations is determined by (Hartl and Clark, 2007):

1 1
F(O) = 5o (1—m)? +(1—ﬁ)*(1—m)2*F(t—1)

where Nis the population size and m is the migration rate. This equation assumes random
mating within the populations.

Two different simulation models were explored. The first model has nine populations with

no migration. All populations have 50 diploid individuals and 500 SNPs with starting SNP
frequency of 0.5

Fst over generations
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Supplementary Figure 4 Expected Fst (blue) and observed Fst (black) over 100 generations.
Observed Fst means and confidence intervals determined via 50 independent simulations of four
populations.

The second model has nine populations with 0.001 migration rate. All populations have 50
diploid individuals and 500 SNPs with starting SNP frequency of 0.5. Mean and confidence
intervals were determined from 50 simulations.

Fst over generations
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Supplementary Figure 5 Illustrates theoretical (blue) and observed (black) Fst with 50 diploid
individuals and 0.001 migration rate. Observed results determined via simulations of nine
populations. Mean and confidence intervals determined through 50 independent simulations.

7. Runtime Measurements

All runtime measurements were conducted on a 2012 MacBook Pro with 8 GB of memory
and a 2.9 GHz Intel Core i7 processor.

7.1 Scaling by number of populations
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Number of Populations vs. Runtime
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Supplementary Figure 6: Runtime measurements based on the number of populations.

Simulation parameters

Number of generations = 1000, size of each population = 100 diploids, standard neutral
model, p=1.1e-8, sequence length=0.1 MB, migration rate = 0.01 (on average, 1 individual
leaves each population each generation)

Population grid sizes = 1x1, 2x2, 3x3, 4x4, 5x5, 6x6, 7x7

7.2 Scaling by number of base pairs
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Supplementary Figure 7: Runtime measurements based on the number of base pairs.

Simulation parameters
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Number of generations = 1000, number of populations = 16 (4x4 grid), size of each
population = 100 diploids, standard neutral model, p=1.1e-8, migration rate = 0.01 (on
average, 1 individual leaves each population each generation)

7.3 Scaling by number of individuals per population

Number Individuals per Population vs Runtime
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Supplementary Figure 8: Runtime measurements based on the number of individuals in each
population.

Simulation parameters

Number of generations = 1000, number of populations = 16 (4x4 grid), standard neutral
model, p=1.1e-8, sequence length = 0.1 MB, migration rate = 0.01 (on average, 1 individual
leaves each population each generation)

8. General Issues

As this software allows simulation of very complex scenarios, it is important to ensure that
your parameters are consistent with each other. The input population matrix overrides
some inconsistencies. If, for example, a migration rate is set for a population grid point that
cannot exist according to the population matrix, then the migration rate will be ignored.
Other inconsistencies may result in an error. However, it is very important to check that
the parameters are consistent.
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