Cell Host & Microbe, Volume 17

Supplemental Information

Molecular Determinants for Recognition

of Divergent SAMHD1 Proteins

by the Lentiviral Accessory Protein Vpx

David Schwefel, Virginie C. Boucherit, Evangelos Christodoulou, Philip A. Walker, Jonathan P. Stoye, Kate N. Bishop, and Ian A. Taylor

Molecular determinants for recognition of divergent SAMHD1 proteins by the lentiviral accessory protein Vpx.

INVENTORY OF SUPPLEMENTAL INFORMATION

ITEM 1) Figure S1. Western blot analysis of expression and primary FACS data for SAMHD1 degron assay. Panel A of this item shows the level of expression of each SAMHD1 degron used in the study. Panel B shows the primary FACS data from individual degron assays. Both A and B are associated with Figures 1, 4, 5 and 6 in the main article.

ITEM 2) **Figure S2**. Experimental electron density for each component of the SIV_{mnd-2} Vpx/SAMHD_{mnd}-NtD/DCAF1-CtD ternary complex. This item shows the quality of the maps used to build the structure presented in the paper and is associated with Table 1 and Figures 2-6 in the main article.

ITEM 3) **Figure S3**. Zinc ion co-ordination of Vpx SIV_{mnd-2} and Vpx SIV_{smm} . This item shows the details of the co-ordinated zinc ions bound in the Vpx SIV_{mnd-2} and Vpx SIV_{smm} structures. It is associated with Figure 2 in the main article.

ITEM 4) **Figure S4**. Superposition of Vpx SIV_{mnd-2} and Vpx SIV_{smm} ternary complexes. This item shows the structural overlap between Vpx SIV_{mnd-2} and Vpx SIV_{smm} at the DCAF1 interface. This alignment facilitates a comparison of the common interactions and is associated with Figure 3 of the main article.

ITEM 5) **Figure S5**. Multiple sequence alignment of Vpx and Vpr proteins. This alignment in combination with Vpx SIV_{mnd-2} and Vpx SIV_{smm} structures shows all the conserved and variable regions found in the different Vpx and Vpr lineages and is associated with Figure 3 and 6 of the main article.

ITEM 6) **Figure S6**. SAMHD1 multiple sequence alignment. This alignment shows the sequence conservation in SAMHD1 NtD and CtD degron regions and highlights the residues making contacts at the Vpx interface. It is associated with Figure 5 and 6 of the main article.

ITEM 7) Supplemental Figure legends. Detailed legends for Supplemental Figures S1-S6.

ITEM 8) **Supplemental Table S1A-C**. These tables provide a list of all the interactions observed in the $SIV_{mnd-2}Vpx/SAMHD_{mnd}-NtD/DCAF1-CtD$ ternary complex and are associated Figures 3-6 of the main article.

ITEM 9) SUPPLEMENTAL EXPERIMENTAL PROCEDURES

This item provides detailed methods to supplement the experimental procedures reported in the paper.

ITEM 10) SUPPLEMENTAL REFERENCES

This item contains the full references that are cited Supplemental Experimental Procedures

Figure S1

Figure S2

DCAF1-CtD

 $\mathrm{SIV}_{\mathrm{mnd-2}}\,\mathrm{Vpx}$

SAMHD1_{mnd} 1-114

Figure S3

В

Figure S4

Figure S5

Vor	VR1	Zinc binding ★		VR2	* **	VR3	
ЧТ. HTV-1 ЕТН2220:МООА		ALEL	R PW HNCOY T	TWSGVEAL BT COT	METHER TCCOHS	RIGILBORRARNGASRS	· 96
HIV-1 WEAUMOOA							. 96
HTV = 1 mmo							. 96
						RIGVINGRANNGASKS	. 96
SIVONZ CAM13:Magha						PICTIDOPPDANCANDD	. 96
SIVOR LB7:MON		ALEY DIKO AP				PICITDOBDBDDCANDS	. 96
SIVEPZ ID7. MOV			PRINTALCNYTOPHC	TLECACEL BILO		RIGOSBCCNDI.STI DOSBCVI	. 101
STVmac 239:MEBR			PRI TA CNHI NRHC	TLECACEL BILO		RICOPCCCNPLSATPPSRSMI	· 101
SIVmac 251:ME	NE D*RED C		PRINTAL CNHI NRHC	TLECACELURITO		RICOPCORNELSATEPSRSML	. 101
STUrom:MMD							. 100
SIVICII. Monte	DEAPOREP N					RIGOEGGGCYPLESEPESDNPL	$\cdot 100$
			RNT. FROWWNTV FDA	TDHGOTBLEGWYKYCBILO			. 140
SIVagm GRI:MASGRDPR	GWL TWDLDREP D		MNMUTRUWNYCVEGR	B-HNTPWNEIGYKYYBIYO		GPESPYEERRNGOGGGAPPPPPGI.A	· 118
SIVagm VER:MASGRDPR	GEV TWDLSREP D		RELIFOUWNYCO	R-RGAPMMERAYRYYRIVO		OPFEPYEERRDGOGGGGRANRAPPGLD	· 119
SIVagm TAN1:MAEGRDSR	GWL TWDLSREP D		RELUFOUWNECO	R-NGAPMIERAYRYYRIVO		TPFEPYEERBNGVCCCCBDCREPPPCLA	. 119
Vpx:		helix 1	helix 2	helix 3	<u> </u>		
HIV-2A:MTDPR	- PGNSGEETIGEAF	ERTISALNREA NELP	REL <mark>I</mark> FQ <mark>V</mark> WQRS <mark></mark> RY <mark>H</mark>	EQGMSASYTKYRY <mark>L</mark> C <mark>LMQ.4</mark>	IFT <mark>HER</mark> R <mark>GC</mark> TCW	GEDMGREGLEDQGPPPPPPGLV	: 113
HiV-2B:MDPR RV	- PGNSGEETVGEAF	ETTLEHUNRVA NELP	REL <mark>T</mark> FQ <mark>VWQKS</mark> AY	EEQGMSISYTKYRY <mark>I</mark> C <mark>IMQ.4</mark>	MFTH AK <mark>GC</mark> GCL	REGHGPGGWRSGPPPPPPGLA	: 111
SIVsmm:MSDPR RI	- PGNSGEETIGEAF	NRT VE INRA VNELP	REL <mark>T</mark> FQ <mark>V</mark> WRRS <mark>TT</mark> Y <mark>R</mark>	DEMGMSESYTKYRY <mark>L</mark> CLIQ.U	LFVHC RGCRCL	GEEHGAGGWRSGPPPPPPGLA	: 112
SIVmac 251:MSDPR RI	- PGNSGEETIGEAF	NRT VE INREA VNELP	REL <mark>T</mark> FQ <mark>V</mark> WQRS <mark>VV</mark> H	DEQGMSQSYVKYRY <mark>L</mark> C <mark>LMQ</mark> .4	LFMHC K <mark>GC</mark> RCL	GEGHGAGGWRPGPPPPPPGLA	: 112
SIVmac 239:MSDPR RI	- PGNSGEETIGEAF	NRTVE INREAVNELP	REL <mark>I</mark> FQ <mark>V</mark> WQRS <mark>77</mark> Y <mark>4</mark> H	EQGMSPSYVKYRY <mark>I</mark> C <mark>LIQ</mark>	LTMHCKK <mark>GC</mark> RCL	GEGHGAGGWRPGPPPPPPGLA	: 112
N-/C-term. co	ntacts 🔸 📩 📩 📩	**		** * *			
STUROM NGMAEGP				PLCPSLEVACYPY			· 108
SIVIEM NG: FILLON NO.	EVPT ACEVE OP	ARMIY TNO ART		FLORSLEYACYBY		HCDPPROBCERVPILPCMO	. 105
SIVICM CAB1:MagBa	EVPT AGEAE OP		DEF FRUNRTCV H H	VHORSLEYAAYRY		HCDNDRAVGERITTI.DCM	· 104
STVdrl-1:MAEPOSV				ALOLSETVSKYPYTI LLO			. 113
STUMP d=2 CM16:MACA						SCHDDCDDDDCMU	. 115
STVmpd-2 5440:MagA							
STUmpd-2 M14:MacRA							. 99
DCAF1 contacts	THLA VOTABLE						. 99
			SAM domain contacts				
	10	20 30	40 50	60 70	80	90	

Figure S6				disordere	d					SA	M doma	in				••••
•	1	0	20	30)	40		50	6)	70		80	90		
Cebus_apella_Tufted_capuchin: -	-MOOADSEQPS	SKR <mark>-</mark> RCD	DSPRTP <mark>A</mark> I	T <mark>F</mark> SAE	DR	PELPD	H <mark>ktw</mark> c Pec	VC <mark>SFL</mark>	RGGFK	G <mark>L</mark> M	KNI <mark>R</mark> EN	ITG	LLPCLDES	FENLGVSS	WERK	: 98
Callithrix_jacchus_White-tufted-ear_marmoset: -	- <mark>MOON</mark> DSEQPS	SKR <mark>E</mark> RCD	DSPRTP <mark>P</mark> I	T <mark>F</mark> SAE <mark>a</mark>	DRSL	PEL <mark>P</mark> PD	h <mark>ktw</mark> c Pec	VC <mark>S</mark> FL	RGGFK	GL	KN I <mark>R</mark> ef	ITG:	LLPCLDES	FENLGVSS	L <mark>WERK</mark>	: 98
Ateles_geoffroyi_Black-handed_spider_monkey: -	-MOOADSEQPS	SKR <mark>E</mark> RCD	DSPRTP <mark>S</mark>	T <mark>F</mark> SAE <mark>A</mark>	DRSL	PEL PD	h <mark>ktw</mark> c Peç	VC <mark>S</mark> FI	RGGFK	ELM	KNI <mark>R</mark> en	ITG:	LLPCLDES	FENLGVSS	SW <mark>ERK</mark>	: 98
Alouatta_palliata_Mantled_howler_monkey: -	-MOONDSEQPS	SKR <mark>.</mark> RCD	DSPRTP <mark>P</mark> I	N <mark>T - SAE</mark> T	DRSL	PEL	h <mark>ktw</mark> c peç	VC <mark>S</mark> FI	RGGFK	G <mark>L</mark> M	KN I <mark>R</mark> en	ITG ^S	LLPCLDES	FENLGVSS	WERK	: 98
	•* * •*	r • 🖈	*• *		٩.,	*		*	* 1	*	🔹 🛧 S	Vmnd-	2 Vpx contac	ts		
Hylobates_lar_White-handed_gibbon: -	- <mark>MORDS</mark> EQPS	SKR <mark>F</mark> RCD	DSPRTP <mark>S</mark>	T <mark>F</mark> SAE <mark>A</mark>	DWSP	LEL PD	<mark>ktw</mark> cpec	VC <mark>S</mark> FL	RGGFE		KNI <mark>r</mark> en	I <mark>K</mark> ITG ^S	LLPCLDES	<mark>:</mark> Fenlgvss	l <mark>g</mark> erk	: 98
Pongo_pygmaeus_Bornean_orangutan: -	- <mark>MORADS</mark> EQPS	SKR <mark>F</mark> RCD	DSPRTP <mark>3</mark>	T <mark>F</mark> SAEA	DWSS	LELDPD	KTWDPEÇ	VC <mark>SFI</mark>	G <mark>RGGF</mark> E	GL	kni <mark>l</mark> er	I <mark>R</mark> ITG	LLPCLDES	<mark>:</mark> Fenlgvss	S <mark>C</mark> ERK	: 98
Pan_troglodytes_cpz: -	- <mark>XORADS</mark> EQPS	SKR <mark>P</mark> RCD	DSPRTP <mark>3</mark> 1	IT <mark>F</mark> SAEA	DWBPO	lel <mark>h</mark> pd	Y <mark>ktw</mark> c Pec	VC <mark>SFI</mark>	RGGFE	LV	kni <mark>r</mark> en	EITG	LLPCLDES	r <mark>fenl</mark> gvss	<mark>lg</mark> erk	: 98
Homo_sapiens : -	- <mark>MORADS</mark> EQPS	SKR <mark>P</mark> RCD	dsprtp <mark>s</mark> i	I <mark>TP</mark> SAE <mark>A</mark>	DWSPO	lel <mark>h</mark> pd	Y <mark>ktw</mark> c Pec	VC <mark>S</mark> FL	RGGFE		kni <mark>r</mark> er	EITG	LLPCLDES	r <mark>fenlgvss</mark>	<mark>lg</mark> erk	: 98
Colobus_angolensis_palliatus_Angola_colobus: M	QQADS <mark>DSDQP</mark> S	SKR <mark>P</mark> RCD	dsprtp <mark>3</mark>	TRSAE	DWBPO	<mark>LELH</mark> PD	Y <mark>ktw</mark> c Pec	VC <mark>F</mark> FL	RGGFE		kni <mark>r</mark> er	ITG ITG	LLPCLDES	<mark>:</mark> Fenlgvss	<mark>lg</mark> erk	:100
Chlorocebus_tantalus_agm_1: -	- <mark>MQQA</mark> DS <mark>D</mark> QPS	SKRLR D	dsprtp <mark>s</mark>	T <mark>I</mark> SAE <mark>A</mark>	DWSPO	P <mark>EL P</mark> D	<mark>Y</mark> ktw <mark>c</mark> peç	VC <mark>I</mark> FL	G <mark>RGGF</mark> G	e <mark>pa</mark> ll	KNI <mark>Q</mark> EN	ITG.	LLPCLDES	FENLGVSS	lc <mark>erk</mark>	: 98
Chlorocebus_tantalus_agm_2: -	- <mark>MQQA</mark> DS <mark>D</mark> QPS	SKRLR D	dsprtp <mark>s</mark>	T <mark>E</mark> SAE <mark>A</mark>	DW <mark>BP</mark> O	LEL <mark>H</mark> PD	<mark>Y</mark> KTW <mark>DPEÇ</mark>	VC <mark>I</mark> FL	RGGFG	e <mark>pa</mark> ll	KNI <mark>Q</mark> ER	I <mark>R</mark> ITG.	LLPCLDES	FENLGVSS	<mark>lg</mark> erk	: 98
Chlorocebus_pygerythrus_agm_ver: -	- <mark>MQQA</mark> DS <mark>D</mark> QPS	SKRLR D	DSPRTP <mark>S</mark>	T <mark>E</mark> SAE <mark>a</mark>	DWSCO	L <mark>EL</mark> PD	<mark>KTW</mark> DPEÇ	VC <mark>E</mark> FL	RGGFG	e <mark>pa</mark> ll	KNI <mark>Q</mark> ER	I <mark>R</mark> ITG.	LLPCLDES	FENLGVSS	l <mark>g</mark> erk	: 98
Cercopithecus_diana_Diana_monkey: -	-MOORDSDQPS	skr <mark>e</mark> r.d	dsprtp <mark>s</mark>	TESAEA	DG <mark>SE</mark>	LELEPD	h <mark>ktw</mark> c Pec	VC <mark>E</mark> FL	RGGFG	e <mark>pa</mark> li	KN I <mark>R</mark> ef	I <mark>R</mark> ITG <mark>.</mark>	LLPCLDES	FENLGVSS	l <mark>g</mark> erk	: 98
Cercopithecus_neglectus_deb: -	-MOOADSDQPS	SKR <mark>E</mark> R <mark>I</mark> D	DSPRTP <mark>S</mark>	TFSAEA	DG <mark>BB</mark>	<mark>lel P</mark> d	KTWDPEÇ	VC <mark>I</mark> FI	RGGFG	e <mark>pa</mark> li	KNI <mark>R</mark> en	I <mark>K</mark> ITG	LLPCLDES	FENLGVSS	l <mark>g</mark> erk	: 98
Macaca_mulatta_mac_1: -	-MOOADSDQPS	SKR <mark>E</mark> R.D	DSPRTP <mark>S</mark>	T <mark>F</mark> SAE <mark>A</mark>	DCF	LELEPD	<mark>ktw</mark> c Pec	VC <mark>.</mark> FI	RGGFG	e <mark>pa</mark> ll	KN I <mark>R</mark> ef	I <mark>R</mark> ITG	LLPCLDES	FENLGVSS	lc <mark>erk</mark>	: 98
Macaca mulatta mac 2: -	-MOORDSDQPS	SKR <mark>P</mark> RD	DSPRTP <mark>S</mark>	IT <mark>P</mark> SAE <mark>A</mark>	DCBP	EL <mark>H</mark> PD	<mark>y</mark> ktw <mark>c</mark> pec	VC <mark>F</mark> FI	RGGFG	e <mark>pa</mark> ll	KN I <mark>R</mark> en	ITG ITG	LLPCLDES	FENLGVSS	LC <mark>ERK</mark>	: 98
Macaca_fascicularis_Crab-eating_macaque: -	-MOOADSDQPS	SKR <mark>E</mark> R D	DSPRTP <mark>S</mark>	T <mark>F</mark> SAE <mark>A</mark>	DCSP	LEL PD	<mark>y</mark> ktw <mark>c</mark> pec	VC <mark>I</mark> FL	RGGFG	e <mark>pa</mark> le	KNI <mark>r</mark> en	ITG ITG	LLPCLDES	FENLGVSS	LC <mark>ERK</mark>	: 98
Papio_hamadryas_Hamadryas_baboon: -	-MOOADSDQPS	SKR <mark>P</mark> RD	DSPRTP <mark>3</mark>	TESAEA	DWSPO	LEL PD	<mark>y</mark> ktw <mark>c</mark> peç	VC <mark>F</mark> FL	RGGFG	e <mark>pa</mark> li	KNI <mark>R</mark> EN	K ITG	LLPCLDES	FENLGVSS	LC <mark>ERK</mark>	: 98
Mandrillus sphinx mnd: -	-MOOADSDQPS	SKR <mark>P</mark> RD	DSPRTP <mark>3</mark>	TESAEA	DCBP	VEL PD	Y <mark>ktw</mark> c Pec	VC <mark>F</mark> FL	RGGFG	e <mark>pa</mark> li	KNI <mark>R</mark> EN	ITG.	LLPCLDES	FENLGVSS	LC <mark>ERK</mark>	: 98
Cercocebus atys sm: -	-MOOADSDQPS	SKR <mark>P</mark> RD	DSPRTP <mark>3</mark>	TESAEA	DCBPO	LELPD	Y <mark>ktw</mark> spec	VC <mark>F</mark> FL	RGGFV	e <mark>pa</mark> ll	KNI <mark>Q</mark> er	ITG.	LLPCLDES	FENLGVSS	LG <mark>ERK</mark>	: 98
Cercocebus torquatus rcm: -	-MOOADSDOPS	SKRPRD	DSPRTP	TESAEA	DCST	LELHPD	KTWC PEC	VCFL	RGGFG	E PA LL	KNI <mark>re</mark> r	ITG	LLPCLDES	FENLGVSS	LGERK	: 98
Cercocebus chrysogaster Golden-bellied mangabey 1: -	-MOOADSDOPS	SKR <mark>P</mark> RFD	DSPRTP	TPSAEA	DCST	VELIPD	Y <mark>ktw</mark> cp <u>ec</u>	VCFL	RGGFG	E PA LL	KNI <mark>re</mark> n	IT ITG	LLPCLDES	FENLGV <u>SS</u>	LGERK	: 98
Cercocebus chrysogaster Golden-bellied mangabey 2: -	-MOOADSDOPS	KR R D	DSPRTP	TPSAEA	DCSP	LEL PD	KTWCPEC	VCFI	RGGFG	EPALL	KNI REI	TITG	LLPCLDES	FENLGVSS	LCERK	: 98

Cebus_apella_Tufted_capuchin: Callithrix_jacchus_White-tufted-ear_marmoset: Ateles_geoffroyi_Black-handed_spider_monkey: Alouatta_palliata_Mantled_howler_monkey:

Hylobates_lar_White-handed_gibbon: Pongo pygmaeus Bornean orangutan: Pan_troglodytes_cpz: Homo sapiens: Colobus_angolensis_palliatus_Angola_colobus: Chlorocebus_tantalus_agm_1: Chlorocebus tantalus agm 2: Chlorocebus pygerythrus agm ver: Cercopithecus diana Diana monkey: Cercopithecus_neglectus_deb: Macaca mulatta mac 1: Macaca_mulatta_mac_2: Macaca_fascicularis_Crab-eating_macaque: Papio hamadryas Hamadryas baboon: Mandrillus sphinx mnd: Cercocebus atys sm: Cercocebus_torquatus_rcm: Cercocebus_chrysogaster_Golden-bellied_mangabey_1: Cercocebus_chrysogaster_Golden-bellied_mangabey_2:

SUPPLEMENTAL FIGURE LEGENDS

Figure S1, related to Figure 1. Degron fusion proteins. (A) Expression of (NLS)-GFP-degron fusion proteins in was assessed *M. dunni* cells by Western blotting. For each construct the top panel shows an anti-Hsp90 blot loading control. In the lower panels an anti-GFP antibody was used to detect the expression level of each degron fusion indicated. (B) Primary FACS data for degron assays. Stable cell lines expressing degrons containing SAMHD1_{mnd} residues 1-114 (upper panels, magenta) or 1-37 (lower panels, purple) were transduced with increasing SIV_{mnd-2} Vpx (left to right) and analysed by flow cytometry.

Figure S2, related to Figure 2. Electron density. Stereo image of $(2F_{obs} - F_c)$ refined electron density for DCAF1 (top), Vpx (middle) and SAMHD1 (bottom) contoured at 1 σ . The density is shown as light blue wireframe and the backbone C α traces of the final refined models as ribbon representation.

Figure S3, related to Figure 2. Vpx conservation of zinc coordination. The protein backbones of (A) Vpx from SIV_{mnd-2} (blue) and (B) SIV_{smm} (orange) are shown in cartoon representation, α -helices are labelled and zinc ions are shown as grey spheres. Residues that co-ordinate zinc ions are shown as sticks, the coordinating water molecule in SIV_{mnd-2} Vpx as a red sphere and co-ordinating bonds as dashed lines.

Figure S4, related to Figure 3. Superposition of DCAF1-CtD-Vpx complexes. (A) Overview of structurally aligned Vpx/DCAF1-CtD complexes. The orientation is as in **Figure 3.** Bound Vpx molecules are shown in cartoon representation, SIV_{mnd-2} Vpx (blue) and SIV_{smm} Vpx

(orange). (**B-E**) Details of Vpx/DCAF1-CtD interactions in the regions boxed in **a**. Residues that make interactions are shown in stick representation, the DCAF1-CtD cartoon is coloured white, in the SIV_{mnd-2} and grey in the SIV_{smm} complexes.

Figure S5, related to Figure 3 and Figure 6. Multiple sequence alignment of HIV/SIV Vpx and Vpr proteins. 90% type-conserved amino acid residues are highlighted in red, 60% type-conserved in cyan, variable regions are boxed and the position of secondary structure elements is displayed between the Vpr and Vpx groupings. Red stars above the alignment indicate zinc-binding side chains. Residues that interact with SAMHD1 degrons are indicated with blue (SIV_{mnd-2}) or orange (SIV_{smm}) stars (side chain) or dots (backbone). Grey stars indicate Vpx residues with side chains that interact with DCAF1. Darker shading is applied to those that are also type-conserved in Vpr. Numbering below is for SIV_{mnd-2} 5440 Vpx.

Figure S6, related to Figure 5 and Figure 6. Multiple sequence alignment of primate SAMHD1 N- and C-terminal regions. 100% type-conserved amino acid residues are highlighted in red, 60% type-conserved in cyan. SAMHD1 residues that interact with the respective Vpx are indicated with blue (SIV_{mnd-2}) or orange (SIV_{smm}) stars (side chain) or dots (backbone). Flashes indicate the highly divergent residues 32 and 60.

Vpx residue	Region	Interaction	DCAF1 residue	Region
A2 _{MC}	Nt	HB	R1106	WD40 1
E3 _{MC}	Nt	HB	R1106	WD40 1
E3	Nt	HB	R1106 _{MC}	WD40 1
E3	Nt	HB	S1102	WD40 1
E3	Nt	HI	R1106, F1107	WD40 1
A5	Nt	HI	F1107, L1119	WD40 1
P6	Nt	HB	Y1131	WD40 1
P6	Nt	HI	Y1131	WD40 1
P6	Nt	HI	M1166, F1170	WD40 2
E7 _{MC}	Nt	HB	S1168 _{MC}	WD40 2
E7 _{MC}	Nt	HB	F1170 _{MC}	WD40 2
128	α1	HI	W1156	WD40 2
E31	α1	HI	W1156	WD40 2
L44	α2	HI	A1377	WD40 7
T47	α2	HI	L1378	WD40 7
C48	α2	HI	L1378	WD40 7
H51	α2	HI	L1378	WD40 7
C52	α2	HI	L1378	WD40 7
Y62	α3	HB	D1092	WD40 7/1
Y65	α3	HB	E1091	WD40 7/1
R66	α3	SB	E1093	WD40 7/1
L68	α3	HI	T1114	WD40 1
L69	α3	HI	C1113, T1114	WD40 1
L70	α3	HI	A1377, L1378, M1380	WD40 7
H72	α3	HB	N1135 _{MC}	WD40 1/2
H72	α3	HI	C1113, T1114	WD40 1
K73	α3	SB	E1093	WD40 7/1
K73	α3	HB	S1094 _{MC}	WD40 7/1
K73	α3	HI	C1113	WD40 1
M75	α3	HI	W1156	WD40 2
Y76	α3	HB	T1097 _{MC}	WD40 1
Y76	α3	HB	F1355 _{MC}	WD40 7
Y76	α3	HI	A1137, T1139	WD40 1/2
Y76	α3	HI	F1330	WD40 6
Т77	α3	HI	P1329, F1330	WD40 6
M79	α3	HI	T1155, W1156	WD40 2
Q81	α3	HB	Q1314 _{MC}	WD40 6
Q81 _{MC}	α3	HB	R1225	WD40 4
Q81	α3	HI	L1313, P1329	WD40 6

Table S1A related to Figure 3. Vpx-DCAF1 Interface residues (1595 Å²)

HB – hydrogen bond, HI – hydrophobic interaction, SB – salt bridge MC – mainchain

DCAF1 residue	Region	Type of contact	SAMHD1 residue	Region
A1089 _{MC}	WD40 7/1	HB	R14	Nt
N1090	WD40 7/1	HI	R12	Nt
E1091	WD40 7/1	SB	R12	Nt
D1092	WD40 7/1	SB	R14	Nt
T1114, T1114 _{MC}	WD40 1	HB	Q8	Nt
Q1116	WD40 1	HI	Q8, R12	Nt
N1132	WD40 1/2	HB	D7, Q8 _{MC}	Nt
H1134 _{MC}	WD40 1/2	HB	Q8	Nt
N1135	WD40 1/2	HB	D5 _{MC}	Nt

Table S1B, related to Figure 3. DCAF1-SAMHD1 interface residues (499 Å²)

HB – hydrogen bond, HI – hydrophobic interaction, SB – salt bridge MC – mainchain

$\begin{array}{c c c c c c c c } P9 & N \\ \hline Q10_{MC} & N \\ \hline G11 & N \\ \hline A12 & N \\ \hline G13 & N \\ \hline E14_{MC} & N \\ \hline V15_{MC} & N \\ \hline V15 & N \\ \end{array}$	Nt a1	H HB H HB HB HB HB H H H H H H	M1, Q2 M1 _{MC} , Q2 _{MC} Q2 D7, S10, S10 _{MC} D7 D7 D7	Nt Nt Nt Nt Nt Nt Nt
Q10 _{MC} N G11 N A12 N G13 N E14 _{MC} N V15 N	Nt Nt Nt Nt Nt Nt Nt Nt Nt a1 a1	HB H H H H H H H H H H H	M1 _{MC} , Q2 _{MC} Q2 Q2 D7, S10, S10 _{MC} D7 D7	Nt Nt Nt Nt Nt Nt
G11 N A12 N G13 N E14 _{MC} N V15 N	Nt Nt Nt Nt a1	H H H H H H H H H H	Q2 Q2 D7, S10, S10 _{MC} D7 D7	Nt Nt Nt Nt Nt
A12 N G13 N E14 _{MC} N V15 _{MC} N	Nt Nt Nt Nt Nt a1 a1	HI HB HB HB HI	Q2 D7, S10, S10 _{MC} D7 D7 D7	Nt Nt Nt Nt
G13 N E14 _{MC} N V15 _{MC} N	Nt Nt Nt a1	HB HB HB HI	D7, S10, S10 _{MC} D7 D7	Nt Nt Nt
E14 _{MC} N V15 _{MC} N V15 N	Nt Nt x1 x1	HB HB HI	D7 D7	Nt Nt
V15 _{MC} N V15 N	Nt Nt a1 a1	HB HI	D7	Nt
V15 N	Nt ¤1 ¤1	Н	D7 D0	
	ຊ1 ຊ1	Ш	D7, F9	Nt
L17 o	α1	111	P9, P13	Nt
W20 0		HI	Q8, P9	Nt
N29 0	α1	HI	V36	Nt
E39 0	a2	HB	P47 _{MC} , E48 _{MC} , Q49 _{MC}	SAM domain
L41 0	a2	HI	V36	Nt
F42 0	a2	HI	L38, Q49, F52	SAM domain
W45 0	a2	HI	P34	Nt
N46 0	a2	HB	E48, E48 _{MC}	SAM domain
V49 0	a2	HI	R55	SAM domain
E50 0	a2	SB	R69	SAM domain
H53 0	a2	HI	R20	Nt
D54 0	a2	SB	R20	Nt
D54 0	a2	SB	R55	SAM domain
H56 0	a2	HI	F15	Nt
Q57 0	α2/ α3 loop	HB	R20	Nt
Q57 _{MC} 0	α2/ α3 loop	HB	R20 _{MC}	Nt
R58 0	α2/ α3 loop	HI	F15	Nt
R58 0	α2/ α3 loop	HB	F15 _{MC}	Nt
S59 _{MC} 0	α2/ α3 loop	HB	S18 _{MC}	Nt
Y62 0	α3	HI	F15, S18	Nt
Y65 0	α3	HI	P13	Nt
Y65 0	α3	HB	R12	Nt

Table S1C, related to Figure 3. Vpx-SAMHD1 Interface residues (1334 Å²)

HB – hydrogen bond, HI – hydrophobic interaction, SB – salt bridge MC – mainchain

SUPPLEMENTAL EXPERIMENTAL PROCEDURES

Degron assay

Degron reporter constructs comprising two copies of Nuclear Localisation Signal (NLS)-EGFP fused to N-terminal sequences from SAMHD1_{mnd} (NLS-EGFP-SAMHD1_{mnd}-NtD) were generated by replacing the human SAMHD1-CtD degron sequence in pCMS28-NLS-EGFP-SAMHD1-CtD (Schwefel et al., 2014) with sequences from the N-terminal region of SAMHD1_{mnd}. DNA coding for residues 1-114, 1-37, 37-114, 5-114 or 10-114 was amplified by PCR and inserted into the reporter construct using XhoI/EcoRI restriction sites. Point mutations were created by PCR-based site directed mutagenesis. Virus-like particles (VLPs) were generated by co-transfecting 293T cells with pVSVG, pKB4 and pCMS28-NLS-EGFP-SAMHD1 human-CtD or mandrill-NtD, wildtype or mutant (Schwefel et al., 2014). Stable cell lines were produced by transduction of *Mus dunni* cells followed by puromycin selection. Expression of degron constructs was assessed using Western blotting with anti-EGFP antibodies.

The SIV_{smm} Vpx sequence was amplified by PCR from pIRES2-EGFP-Vpx (a gift from Mario Stevenson), and SIV_{mnd-2} Vpx was amplified from the PET49 plasmid used for *E. coli* expression. Sequences were inserted into pENTR/D/TOPO (Invitrogen) and transferred into pLgatewayIeYFP (Gateway LR clonaseTM II, Invitrogen) to create bicistronic Vpx-IRES-YFP expression constructs. Point mutations were created by PCR-based site directed mutagenesis. VLPs expressing Vpx-IRES-YFP were generated by co-transfecting 293T cells with pVSV-G, pKB4 and pLgatewayIeYFP-Vpx (wildtype or mutants) (Schwefel et al., 2014). Approximately 18 hours after transfection, cells were washed and sodium butyrate medium (0.02 M sodium butyrate, 10% FCS and 1% penicillin/streptomycin in DMEM) was added for 6 hours before

replacing with fresh media. After a further 15 hours VLPs were harvested from the media by filtration.

Parental *Mus dunni* or stable cell lines expressing degron reporters were seeded at 5×10^4 cells per well in a 24-well plate one day prior to infection. Cells were infected with 2-fold serial dilutions of Vpx-YFP VLPs in the presence of 1µg/mL Polybrene. After 48 hours, cells were harvested and the percentage of EGFP-positive and YFP-positive cells was determined by flow cytometry using a FACSVerse analyser (BD Biosciences).

Protein expression and purification

The nucleotide sequences coding for SIV_{mnd-2} Vpx isolate 5440 (Hu et al., 2003) and amino acid residues 1-114 of $SAMHD1_{mnd}$ (Uniprot ID H6WEA4) were synthesised codonoptimised for *E. coli* (Life Technologies). The open reading frames were inserted into pET-49b and pET-52b (Merck Millipore) expression plasmids respectively using flanking XmaI/NotI restriction sites to generate N-terminally GST-tagged and N-terminally Strep-II-tagged fusion proteins. DCAF1-CtD was cloned and expressed as described previously (Schwefel et al., 2014).

SIV_{mnd-2} Vpx and SAMHD1_{mnd}-NtD were expressed in the *E. coli* strain Rosetta 2 (DE3) (Merck Millipore). Bacterial cultures were grown in terrific broth medium in a shaking incubator at 37 °C. Protein expression was induced by the addition of 0.1 mM IPTG at $A_{600} = 0.5$, then further incubated at 18 °C for 20 hours to express recombinant proteins. Cells were harvested by centrifugation for 20 min at 4,500 xg and 4 °C, the cell pellets resuspended in 30 mL lysis buffer (50 mM Tris-HCl pH 7.8, 500 mM NaCl, 4 mM MgCl₂, 0.5 mM TCEP, 1x EDTA-free mini complete protease inhibitors (Roche), 0.1 U/ml Benzonase (Novagen) per pellet of 1 L bacteria culture and stored at -20 °C.

SAMHD1_{mnd}-NtD cell suspensions were lysed by disruption using an EmulsiFlex-C5 homogeniser (Avestin). The lysate was cleared by centrifugation for 1 hour at 48,000 xg at 4 °C. All further purification steps were performed at 4 °C or on ice. Lysates were applied to 10 mL StrepTactin column (IBA). The column was washed with 600 mL of Wash buffer (50 mM Tris-HCl pH 7.8, 500 mM NaCl, 4 mM MgCl₂, 0.5 mM TCEP) and bound proteins were eluted in wash buffer containing 2.5 mM d-desthiobiotin. Eluted fractions were concentrated to 5 mL and further purified on a Superdex75 gel filtration column (GE Healthcare) equilibrated in Gel filtration buffer (10 mM Tris-HCl pH 7.8, 150 mM NaCl, 4 mM MgCl₂, 0.5 mM TCEP). Peak fractions containing SAMHD1_{mnd}-NtD were pooled, concentrated to 30 mg/mL, snap-frozen in liquid nitrogen in small aliquots and stored at -80 °C.

Protein complex assembly

Cell suspension from 1 L of GST-SIV_{nud-2} Vpx was lysed by homogenisation in an EmulsiFlex-C5 (Avestin). The lysate was cleared by centrifugation for 1 h at 48,000 xg at 4 °C. All further purification steps were performed at 4 °C or on ice. 1 mL of glutathione Sepharose (GSH-Sepharose) beads (GE Healthcare) were added to the lysate and incubated for 1 hour on a roller agitator. Beads were pelleted by centrifugation at 4000 xg for 10 min, the supernatant was discarded and the beads washed four times with 50 mL of Wash buffer. For assembly, the GST-SIV_{mnd-2} Vpx bound beads were resuspended in 10 mL wash buffer in a 15 mL Falcon tube. 1 mg of DCAF1-CtD together with an equimolar amount of SAMHD1_{mnd}-NtD and 1 mg of HRV-3C protease (GE Healthcare) were added and the tube was incubated overnight on a rolling agitator. Beads were then removed by centrifugation at 4000 xg for 10 min. The supernatant was concentrated to 5 mL and applied to a Superdex200 size exclusion column equilibrated in Gel

filtration buffer. Peak fractions containing the ternary complex were pooled, concentrated to 12 mg/mL, snap-frozen in liquid nitrogen in small aliquots and stored at -80 °C.

Crystallization and data collection

Crystals of the SIV_{mnd-2} Vpx/SAMHD1_{mnd}-NtD/DCAF1CtD complex were grown using the hanging drop vapour diffusion method by mixing 1 μ L complex at a concentration of 6.34 mg/mL with 1 μ L of reservoir solution containing 0.16 M Trisodium Citrate-HCl pH 5.2 and 4% PEG 6000. Drops were equilibrated over a 450 μ L reservoir solution at 18 °C. Crystals were adjusted to 25 % glycerol and cryo-cooled in liquid nitrogen. A data set from a single crystal was collected on station I04 at the Diamond synchrotron light source, UK at a wavelength of 0.97965 Å.

Structure solution

Diffraction data were reduced with the program XDS (Kabsch, 2010). The high resolution cut-offwas based on the $CC_{1/2}$ criteria (Karplus and Diederichs, 2012). The structure was solved by molecular replacement with the program Molrep (Vagin and Teplyakov, 2010) using the previously determined DCAF1-CtD structure and a homology model constructed with the previously determined SIV_{smm} Vpx as template (PDB code 4CC9 (Schwefel et al., 2014)). The SAM domain was placed manually into density using the NMR structure of the human SAMHD1 SAM domain as guidance (PDB code 2E8O). Iterative model adjustment using the program Coot (Emsley et al., 2010) combined with positional, real-space, individual b-factor and TLS refinement with the program phenix.refine (Adams et al., 2010) produced a final model for DCAF1-CtD residues 1073-1315, 1327-1392 (chain A), SIV_{mud-2} Vpx residues 2-86 (chain B)

and SAMHD1_{mnd}-NtD residues 1-22, 34-88, 93-109 (chain C) with $R(R_{free})$ -factors of 17.5% (23.1%). 95.8% of all residues fall in the favoured region of the Ramachandran plot with 0.42% outliers. Data collection and refinement statistics are shown in Table 1.

Multiple sequence alignment

Amino acid sequences were aligned using the ClustalW server and adjusted manually. NCBI accession numbers for Vpr sequences: HIV-1 ETH2220 - U46016, HIV-1 WEAU -U21135, HIV-1 pNL4-3 - AF324493, HIV-1 pNL432 - M28355, SIV_{smm} - AF077017, SIV_{cpzCAM13} - AY169968, SIVcpz_{LB7} - DQ373064, SIV_{mac239} - M33262, SIV_{mac251} - M76764, SIV_{rcm} - HM803689, SIV_{mnd-2} - AF367411, SIV_{agmSAB1} - U04005, SIV_{agmGRI} - M66437, SIV_{agmVER} -KF741091, SIV_{aemTAN1} - U58991; for Vpx sequences: HIV-2A - M30502, HIV-2B - U27200, SIV_{smm} - AF077017, SIV_{mac251} - M76764, SIV_{mac239} - M33262, SIV_{remNG} - AF349680, SIV_{remCAM} -HM803689, SIV_{remGAB1} - AF382829, SIV_{drl-1} - AY159321, SIV_{mnd-2CM16} - AF367411, SIV_{mnd-25440} -AY159322, SIV_{mnd-2M14} - AF328295; for SAMHD1 sequences: Cebus paella - JN936910, Callithrix jacchus - JN936906, Ateles geoffroyi - JN936911, Alouatta palliata - JN936912, Hylobates lar - JN936889, Pongo pygmaeus - JN936888, Pan troglodytes - JN936887, Homo sapiens - BC036450, Colobus angolensis - JN936905, Chlorocebus tantalus 1 - JN936891, Chlorocebus tantalus 2 - JN936892, Chlorocebus pygerythrus - JQ231137, Cercopithecus Diana - JN936902, Cercopithecus neglectus - JQ231141, Macaca mulatta 1 - JN936894, Macaca mulatta 2 - JN936895, Macaca fascicularis - JN936893, Papio hamadryas - JN936890, Mandrillus sphinx - JN936897, Cercocebus atys - JO231132, Cercocebus torquatus - JO231133, Cercocebus chrysogaster 1 - JN936898, Cercocebus chrysogaster 2 - JN936899.

SUPPLEMENTAL REFERENCES

Adams, P.D., Afonine, P.V., Bunkoczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J., Hung, L.W., Kapral, G.J., Grosse-Kunstleve, R.W., *et al.* (2010). PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta crystallographica. Section D, Biological crystallography *66*, 213-221.

Emsley, P., Lohkamp, B., Scott, W.G., and Cowtan, K. (2010). Features and development of Coot. Acta crystallographica. Section D, Biological crystallography *66*, 486-501.

Hu, J., Switzer, W.M., Foley, B.T., Robertson, D.L., Goeken, R.M., Korber, B.T., Hirsch, V.M.,

and Beer, B.E. (2003). Characterization and comparison of recombinant simian

immunodeficiency virus from drill (Mandrillus leucophaeus) and mandrill (Mandrillus sphinx) isolates. J Virol 77, 4867-4880.

Kabsch, W. (2010). Xds. Acta crystallographica. Section D, Biological crystallography 66, 125-132.

Karplus, P.A., and Diederichs, K. (2012). Linking crystallographic model and data quality. Science *336*, 1030-1033.

Vagin, A., and Teplyakov, A. (2010). Molecular replacement with MOLREP. Acta Crystallographica Section D *66*, 22-25.