Title:

Overexpression of a novel Arabidopsis PP2C isoform, AtPP2CF1, enhances plant biomass

production by increasing inflorescence stem growth

List of the authors:

Hiroki Sugimoto

Satoshi Kondo

Tomoko Tanaka

Chie Imamura

Nobuhiko Muramoto

Etsuko Hattori

Ken'ichi Ogawa

Norihiro Mitsukawa

Chikara Ohto

Supplementary Method S1. PCR templates for plasmid construction.

Arabidopsis genomic DNA and cDNA, and RIKEN Arabidopsis full-length (RAFL) cDNA clones (Seki *et al.*, 1998, 2002) were used as templates for PCR to generate plasmid constructs as described below.

Supplementary Method S2. Construction of plasmids for the establishment of transgenic *Arabidopsis* plants.

The two oligonucleotides (5'-AGCTTGGCGCGCCTTAATTAAACTAGTCTCGAGGTCGACT-3' and 5'-CTAGAGTCGACCTCGAGACTAGTTTAATTAAGGCGCGCCA-3') were designed to anneal to each other, and inserted into the *Hind*III/*Xba*I sites of the *pB1121* vector (Clontech, Mountain View, CA, USA) to produce *pB1101N2*. To construct plasmids expressing β -glucuronidase (GUS) reporter gene under the control of the *AtPP2CF1* promoter (*pAtPP2CF1:GUS*), a DNA fragment containing the *AtPP2CF1* promoter was obtained by PCR using primers 5'-AGTCGACTGACTCAAAATCACGTTCTTGAA-3' and 5'-AGGATCCTTTGTCCAGAAAGTGAAAATATC-3'. This PCR fragment was inserted into the *pTOPO blunt* vector (Invitrogen, Carlsbad, CA) to produce *pAtPP2CF1pro*. The *SalI-BamHI* fragment of *pAtPP2CF1pro* was inserted into the *SalI-BamHI* sites of *pB1101N2*.

To construct plasmids expressing GUS reporter gene under the control of the At3g16800 or At5g27930 promoter (pAt3g16800:GUS and pAt5g27930:GUS, respectively), DNA fragments containing the At3g16800 or At5g27930 promoter were obtained by PCR. The following primers were used for PCR: At3g16800 promoter, 5'-GCTATGACCATGATTACGCCAAGCTTAGACTGAATAATATAATGTCGG-3' and 5'-AAGGGACTGACCACCCGGGGATCCTCTTTGATTCTCTTATGATCCTAC-3'; At5g27930 5'-GCTATGACCATGATTACGCCAAGCTTAAACAAATCACGGGACGGGT-3' promoter. and 5'-AAGGGACTGACCACCCGGGGATCCCTTTTAAATACCCCAAAAGATTAA-3'. These PCR fragments were inserted into the HindIII/BamHI sites of the pB1121 vector using the In-Fusion Cloning System (Clontech, Mountain View, CA, USA), according to the manufacturer's instructions.

To construct plasmids expressing AtPP2CF1 under the control of the 35S Ω promoter ($p35S\Omega$:AtPP2CF1), a DNA fragment containing the AtPP2CF1 genome was obtained by PCR using primers 5'-ACGCGTCGACATGGGGACATTTCTCTTCCATGTTCAACGG-3' and 5'-TGTACATGTACACTATAGAGATGGCGACGACGACGATGAAGAATGG-3'. This PCR fragment was inserted into the pCR2.1 vector (Invitrogen, Carlsbad, CA) to produce pAtPP2CF1. The *Hind*III-*EcoR*I fragment of $35S\Omega$:sGFP(S65T) plasmid (Chiu *et al.*, 1996) was inserted into the *Hind*III-*EcoR*I sites of pB1121 to produce $p35S\Omega$:sGFP. The *SalI-BsrG*I fragment of pAtPP2CF1 was inserted into the *SalI/BsrG*I sites of $p35S\Omega$:sGFP.

To construct plasmids expressing ABI1 under the control of the $35S\Omega$ promoter

 $(p35S\Omega:AB11)$, a DNA fragment containing the *AB11* ORF was obtained by PCR using primers 5'-AATTACTATTTACAATTACAGTCGACATGGAGGAAGTATCTCCGGC-3' and 5'-AGCCGGGCGGCCGCTTTACTTGTACATCAGTTCAAGGGTTTGCTCT-3'. This PCR fragment was inserted into the *Sall/BsrGI* sites of the *p35S\Omega:AtPP2CF1* using the In-Fusion Cloning System.

Supplementary Method S3. Construction of plasmids for yeast *ptc1* complementation test.

For *pYC2/CT AtPP2CF1*, a DNA fragment containing the *AtPP2CF1* ORF was obtained by PCR using primers

5'-ACCCCGGATCGGACTACTAGCAGCTGTAATGGGACATTTCTCTTCCATGT-3' and 5'-CGGCCCTCTAGGATCAGCGGGTTTAAACCTATAGAGATGGCGACGACGATG-3'. This PCR fragment was inserted into the *PyuII/PmeI* sites of the *pYC2/CT* vector (Invitrogen, Carlsbad, CA) using the In-Fusion Cloning System.

For *pYC2/CT ABI1*, a DNA fragment containing the *ABI1* ORF was obtained by PCR using primers 5'-ACCCCGGATCGGACTACTAGCAGCTGTAATGGAGGAAGTATCTCCGGC-3' and 5'-CGGCCCTCTAGGATCAGCGGGTTTAAACTCAGTTCAAGGGTTTGCTCT-3'. This PCR fragment was inserted into the *PyuII/PmeI* sites of the *pYC2/CT* vector using the In-Fusion cloning system.

For pYC2/CT PTC1, a DNA fragment containing the PTC1 ORF was obtained by PCR from *Saccharomyces* cerevisiae S288C genome using primers 5'-ACCCCGGATCGGACTACTAGCAGCTGTAATGAGTAATCATTCTGAAATCTT-3' and 5'-CGGCCCTCTAGGATCAGCGGGTTTAAACTTAGAGGAAGACAACCATGAC-3'. This PCR fragment was inserted into the *PyuII/PmeI* sites of the pYC2/CT vector using the In-Fusion cloning system.

Supplementary Method S4. Construction of plasmids for purification of AtPP2CF1 and ABI1.

To construct plasmids for recombinant AtPP2CF1 with a glutathione *S*-transferase (GST) tag at the N-terminus (GST-AtPP2CF1), a DNA fragment containing the *AtPP2CF1* ORF was obtained by PCR using primers 5'-TCGGATCTGATCGAAGGTCGTGGGATCCTGATGGGACATTTCTCTTCCATGT-3' and 5'-AGTCAGTCACGATGCGGCCGCTCGAGCTATAGAGATGGCGACGACG-3'. This PCR fragment was inserted into the *BamHI/XhoI* sites of the *pGEX-5X-2* vector (Amersham Biosciences/GE Healthcare, Piscataway, NJ) using the In-Fusion Cloning System to produce *pGEX GST-AtPP2CF1*.

To construct plasmids for recombinant ABI1 with a GST tag at the N-terminus (GST-ABI1), a DNA fragment containing the *ABI1* ORF was obtained by PCR using primers 5'-TCGGATCTGATCGAAGGTCGTGGGATCCTGATGGAGGAAGTATCTCCGGC-3' and 5'-AGTCAGTCACGATGCGGCCGCTCGAGTCAGTTCAAGGGTTTGCTCT-3'. This PCR fragment was inserted into the *BamHI/XhoI* sites of the *pGEX-5X-2* using the In-Fusion cloning system to produce *pGEX GST-ABI1*.

Supplementary Method S5. Yeast two-hybrid (Y2H) assays.

The control plasmids pGBKT7 (bait plasmid) and pGADT7 AD (prey plasmid) for yeast two-hybrid assay were provided with the Matchmaker Gold Two-Hybrid System (Clontech, Mountain View, CA, USA). For pGBKT7 PYR1, PYL1-13, AtPP2CF1, or ABI1, DNA fragments containing the PYR1, PYL1-13, AtPP2CF1, or ABI1 ORF were obtained by PCR. The following primers were used for PCR: PYR1. 5'-tgatctcagaggaggacctgcatatgccttcggagttaacacc-3' and 5'-gcaggtcgacggatccccgggaattctcacgtcacctgagaaccact-3'; PYL1, 5'-tgatctcagaggaggacctgcatatggcgaattcagagtcctc-3' and PYL2, 5'-gcaggtcgacggatccccgggaattcttacctaacctgagaagagttg-3'; 5'-tgatctcagaggaggacctgcatatgagctcatccccggccgt-3' and PYL3. 5'-gcaggtcgacggatccccgggaattcttattcatcatcatgcatagg-3'; 5'-tgatctcagaggaggacctgcatatgaatcttgctccaatcca-3' and PYL4, 5'-gcaggtcgacggatccccgggaattctcaggtcggagaagccgtgg-3'; 5'-tgatctcagaggaggacctgcatatgcttgccgttcaccgtcc-3' and 5'-gcaggtcgacggatccccgggaattctcacagagacatcttcttctt-3'; PYL5,5'-tgatctcagaggaggacctgcatatgaggtcaccggtgcaact-3' and PYL6, 5'-gcaggtcgacggatccccgggaattcttattgccggttggtacttcg-3'; 5'-tgatctcagaggaggacctgcatatgccaacgtcgatacagtt-3' and 5'-gcaggtcgacggatccccgggaattcttacgagaatttagaagtgtt-3'; PYL7, 5'-tgatctcagaggaggacctgcatatggagatgatcggaggaga-3' and 5'-gcaggtcgacggatccccgggaattctcaaaggttggtttctgtatg-3'; PYL8, 5'-tgatctcagaggaggacctgcatatggaagctaacgggattga-3' and 5'-gcaggtcgacggatccccgggaattcttagactctcgattctgtcgt-3'; PYL9, 5'-tgatctcagaggaggacctgcatatgatggacggcgttgaagg-3' and 5'-gcaggtcgacggatccccgggaattctcactgagtaatgtcctgaga-3'; *PYL10*, 5'-tgatctcagaggaggacctgcatatgaacggtgacgaaacaaa-3' and PYL11, 5'-gcaggtcgacggatccccgggaattctcatatcttcttctccataga-3'; 5'-tgatctcagaggaggacctgcatatggaaacttctcaaaaata-3' and PYL12, 5'-gcaggtcgacggatccccgggaattcttacaactttagatgagccac-3'; 5'-tgatctcagaggaggacctgcatatgaaaacatctcaagaaca-3' and 5'-gcaggtcgacggatccccgggaattcttaagtgagctccatcatctt-3'; PYL13,

5'-tgatctcagaggaggacctgcatatggaaagttctaagcaaaaa-3'	and
5'-gcaggtcgacggatccccgggaattcttacttcatcattttctttgt-3';	AtPP2CF1,
5'-tgatctcagaggaggacctgcatatgggacatttctcttccatgt-3'	and
5'-gcaggtcgacggatccccgggaattcctatagagatggcgacgacg-3';	ABI1,
5'-tgatctcagaggaggacctgcatatggaggaagtatctccggc-3'	and

5'-gcaggtcgacggatccccgggaattctcagttcaagggtttgctct-3'. These PCR fragments were inserted into the *NdeI/EcoRI* sites of the *pGBKT7* using the In-Fusion Cloning System.

For pGADT7 AD SnRK2.2, SnRK2.3, SnRK2.6, AtPP2CF1, or ABI1, DNA fragments containing the SnRK2.2, SnRK2.3, SnRK2.6, AtPP2CF1, or ABI1 ORF were obtained by PCR. The following primers were used for PCR: SnRK2.2, 5'-acgacgtaccagattacgctcatatggatccggcgactaattc-3' and 5'-tatcgatgcccacccgggtggaattctcagagagcataaactatctc-3'; SnRK2.3, 5'-acgacgtaccagattacgctcatatggatcgagctccggtgac-3' and 5'-tatcgatgcccacccgggtggaattcttagagagcgtaaactatctc-3'; SnRK2.6, 5'-acgacgtaccagattacgctcatatggatcgaccagcagtgag-3' and 5'-tatcgatgcccacccgggtggaattctcacattgcgtacacaatctc-3'; AtPP2CF1, 5'-acgacgtaccagattacgctcatatgggacatttctcttccatgt-3' and 5'-tatcgatgcccacccgggtggaattcctatagagatggcgacgacgatg-3'; ABI1, 5'-acgacgtaccagattacgctcatatggaggaagtatctccggc-3' and

5'-tatcgatgcccaccgggtggaattctcagttcaagggtttgctct-3'. These PCR fragments were inserted into the *NdeI/EcoRI* sites of the *pGADT7 AD* using the In-Fusion Cloning System.

The Y2H assay was performed using the Matchmaker Gold Two-Hybrid System (Clontech, Mountain View, CA, USA), according to the manufacturer's instructions. Yeast cells were grown and maintained in SD or YPD medium. SD medium lacking adenine, His, Leu, and Trp (SD-AHLW) but supplemented with 125 ng ml⁻¹ aureobasidin A and 40 ng ml⁻¹ X- α -gal

(5-bromo-4-chloro-3-indolyl- α -D-galactopyranoside) was used as a high-stringency selective medium for the assay.

Supplementary references

Chiu W, Niwa Y, Zeng W, Hirano T, Kobayashi H, Sheen J. 1996. Engineered GFP as a vital reporter in plants. *Curr Biol* **6**, 325-330.

Falquet L, Pagni M, Bucher P, Hulo N, Sigrist CJ, Hofmann K, Bairoch A. 2002. The PROSITE database, its status in 2002. *Nucleic Acids Res* **30**, 235-238.

Gosti F, Beaudoin N, Serizet C, Webb AA, Vartanian N, Giraudat J. 1999. ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling. *Plant Cell* **11**, 1897-1910.

Lee TH, Tang H, Wang X, Paterson AH. 2012. PGDD: a database of gene and genome duplication in plants. *Nucleic Acids Res* **41**, D1152-1158.

Merlot S, Gosti F, Guerrier D, Vavasseur A, Giraudat J. 2001. The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. *Plant J* **25**, 295-303.

Page RD. 1996. TreeView: an application to display phylogenetic trees on personal computers. *Comput Appl Biosci* **12**, 357-358.

Pei J, Kim BH, Grishin NV. 2008. PROMALS3D: a tool for multiple protein sequence and structure alignments. *Nucleic Acids Res* **36**, 2295-2300.

Rodriguez PL, Benning G, Grill E. 1998. ABI2, a second protein phosphatase 2C involved in abscisic acid signal transduction in Arabidopsis. *FEBS Lett* **421**, 185-190.

Seki M, Carninci P, Nishiyama Y, Hayashizaki Y, Shinozaki K. 1998. High-efficiency cloning of Arabidopsis full-length cDNA by biotinylated CAP trapper. *Plant J* **15**, 707-720.

Seki M, Narusaka M, Kamiya A, Ishida J, Satou M, Sakurai T, Nakajima M, Enju A, Akiyama K, Oono Y, Muramatsu M, Hayashizaki Y, Kawai J, Carninci P, Itoh M, Ishii Y, Arakawa T, Shibata K, Shinagawa A, Shinozaki K. 2002. Functional annotation of a full-length Arabidopsis cDNA collection. *Science* **296**, 141-145.

Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. *Nucleic Acids Res* **25**, 4876-4882.

Xue T, Wang D, Zhang S, Ehlting J, Ni F, Jakab S, Zheng C, Zhong Y. 2008. Genome-wide and expression analysis of protein phosphatase 2C in rice and Arabidopsis. *BMC Genomics* **9**, 550.

Zdobnov EM, Apweiler R. 2001. InterProScan--an integration platform for the signature-recognition methods in InterPro. *Bioinformatics* **17**, 847-848.

At1g03590	5'- tcagggaaaaattgtcttctgc -3'	
	5'- tcatcaagcacagattttgagg -3'	
At1g16220	5'- cttgaagacacttcagcaggag -3'	
	5'- gttgaagcetetteettettgt -3'	
At1g79630	5'- atgccgacaaaaacacttcata -3'	
	5'- cagctaacatgaccaatctctca -3'	
At5g01700	5'- agttgcagctgagatgttggtt -3'	
	5'- cacgtttccttctcttgggtaa -3'	
At3g02750	5'- agatttgtgcctggaaagtgaa -3'	
	5'- gacacagtaccttgtcttgggt -3'	
At5g36250	5'- aggageteaatgteteetatge -3'	
	5'- tacaatgagtcacacacgagca -3'	
At5g26010	5'- ctgcatggaagaaaaggcttaa -3'	
	5'- caacagetaagettggaceata -3'	
At4g32950	5'- gtgatgaagtcagcaagtgagg -3'	
	5'- tggctgtggattatgcttcttg -3'	
At3g16800	5'- atcaatgtattttgggcgtcat -3'	
	5'- tatetetecatteteaateaetee -3'	
At3g05640	5'- actagtacttttggaccgggca -3'	
(AtPP2CF1)	5'- ttgtgataggactctggtttgg -3'	
	5'- gaacccgataaagagctacagcg -3'	(for transgenic plant analysis)
	5'- cttcgtctgaaactgtggccaa -3'	
At5g27930	5'- ggaagaaaaagagacaaggatact -3'	
	5'- catcgctgatctatttacaacac -3'	
At4g03415	5'- atgcagaggatgagaaaacggt -3'	
	5'- attetteaagateagteeteag -3'	
At4g27960	5'- tcacaatttccaaggtgctgc -3'	
(<i>UBC</i> 9)	5'- tcatctgggtttggatccgt -3'	
At4g26080	5'- tgaatatgggtetetecaagaaa -3'	
(ABI1)	5'- tacaaggggctttttagaatgt -3'	
	5'- atccggaagtgacggctgtga -3'	(for transgenic plant analysis)
	5'- tcatccgcgagcaacgatgca -3'	

Supplementary Table S1. Gene-specific primers used in RT-qPCR.

Supplementary Figure S1. Phylogenetic analysis of *Arabidopsis* PP2Cs belonging to subfamilies E and L. *Arabidopsis* subfamilies E and L PP2Cs constitute a sister clade, forming a monophyletic cluster (Xue *et al.*, 2008). For phylogenetic analysis, entire PP2C protein sequences from *Arabidopsis* subfamilies E and L were identified by The Arabidopsis Information Resource (TAIR) database (http://www.arabidopsis.org/) and were aligned with the PROMALS3D program (Pei *et al.*, 2008) using two PDB IDs, chain B of 3KDJ and chain A of 3JRQ, as reference 3D structures and secondary structures. The tree was generated using TreeView (Page, 1996). Functional domains were predicted using InterProScan (Zdobnov and Apweiler, 2001) and PROSITE (Falquet *et al.*, 2002).

Supplementary Figure S2

-		-	β2-strand	η 1-helix β 3-strand	α1-helix		
					0000000000000000000		
	A+4~26080 ADI1	140 5			COMANYOPERMILLALAPETAVEV 204		
A	At 92030-Ab11 At 5257050 At 1272770 At 127270 At 1272770 At 127770 At	140 E 124 E 201 E 200 E 116 D 89 E 123 E 132 D	MEDSVSTIPRFLQVSSSSLLDG MEDSVSTIPRFLQVSSSSLLDG MEDAFAVSPHFLKLPIKMLMGI MEDAVRALPHFLKIPIKMLMGI MEDAVSIHPSFLQRNS MEDAVAIHPSFSSPKN MEDAVALHPSFVRKQT	DGRFDFQSAAAHFGVIDGHG -RVTNGFNPHLSAHFFGVYDGHG DHEGMSPSLTHLTGHFFGVYDGHG DHEGMSPSLPYLTSHFFGVYDGHG ENHHFYGVFDGHG EYSSTGFHYCGVYDGHG EFSRTRWHYFGVYDGHG-	GSQVANYCRERMHLALTELIAELIAEL 204 GSQVANYCRERMHLALTELIVKEK 192 GHKVADYCRDRLHFALAEEIERIK 270 GAQVADYCHDRIHSALAEEIERIK 269 CSHVAEKCRERLHDIVKKEVEVMA 169 CSHVAARCRERLHELVQEELSSDM 144 CSHVAAKCRERLHELVQEEALSDK 189		
	At5g51760 At4g08260 At3g27140	120 K 1 - 1 -	MEDSVTVKPNLCKPEV MEDRFSAITNLHG MEDRFSTITNLHG	NRQRPVHFFAVYDGHG DHKQAIFGVYVGHG DRKQAIFGVYVGHG	GSQVSTLCSTTMHTFVKEELEQNL 176 GVKAAEFAAKNLDKNIVEEVVDAT 51 GVKAAECPAKNLDKNIVEEVVGKR 51		
B	At2g30020 At1g07160 At2g40180 At1g67820	151 A 134 A 140 P	MEDRFSAITNLHG MEDRFSAITNLQG MEDRYFAAVDRNDD	DRKQAIFGVYDGHG DPKQAIFGVYDGHG 	GVKAAEFAAKNLDKNIVEEVVGKR 202 GPTAAEFAAKNLCSNILGEIVGGR 185 GSKAAEFAAMNLGNNIEAAMASAR 193		
С	Art5g02400 Art5g02400 Art1g07630 Art2g28890 Art2g35350 Art2g46920 Art2g46920 Art2g46920	260 A 254 A 264 A 258 A 273 A 285 A	M EDRVHVVVSE		GPDAPDYLLNNLYTAVQKEINGLI 309 GPDAPDYLLNNLYTAVQKEINGLI 303 GPDAPDYLLSHLYPAVHRELKGLI 303 GPDAPDYLLSHLYPAVHRELKGLI 307 GPDAPDYLLSHLYPAVHRELKGLI 307 GPDAPEFLMANLYRAVHSELQGLF 322 GPDAPDFVMSHLYKAIDKELEGLI 334		
D	At3g51370 At5g66080 At4g38520 At3g12620 At3g12620 At5g02760 At5g02760 At4g33920 At5g06750	56 L 58 L 58 L 60 L 61 L 69 V 69 V 69 V 67 V	LEDQSQVESGPLSTLD LEDQSQVESGPLTTLS LEDQSQLESGSLSSHD LEDHSQLESGPISLHE MEDHSQLESGPISLHE MEDQSQVESGNF LEDQSQVFTSS LEDHSQVETGN	SGPYGTFIGIYDGHG 	GPETSRFVNDHLFOHLKRFAAEQA 111 GPETSRFVNDHLFOHLKRFAAEQA 114 GPETSRFINDHMFHHLKRFTAEQQ 113 GPEAARFVNKHLFDNIRKFTSENH 115 GPEAARFVNDRLFYNIKRYTSEQR 116 GPEASRFIADNIFPKLKKFASEGR 104 GPEAARYVCDHLFNHFREISAETQ 116 GPEASRFVNRHLFPYMHKFAREHG 93 GPEASRYTSDHLFSHLMRVSREBS 114		
E	At4g32950 At5g26010 At5g01700 At1g03590 At4g03415 At1g16220 At1g16220 At3g02750 At5g36250 At3g16800 At5g27930	54 L 55 L 59 I 72 I 79 I 79 T 76 P 76 P 79 P 74 I 73 V	NQDAAILHLGYGT	-EEGALCGVFDGHGPR -RDTELCGVFDGHGKR -EDTIFCGVFDGHGKR -EDTIFCGVFDGHGPY -EDVTFCGVFDGHGPY -RSDTVLCGVFDGHGPY -RDDTVFCGVFDGHGPY -RTDTIFCGVFDGHGPY -CEDTIFCGWFDGHGPY -QEDTIFCGVFDGHGPY -QEDTIFCGIFDGHGPW	GAFVSKNVRNQLPSILLGHMNNHS 106 GHMVSKMVRNRLPSVLLALKEELN 107 IGHKISRHVCENLPSRVHSKIRSSK 112 GHLVARKVRDSLPVKLLSLLNSIK 124 GHLVARKVRDTLPVKLQFFFQTLQ 131 GHMVSKRVRDMLPFTLSTQLKTTS 129 GHMVAKKVRDTLPFTLLTQLKMTS 132 GHMVAKKVRDNLPLKLSAYWEAKV 129 GHIVAKRVRDNLPLKLSAYWEAKV 129 GHIVAKRVRDLLPLKLGSHLESVV 132 GHYVAKRVRDLLPLKLGSHLESVV 132 GHYVAKVRNSMPLSLLCNWQKIL 126		
F1	At3g05640-AtP20 At4g28400 At2g20630 At3g15260 At1g78200 At1g78200 At1g22280	CF174 V 48 P 44 P 54 E 45 S 47 P 46 P	NQDCAIVWEGYGC MEDYVVSEFKKLE MEDYVVSEFKKVD MEDYHVAKFKEVD MEDYHVAKFTNFN	QEDMIFCGIFDGHGPW GHELGLFAIFDGHL 	GHFVSKQVRNSMPISLLCNMKETL 127 GHDVAKYLQTNLFDNILKEKDFWT 99 GHDVAKYLQTNLFDNILKEKDFWT 95 SHEIPDYLCSHLFENILKEPNFWQ 105 GDHVAAYLQKHLFSNILKDCEFLV 96 GERVPAYLQKHLFSNILKECFFV 98 GDSVPAYLQKRLFSNILKECFFW 97		
F2	At2g34740 At5g24940 At5g10740 At4g31750 At5g53140 At1g43900	100 G 45 S 45 S 45 S 113 T 135 T	MEDFIVADTKTVK MEDFFETRIDGID MEDFFETRIDGIN MEDFYETRIDGVE MEDFYDIKASTIE MEDYFETRISDVN	GHNLGLYAIFDGHS GEIVGLFGVFDGHG GEIVGLFGVFDGHG GEIVGLFGVFDGHG GQAVCMFGIFDGHG 	GSDVADYLQNHLFDNILSQPDFWR 151 GSRAAEYVKHLFSNLITHPKFIS 96 GARAAEYVKQNLFSNLITHPKFIS 96 GARAAEYVKQNLFSNLIRHPKFIS 96 GSRAAEYLKEHLFNNLMKHPQFLT 164 GARTAEYLKNNLFKNLVSHDDFIS 186		
G	At1g48040 At3g17250 At3g62260 At2g25620 At2g33700 At3g51470	90 T 130 Y 90 N 101 S 96 F 84 S	MEDEHICIDDLSAHLGS MEDEHICIDDLSDHLGSS MEDEHIRIDDLSSQVGS MEDAYLCVDNFMDSFGL MEDEHICIDDLVNHLGA MEDEFICVDDLTEYIG	YNFSŶPSAFYGVFDGHG FYRFPVPMAFYGVFDGHG LFELPKPSAFYAVFDGHG AIQCSSLGAFYGVFDGHG SSTGAFYGVFDGHG	GPEAAIFMKENLTRLFFQDAVFPE 148 GSDASQYIKENAMSLFFEDAVFRQ 190 GPEAAAYVRENAIRFFFEDEQFPQ 148 GKHAAEFACHHIPRYIVEDQEFPS 160 GTDAAHFVRKNILRFIVEDSSFPL 155 GVDAASFTKKNIMKLVMEDKHFPT 138		
H	At1g09160 At1g68410 At1g47380	44 K 49 K 40 K	GEDYFLIKTDCERVPG GEDYVLIKTDSLRVPS GEDFTLVKTECORVMG	DPSSAFSVFGIFDGHN NSSTAFSVFAVFDGHN DGVTTFSVFGLFDGHN	GNSAAIYTKEHLLENVVSAIPQGA 100 GKAAAVYTRENLLNHVISALPSGL 105 GSAAAIYTKENLLNNVLAAIPSDL 96		
Ī	At2g25070 At4g31860	35 T 35 S	MEDAHAAILDLD MEDAHAAILDLD	DKTSFFGVYDGHG DNTSFLGVYDGHG	GKVVAKFCAKYLHQQVISNEAYKT 84 GKVVSKFCAKYLHQQVLSDEAYAA 84		
J	At3g63320 At3g63340 At5g66720	37 K 83 Y 186 G	GG-GNTRRIVFSVPLIFAFPFP QEDRLLCALDLRIPFPGK GEDAHFICDE	TGTPKDVLVGIAAVFDGHS TGTPKDVLVGIAAVFDGHN EQAIGVADGVG	GSEASEMASQLLLDYFALHIYFLL 101 GAEASDMASKLLLDYFALHINFLL 144 GWAEVGVNAGLFSRELMSYSVSAI 231		
K	At4g16580 At2g30170	234 G 63 G	GEDAHFICAE GEDAFFVSSY	EQALGVADGVG RGGVMAVADGVS	GWAELGIDAGYYSRELMSNSVNAI 279 GWAEQDVDPSLFSKELMANASRLV 109 GWOONEVKEDWUMMUSEDDULE 122		
L	A12g20050 A14g33500 A14g11040 A15g19280 A12g40860 A12g40860 A14g27800 A11g18030 A13g23360	120 A 496 A 90 A 322 P 404 S 71 E 86 T	FDALOG LDKANQDSFAIHTPFGS GREDAYFISH MTTAVSTVDEI MEDVCHYKWPLPG MEDTHFIIPHMCN MEDTHFIIPHMCN MEDVWVLPDASLDF MEDVWVLPDASLDF		CAQCSOFVERVIEWVEMUSEDFILLE 122 CAQCSOFVERELCENLERHERFRV 177 QWSFEGINKGMYAQELMSNCEKII 541 LAKFFEDRLRRLVKEEVEACH 136 GSGAAQSAIKIIPEVLANILSDSL 373 GAAAAEFSAQVLPGLVQSLCSTSA 455 GSSSVKFLREELYKECVGALQAGS 120 GRLAAEFAKHLHLNVLSAGLPRE 141 GKEIVKMONHLFDKLDRELGIME 166		
	Consensus sequenc	e *	*****p D * <i>h</i> * <i>h</i> ***************	*************** hhtlr DG rs//	G **hsphh*p*l*p*l*p*****		

Supplementary Figure S2. Sequence alignment of conserved consensus motif 4 in all *Arabidopsis* PP2Cs. The secondary structure of ABI1 was superimposed on top of the protein sequence alignment. Green arrowheads and gray circles indicate active-site residues and PYR/PYL/RCAR-binding residues of ABI1, respectively. The red arrowhead indicates the Gly residue converted to Asp in *Arabidopsis abi1-1* and *abi2-1* mutants (Gosti *et al.*, 1999; Merlot *et al.*, 2001; Rodriguez *et al.*, 1998). Entire protein sequences of all *Arabidopsis* PP2Cs were identified by The Arabidopsis Information Resource (TAIR) database (http://www.arabidopsis.org/) and were aligned in PROMALS3D (Pei *et al.*, 2008) using two PDB IDs, chain B of 3KDJ and chain A of 3JRQ, as reference 3D structures and secondary structures. Consensus amino acids are represented as given below. Consensus symbols: conserved amino acids are in bold and uppercase letters; aliphatic (I, V, L): *l*; aromatic (Y, H, W, F): *r*; hydrophobic (W, F, Y, M, L, I, V, A, C, T, H): *h*; polar (D, E, H, K, N, Q, R, S, T): *p*; tiny (A, G, C, S): *t*; small (A, G, C, S, V, N, D, T, P): *s*.

Supplementary Figure S3

At1g03590

At1g79630

At3g16800

At4g26080-ABI1

Time after ABA treatment (h)

At5g27930

At1g16220

At5g36250

At3g05640-AtPP2CF1

Supplementary Figure S3. Time course of subfamily E PP2C mRNA expression in aerial parts of wild-type *Arabidopsis* plants treated with ABA. Wild-type *Arabidopsis* plants were germinated aseptically on MS medium with gellan gum. Two-week-old seedlings were sprayed with 10 μ M ABA or 0.1% DMSO (mock control). Total RNA from aerial parts was isolated at the indicated time points after ABA or mock treatment and subjected to RT-qPCR. The expression ratios of individual subfamily E PP2C genes to *UBC9* were calculated for each time point and for each treatment (ABA, black bars; mock control, white bars). The expression ratios before ABA treatment (0 h) were arbitrarily set to 1.0 and are shown as gray bars. Values represent the mean \pm S.D. of three independent experiments.

Supplementary Figure S4. Histochemical analysis of GUS activity in transgenic *Arabidopsis* plants *pAtPP2CF1:GUS*, *pAt3g16800:GUS*, and *pAt5g27930:GUS*. GUS-stained tissues were sectioned into 12µm-thick slices after paraffin embedding (GenoStaff, Inc., Tokyo, Japan). (A–C) Transverse sections of the basal parts of rosette leaves of *pAtPP2CF1:GUS* (A), *pAt5g27930:GUS* (B), and *pAt3g16800:GUS* (C) transgenic plants. (D–F) Transverse sections of hypocotyls of *pAtPP2CF1:GUS* (D), *pAt5g27930:GUS* (E), and *pAt3g16800:GUS* (F) transgenic plants. All scale bars: 100 µm.

PTC1	10RPETPYDITYRVGVAENKNSKFRRTMEDVHTYVKNFASRLDWGYFAVFD
ABI1	118 RSLFEFKSVPLYGFTSICGRRPEMEDAVSTIPRFLQSSSGSMLDGRFDPQSAAHFFGVYD
AtPP2CF1	49 RSSGCINADGSNNLASVFSRRGEKG-VNQDCAIVWEGYGCQEDMIFCGIFD
PTC1	59 GHAGIQASKWCGKHLHTIIEQNILADETRDVRDVLNDSFLAIDE
ABI1	178 GHGGSQVANYCRERMHLALAEEIAKEKPMLCDGDTWLEKWKKALFNSFLRVDS
AtPP2CF1	99 GHGPWGHFVSKQVRNSMPISLLCNWKETLSQTTIAEPDKELQRFAIWKYSFLKTCEAVDL
PTC1	103 EINTKLVGNSGCTAAVCVLRWELPDSVSDD <mark>SMDLAQHQRKLYTANVGDSRIVLFR</mark> NGN
ABI1	231 EIESVAPETVGSTSVVAVVFPSHIFVANCGDSRAVLCRGKT
AtPP2CF1	159 ELEHHRKIDSFNS <mark>GTTALTIV</mark> RQGDV <mark>IYIANVGDSRAVL</mark> ATVSDEG
PTC1	161SIRLTYDHKASDTLEMQRVEQAGGLIMKSRVNGMLAVTRSLGDK
ABI1	272ALPLSVDHKPDREDEAARIEAAGGKVIQWNGARVFGVLAMSRSIGDR
AtPP2CF1	205 SLVAVQLTVDFKPNLPQEEERIIGCNGRVFCLQDEPGVHRVWQPVDESPGLAMSRAFGDY
PTC1	205 FFDSL-VVGSPFTTSVEITSEDKFLILACDGLWDVIDDQDACELIKD
ABI1	319 YLKPS-IIPDPEVTAVKRVKEDDCLILASDGVWDVMTDEEACEMARKRILLWHKKNAVAG
AtPP2CF1	265 CIKDYGLVSVPEVTQRHISIRDQFIILATDGVWDVISNQEAIDIVSS
PTC1	251TT <mark>E</mark> PNEAAK <mark>VLVRYALENG</mark> TTDNVTVMVV
ABI1	378 daslladerrkegkdpaamsaaeyLsklaiQrGskDnisvVVV
AtPP2CF1	312TAErak <mark>aak</mark> RLVQQAvraWNRKRRGIAMDDISAVCL

Supplementary Figure S5. Multiple sequence alignments of the predicted phosphatase catalytic domain in AtPP2CF1 with those in PTC1 and ABI1. Amino acid sequence alignment was performed using ClustalX (Thompson *et al.*, 1997). Alignments include the phosphatase domains of AtPP2CF1 (residues 49–347) in *Arabidopsis thaliana* (accession No. BAH19512), ABI1 (residues 118–420) in *A. thaliana* (accession No. CAA54383), and PTC1 (residues 10–279) in *Saccharomyces cerevisiae* (accession No. CAA98562). The residues in black boxes are identical in at least two of the three polypeptides, and those in shaded boxes share similarity with conserved residues. Numbers in the left column indicate residue numbers in the polypeptides.

Α

	DMSO		10 µM (-	+)-ABA	10 μM (-)-ABA		100 µM (±)-ABA		
Bait	SD-LW	SD-AHLW + X-α-gal + AbA	SD-LW	SD-AHLW + X-α-gal + AbA	SD-LW	SD-AHLW + X-α-gal + AbA	SD-LW	SD-AHLW + X-α-gal + AbA	Prey
empty vector									AtPP2CF1
PYR1	0 0 0 %		0 0 0 22					•	AtPP2CF1
PYL1									AtPP2CF1
PYL2	🔘 🔍 🛞 😕							O	AtPP2CF1
PYL3								0	AtPP2CF1
PYL4								0	AtPP2CF1
PYL5				0				Q	AtPP2CF1
PYL6									AtPP2CF1
PYL7									AtPP2CF1
PYL8					4 & O O				AtPP2CF1
PYL9								president and	AtPP2CF1
PYL10									AtPP2CF1
PYL11									AtPP2CF1
PYL12									AtPP2CF1
PYL13		-							AtPP2CF1
empty vector				0				0	ABI1
PYR1				33				1 ··· ·	ABI1
PYL4			iz 6 0 0			20 8			ABI1
PYL5	· · ·			0				0	ABI1
PYL9		🔘 🎄 '		🌔 🛞 🛞 🦗		• *		0 @ # 🖻	ABI1

В

Supplementary Figure S6. AtPP2CF1 did not interact with PYR/PYL/RCAR receptors or with SnRK2 kinases in a Y2H assay. (A) Interaction assay using all PYR/PYL/RCAR receptor proteins as bait (fused to the Gal4 DNA-binding domain, DB) and either AtPP2CF1 or ABI1 as prey (fused to the Gal4 activation domain, AD). ABI1 was used as a positive control. Serial dilutions of exponentially growing yeast cell cultures were spotted on an SD plate lacking Leu and Trp (SD-LW) and an SD-AHLW plate containing aureobasidin A and X- α -gal (SD-AHLW+AbA+X- α -gal), supplemented with 0.01% DMSO (mock control), 10 μ M (+)-ABA, 10 μ M (-)-ABA or 100 μ M (±)-ABA and growth was observed after 5 d at 30° C. (B) Interaction assay using either AtPP2CF1 or ABI1 as bait (fused to DB) and three SnRK2 kinase proteins as prey (fused to AD). ABI1 was used as a positive control. Serial dilutions of exponentially growing yeast cell cultures were spotted on an SD-AHLW+AbA+X- α -gal plate, and growth was observed after 5 d at 30° C.

Supplementary Figure S7. Homology-based structural modelling of AtPP2CF1. A ribbon representation of AtPP2CF1 was generated. The hypothetical structure of AtPP2CF1 (magenta) was superimposed with the well-defined crystal structure of ABI1 (blue) in complex with PYL1 (gray) and (+)-ABA (green) (Protein Data Bank code 3kdj). (+)-ABA is shown as a green sphere. At least one metal ion in the putative active site of AtPP2CF1 is shown (yellow sphere). Trp246 of AtPP2CF1 and Trp300 of ABI1 are highlighted in the stick representation. The dotted yellow circle represents the β 3- α 1 loop of consensus motif 4 (Also see supplementary Fig. S2). Two perpendicular views are shown.

Supplementary Figure S8. Kinematic analysis of the height of wild-type (WT), *AtPP2CF1oe* (#1 and #2), and *ABI1oe* plants. (A) Comparison of plant height according to days after sowing. (B) Comparison of plant height according to days after flowering. This figure was modified from supplementary Fig. S8A. 'Day 0' was defined as the average flowering date after sowing (Also see Fig. 7A). Values represent the mean \pm S.D.

Supplementary Figure S9. Safranin-stained epidermises peeled from primary inflorescence stems of wild-type (WT), *AtPP2CF1oe* (#1 and #2) and *ABI1oe* plants. Basal parts (20 mm from the base) of primary inflorescence stems in 9-week-old plants were used for observations. Scale bar: 100 μm.

Supplementary Figure S10. Segmental chromosomal duplication regions of *AtPP2CF1*. Segmental chromosome duplications of *AtPP2CF1* in the *Arabidopsis* genome were identified by the PGDD (Plant Genome Duplication Database) (Lee *et al.*, 2012) with a threshold score of 200 or more. Segmental duplication maps display only \pm 100 kb regions. Red arrows indicate the *AtPP2CF1*, *At5g27930*, and *At3g16800* loci. Blue arrows indicate the other paralogous gene pairs on each distinct chromosomal region.