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Simulation studies 

 

Type 1 error rates  

Type 1 error rates for both gene and gene-set analysis were assessed under a global null model by 

analysing 1,000 permutations of the CD phenotype, and computing the proportion of p-values 

smaller than 0.05. In addition to the MSigDB gene-sets, for the gene-set analysis additional simulated 

gene-sets were used to more systematically study the effect of correlation between genes on type 1 

error rates. To do so, gene-sets were generated by randomly sampling batches of adjacent genes 

from the data, increasing the size of those batches to increase the correlation between genes. Gene-

sets of 10 and of 100 genes were generated using batch sizes of one, two or five, for a total of six 

conditions. For each condition 1,000 gene-sets were simulated. 

 The global null model used in this type 1 error simulation implies that none of the genes in 

the data are associated with the phenotype, which corresponds to the null hypotheses of the gene 

analysis and the self-contained gene-set analysis. However, the competitive null hypothesis makes no 

such assumption. The competitive gene-set analysis is designed to correct for background levels of 

association and should maintain its nominal type 1 error under any polygenic model, as long as the 

subset of SNPs and genes associated with the phenotypes is not related to the gene-sets. As such a 

second type 1 error simulation was conducted for the competitive gene-set analysis, using such a 

polygenic null model.  

For this polygenic type 1 error simulation, to simulate phenotypes 1,000 SNPs were randomly 

selected from the CD data and normalized. Effect sizes for each SNP were drawn from a standard 

normal distribution, and a genetic effect was computed as the sum of the SNP genotypes weighted 

by these effect sizes. The simulated phenotype was then obtained by adding normally distributed 

noise to this genetic effect, with the variance of the noise distribution chosen such that the 

phenotypic variance explained by the genetic effect (ie. the chip-heritability) was 50%. As with the 

first type 1 simulation, this procedure was repeated 1,000 to generate 1,000 simulated phenotypes 

were generated, and the type 1 error rate was computed for each gene-set as the proportion of 

those 1,000 simulations for which its p-value was smaller than 0.05.  

 

 For the gene analysis, the type 1 error rates averaged over all genes are shown for the different gene 

test-statistics in Table S1. In addition to those for the test-statistics used in the CD analysis discussed 

in the paper, error rates for gene analysis using the unweighted (MAGMA-unwZ) and weighted 

(MAGMA-wtdZ) mean Z test-statistics are shown as well. As described in the ‘SNP-wise gene analysis’ 

section below, for these test-statistics a normal distribution is fitted to the empirical sampling 



distribution, which is used to compute the p-value. Although this results in slightly elevated type 1 

error rates they are still within reasonable limits.  

 The type 1 error rates for the gene-set analysis are shown in Table S2. The middle two 

columns show error rates for the estimates under the global null model; the last two columns shows 

the error rates under the polygenic null model. The global type 1 error rate for the self-contained 

test and both type 1 error rates for the competitive test are found to be well-controlled for both the 

MSigDB and the simulated gene-sets. The polygenic type 1 error rates for the self-contained gene-set 

analysis are shown as well, to illustrate the risk of using self-contained tests for polygenic 

phenotypes.  

Under a polygenic model, the expected degree of association with the phenotype of a 

random gene is greater than it would be under the global null hypothesis. Consequently, any gene 

set is likely contain some amount of association with the phenotype by chance, with this amount 

increasing as gene sets get larger, with lower self-contained p-values as a result. In other words, 

there is some probability that for an arbitrary gene set the self-contained null hypothesis is simply 

not true. Although this is technically not a type 1 error, it does mean that for a polygenic phenotype 

the self-contained p-value will at least in part simply reflect the size (and other properties) of the 

gene set rather than any genuine biological relevance. 

 

Post hoc power simulations for gene analysis 

For the gene analysis, to gain more insight into the difference in power between the multiple 

regression model and the more traditional SNP-wise methods, two targeted power simulations were 

conducted. The goal of the first simulation was to study the dependence of power on local LD, an 

issue previously demonstrated by Moskvina et al.14. The second simulation was performed to study 

differences between methods in the power to detect obscured multi-marker effects. 

 In both simulations normally distributed phenotypes were simulated with a population 

explained variance of either 0.1% or 0.5%. Ten genes, each containing five SNPs, were randomly 

selected from the CD data. A total of 1,000 phenotypes were generated for each gene in each 

condition, and the power averaged over these genes was computed per condition. The SNPs were 

standardized prior to generating the simulated effect, to eliminate differences in MAF.  

In each simulation, a genetic effect as a function of the SNPs in the gene was defined (as described 

below), and then a normally distributed noise term was added to that genetic effect to obtain the 

desired degree of population explained variance. This was accomplished by choosing the variance 
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For the first simulation, the middle SNP of each gene was designated the ‘high LD’ SNP. A 

copy of the high LD SNP was then added to the gene, which was subsequently permuted to remove 

its LD with the other SNPs and designated the ‘low LD’ SNP. Phenotypes were simulated with effects 

for either the high LD or the low LD SNP. Since only one effect SNP was used each time, the genetic 

effect for each individual was thus defined simply as the value for that SNP designated 

For the second simulation two positively correlated SNPs in each gene were designated as 

effect SNPs. These were assigned effect sizes of equal magnitude but opposite in direction, to create 

a multi-marker effect with relatively small marginal effects for the individual markers. Thus, the 

genetic effect for each individual was defined as the difference between the values of the two effect 

SNPs for that individual.  

 

The simulations were analysed using the main MAGMA gene analysis model as well as the SNP-wise 

MAGMA-chi and MAGMA-top models. Given the equivalence of the latter with PLINK and VEGAS, the 

results of these simulations generalize to those tools as well. These results are shown in Table S3. 

The first simulation demonstrates the effect of LD around associated SNPs. For MAGMA-

main there is no effect of LD, with power depending only on the effect size. Similarly, because it only 

uses the most strongly associated SNP and not its neighbors, MAGMA-top is also mostly unaffected. 

For MAGMA-chi however the results are strongly influenced by the LD surrounding the associated 

SNP, with power skewed towards high LD SNPs at the expense of low LD SNPs. 

 The second power simulation demonstrates obscured multi-marker effects, and it is clear 

from the results that only the multiple regression model can properly detect such effects. The two 

SNP-wise models show markedly lower power, and further inspection of the indivual genes reveals 

that this is also highly variable across genes (Table S4). Whereas power for some genes is only 

somewhat impaired, it drops to the chance level of 0.05 for others.  

 Although due to LD one would typically expect the effects of pairs of positively correlated 

SNPs to have the same direction, the opposite are possible as well. It might occur for example in case 

of a haplotype effect or when a causal SNP not present in the data is poorly marked by genotyped 

SNPs, which would manifest as joint effects of correlated SNPs with weak marginal associations for 

each SNP individually. Moreover, the results of the CD analysis suggest that these in fact do occur, as 

the multiple regression model displays significantly higher power. Since a key difference between this 

model and the two SNP-wise methods lies in the different way of handling LD, it follows that this 

power difference is likely related to LD. The good performance of MAGMA-top in the first simulation 

indicates that it is not due to the effect described by Moskvina et al14., making multi-marker effects 

the most viable culprit. This is also supported by a closer inspection of the MAGMA-main top genes 

not picked up by the SNP-wise models. Among these genes the percentage of SNPs with p-values 



below 0.01 is only 2%, which is barely higher than in the data-set as a whole and far below the 66% in 

the overall top genes. 

 

 

  



Implementational details of the MAGMA model 

 

Gene analysis for binary phenotypes 

For binary phenotypes MAGMA uses the same linear model as used for continuous phenotypes, 

resulting in a so-called linear probability model. This linear model is considerably faster to run than 

more traditional logistic regression model, but it does violate a number of assumptions of the linear 

regression model and the F-test (normally distributed errors, linearity, homoscedasticity). To verify 

that this does not bias the resulting p-values, the asymptotic p-values from the F-test on the CD data 

are compared to empirical p-values. These empirical p-values are obtained by permuting the CD 

phenotype to generate an empirical sampling distribution for the F-statistic. The p-values are then 

computed as the proportion of permutations for which the F-statistic is greater than the observed F-

statistic.  

An initial 100,000 permutations were used for each gene in the CD data. This was 

subsequently increased to about 500 million permutations for genes with a very low empirical p-

value. As the results in Figure S1a show, the asymptotic p-values are essentially identical to the 

permuted p-values, indicating that despite the violated assumptions the resulting p-values are still 

valid. Only for four very low p-values did the asymptotic and empirical p-values diverge, since the 

number of permutations was insufficient to obtain empirical p-values as low as those of the F-test 

(the empirical p-values were all 0). Since the p-values matched for all other genes however, it can 

reasonably be assumed that this applies to these four genes as well if sufficiently many additional 

permutations were computed. 

 Because the CD phenotype has a roughly even distribution of cases and controls, the process 

was repeated for two skewed subsamples of the CD data. The subsamples were obtained by 

randomly dropping either controls (or cases) from the data until a 4:1 (or 1:4) case:control ratio was 

obtained. For these subsamples only 100,000 permutations were used. The results in Figure S1b and 

S1c show that the asymptotic p-values are still valid. Similarly, the analysis was repeated on small 

subsamples of the CD data down to a sample size of 250 (Figure S1d through S1f). These plots show 

that the asymptotic p-values become slightly more conservative but are otherwise valid in this case 

as well. 

To determine whether the use of a linear rather than a logistic model affected the detection 

of gene associations, the F-test p-values were also compared to p-values based on a logistic 

regression model using either the Score test or the Likelihood Ratio test (both computed using R). 

These are shown in Figure S2a and S2b. The Score test yields p-values virtually identical to those of 

the F-test. On the other hand, the Likelihood ratio test appears to have more power, with lower p-

values than the F-test for 66.4% of the genes. This appears to be due to a downward bias in the 



Likelihood Ratio test p-values however, as a comparison of those p-values with empirical p-values 

based on permutation of the Likelihood Ratio statistic reveals (Figure S2c). When the F-test p-values 

are compared to these empirical Likelihood Ratio p-values (Figure S2d), no substantive evidence for a 

difference in power remains. This suggests that no relevant information is lost when using a linear 

rather than a logistic model. 

 

Pruning genotype data 

The degree of pruning performed prior to running the gene analysis is controlled by the pruning 

parameter f, which reflects the proportion of variance to retain from the original genotype data 

matrix for a gene. With i  the eigenvalue for the ith principal component and K the number of SNPs 

in a gene, the total variance is given as 
K

i iV tot . With the principal components sorted in 

descending order of their eigenvalue the variance retained in a subset of the first j principal 

components is 
j

i ijV  . When pruning, the smallest j such that  fVV j tot/  is selected. By 

default 999.0f , retaining all but 0.1% of the total variance in the gene. However, due to the high 

LD between neighbouring SNPs this will still tend to result in a significant decrease in the number of 

PCs relative to K, as shown in Figure S3. Alternatively the degree of pruning can also be controlled by 

specifying the number of PCs to retain either as a fixed number or as a proportion of the number of 

the number of SNPs in a gene. In this case MAGMA will still maintain the upper bound f to ensure 

identifiability of the regression model. 

 

Imputation of missing genotype data 

Even with the most stringent quality control procedures almost any GWAS data-set will contain a 

small amount of missing genotype values. This presents a problem for the PC regression model since 

it requires a complete genotype data matrix to work, and unlike with single-marker analysis listwise 

deletion of individuals with missing genotypes is not a viable option. As such a single imputation 

approach is used to fill in these missing values. Although typically a multiple imputation approach 

would be preferred because it gives somewhat more stable results, this would also complicate the 

model and thus lead to longer computation times. Moreover, since in practice the missing will tend 

to be very low the difference between single imputation and multiple imputation should be minimal. 

 It should be noted that the procedure used here is a statistical imputation procedure, and 

should not be confused with the kind of genotype imputation procedure implemented in programs 

like MACH and IMPUTE. The former is a standard statistical technique aimed at filling in missing 

values in partially observed variables using the observed data. The latter is aimed primarily at filling 



in entirely unobserved variables using the observed data in combination with an external reference 

data-set with a sufficiently similar LD structure as the source population of the original data-set. 

Although in principle genotype imputation can also be used to fill in missing values in partially 

observed variables this is unlikely to lead to better results than those of conventional statistical 

imputation techniques, as the reference data-set will never fully match the LD structure in the 

observed data. Moreover, since the missing values in the genotype data are essentially just a 

nuisance problem and the computation time of genotype imputation is orders of magnitude longer 

than that of statistical imputation, the latter should be preferred. 

The imputation implemented in MAGMA is as follows. For each SNP j with missing data, two 

linear probability models (LPM) are fitted, using up to five flanking SNPs on each side of j as 

predictors. The first LPM (LPM1) uses the whole sample to predict whether an individual i is a 

homozygote for the major allele or not ( 0jix ). The second LPM (LPM2) uses all individuals who 

are not a homozygote for the major allele to predict whether an individual is a heterozygote ( 1jix

) or a homozygote for the minor allele ( 2jix ), given that 0jix . Missing values for the SNPs 

used as predictors are temporarily imputed by randomly sampling a genotype value with 

probabilities according to the genotype frequencies of that SNP. 

 Once the two LPMs are fitted, they are used to impute the missing values for j. For each 

individual i with missing jix , the predicted probabilities )0(ˆ jix  and )0|1(ˆ  jiji xx   are 

computed using LPM1 and LPM2 respectively, from which )1(ˆ jix  and )2(ˆ jix  are then 

computed. A value for jix  is then randomly selected according to these three predicted marginal 

probabilities.  

 A simulation was performed to evaluate the quality of the imputation. From the CD data 50 

genes with between 10 and 30 SNPs were selected, more or less evenly spread across the spectrum 

of gene p-values. At random, a fraction F of all the genotypes was set to missing, and then the 

MAGMA PC regression gene analysis was run with the imputation procedure as described above. This 

procedure was repeated 100 times for each value of F, and the 5th and 95th quantile of the p-values 

for each gene p-value are shown in Figure S5. As the figure shows the imputation works quite well, 

with the lower quantiles (and thus the upper quantiles of the -log10 scale shown in the plots, shown 

in black) still close to the original p-values. The stronger deviation of the upper quantiles (in blue) 

make it clear that the missingness will tend to make the analysis somewhat more conservative, which 

is unsurprising given the fact that relative to the full data situation information is lost. However, since 

the upper quantiles essentially represent a worst case scenario and the missingness in a well-cleaned 



data-set is typically very low, often lower than the fractions used in these simulations, this should 

have little impact in practice.  

 

Gene correlation matrix for gene-set analysis 

In order to correct for LD between genes in the gene-set analysis, the correlation matrix R  is 

computed from the joint sampling distribution of the vector Z of gene Z-values. Since the correlations 

between genes are caused by LD between SNPs which quickly drops off as a function of distance, 

correlations are only computed for pairs of genes within a certain distance from each other (5 

megabases) and are otherwise assumed to be zero; correlations between genes on different 

chromosomes are always set to zero. This helps to limit the effective size of R . In particular, R  

becomes a block diagonal matrix, and as a result the inverse and the eigenvalue decomposition of R  

can both be computed from the inverses and eigenvalue decompositions of the blocks on the 

diagonal.  

 Since for each gene g the genotype data is projected onto its principal components matrix 

gP  prior to performing the analysis, the SSM for each gene is proportional to the quadratic form 

YPPY T

gg

T
. Under the null hypothesis of no association, the elements of Y follow independent 

standard normal distributions and the covariance of the SSM’s for two genes i and j is therefore given 

by )(Trace2 i

T

jj

T

i PPPP . The standard deviations of each SSM are equal to )1(2  NKi  for i 

and mutatis mutandis for j, with iK  and jK  the number of PCs in each gene and N the sample size. 

All three values are straightforward functions of the genotype data and can therefore be computed 

very quickly, and the covariance divided by the two standard deviations subsequently gives the 

correlation between the two genes.  

To verify the validity of this approach, the full gene correlation matrix was computed for the 

PC regression on the CD data. Since MAGMA does not compute this by itself, an empirical sampling 

distribution of the SSM values per gene was computed based on 4,611 permutations of the 

phenotype. QQ-plots of the correlations are shown in Figure S6, with expected quantiles computed 

from a simulated sample of 4,611 permutations for 13,172 independent genes. As panel B shows, the 

correlations between genes more than 5 megabases apart exactly follow the distribution expected if 

they were not correlated, indicating that these correlations are simply the product of noise. This can 

also be seen in Figure S7, which visualises the subset of R  corresponding to chromosomes 5 and 6. 

Correlations with an absolute value smaller than 0.05 have been set to 0 to remove noise from the 

plot, and as the figure shows virtually all the remaining non-zero correlations fall inside the area 

covered by the 5 megabase maximum range. 



SNP-wise gene analysis 

 

Structure of the analysis 

In the SNP-wise gene analysis implemented in MAGMA, first the individual SNPs in a gene are 

analysed to produce a p-value for each SNP. These p-values are then transformed and combined into 

a gene test-statistic. Depending on the gene test-statistic, either an approximation to the sampling 

distribution or phenotype permutation is used to compute the gene p-value. The SNP-wise gene 

analysis can be used as input for the gene-set analysis in the same way as the PC regression model. 

 The SNP-wise models differ from each other in both the transformation applied to the SNP p-

values and the manner in which they are subsequently aggregated to a gene test-statistic. SNP p-

values can be transformed to either 
2  statistics or standard-normal Z statistics, with lower p-values 

corresponding to higher statistics and vice versa. The SNP statistics are then combined into one of 

several available gene test-statistics described below.  

 

Gene test-statistics 

A number of different ways of constructing the gene test-statistic from the SNP statistic (Z or 
2 ) 

have been implemented in MAGMA. Either the mean SNP statistic, the top SNP statistic or the 

(weighted) mean of several of the top SNP statistics can be used. For this last option, the number of 

SNPs to use can be specified as either a fixed number, or as a proportion of the number of SNPs in 

the gene. 

 When using the mean SNP statistic, optional weights can be used to partially correct for the 

dependency between SNPs. These weights are based on the SNP statistic correlation matrix R, with

iw  equal to the mean of the elements of the ith column of 
1R . When using the permutation 

approach the matrix R is computed as the correlation matrix of the joint empirical sampling 

distribution. When using the approximate sampling distribution approach, it is computed directly 

from the genotype data as described in the next section.  

 

Computation of approximate sampling distribution p-values 

For the weighted and unweighted mean Z and mean 
2  gene test-statistics, an approximation to the 

sampling distribution can be computed. For both Z and 
2  this requires a correlation matrix R for 

the SNP statistic. Analogous to the gene correlation matrix used in the gene-set analysis (see 

‘Implementation Details’ above) the correlations between the gene SSM values of the regression 



model are used. For single SNPs, this reduces to the square of the correlation between the SNP 

genotype values. 

For the mean Z gene test-statistics the approximate sampling distribution is based on basic 

properties of the multivariate normal distribution. The sum of a set random variables with a joint 

multivariate normal distributions itself has a univariate normal distribution with known mean and 

variance. Here, under the null hypothesis of no association the individual SNP Z-values iz  have a 

standard normal distribution, and thus their joint distribution can be assumed to be a multivariate 

normal distribution with a mean of 0 and covariance equal to the correlation matrix R. The gene test-

statistic is therefore equal to 
K

i

ii zwT , with iw  the weight for SNP i, and there the sampling 

distribution of T is a normal distribution with a mean of 0 and variance 
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ijji

K

i

i RwwwV
11
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The procedure used for the mean 2  gene test-statistics is based on the approach described 

by Brown (1975)20,21, which approximates the sampling distribution of a weighted sum of dependent 

2  random variables by that of a scaled 
2 variable. Under the null hypothesis of no association the 

SNP p-values have a uniform sampling distribution, and therefore      (  ) 
2

)2( . For the test-

statistic 
K

i

ii pwT )log(2  it is then assumed that       ( )
 , and the constants c and f are then 

determined by equating the first two moments of T and this scaled 
2  distribution. As such 
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))log(2),log(2Cov( jiij ppC  . These covariance values can in turn be approximated with 

)75.025.3( ijijij RRC  .  

 

Computation of permutation p-values 

For all gene test-statistics an empirical p-value can be computed based on permutation of the 

phenotype. If a top-SNP statistic is used no approximate sampling distribution is available and 

permutation is the only option. When computing permutation p-values, by default an adaptive 

procedure is used to determine the number of permutations to use. For each gene MAGMA 

generates 1,000 permutations, then checks the number P  of permutations with a gene test-statistic 

greater than the observed gene test-statistic. If this number is greater than the prespecified 

threshold threshP (by default, 10thresh P ) the empirical p-value is computed and the analysis moves 



to the next gene. Otherwise, the number of permutations is increased to 5,000 and P  is checked 

again. The process continues (checking at 10,000, 50,000, 100,000, and so on) until either 

threshPP   or the maximum number of permutations is reached (by default, the maximum is 

1,000,000).  

  

Analysis of summary statistics 

The SNP-wise gene analysis can be used with both raw genotype data as well as with summary SNP 

p-values obtained from a previous single-marker analysis. In the latter case, an additional reference 

data-set must be provided to compute the empirical sampling distribution of the gene test-statistic. 

This is needed to account for the LD between SNPs. More information about the choice of reference 

data can be found below in the section ‘Reference data for p-value only analysis’.  

The gene analysis of summary statistics proceeds in largely the same way as analysis on raw 

genotype data. The observed gene test-statistic is computed from the provided SNP p-values, using 

only SNPs present in the reference data as well. The reference data-set takes the place of the raw 

genotype data, and if permutation is a simulated phenotype is drawn from the standard normal 

distribution. This simulated phenotype is then permuted to generate the empirical sampling 

distribution and compute the gene p-value. If an approximate sampling distribution is used, the 

reference data is only used to estimate the SNP statistic correlation matrix. 

 

Reference data for p-value only analysis 

Since the gene analysis on summary statistics requires a reference data-set to account for the LD 

between SNPs, a number of analyses on the CD SNP p-values (computed using PLINK) were run with 

different reference data-sets using the unweighted mean 
2  gene test-statistic. These were then 

compared to the raw data SNP-wise analysis with the same gene test-statistic (Figure S8).  

The first plot shows the analysis using the CD data as reference, which as would be expected 

yields highly similar results. The small differences with the raw data analysis can be attributed to a 

combination of permutation noise and slight differences in computing the SNP p-values. For the most 

part the 1,000 Genomes European does just as well as reference data as the CD data itself. The only 

difference is that since not all SNPs from the CD data are present in the 1,000 Genomes data, 97 

genes cannot be analysed. 

The HapMap European data-set does not perform as well as the 1,000 Genomes data, with 

more pronounced differences in gene p-values and 375 genes missing due to its less extensive 

coverage. There is no indication of a bias in the p-values however, suggesting that it could still serve 

as a reasonable reference data-set. The same cannot be said for the African HapMap sample 



however, which has a significant downward bias in the gene p-values, as well as even more missing 

genes (623). This bias is likely caused by the overall lower LD in African populations, which results in 

an underestimation of the variance of the sampling distributions.  

 

 

 

  



Extensions to the model 

 

Gene by environment interaction 

MAGMA offers the possibility of adding a gene-environment (or more generally, gene-covariate) 

interaction component to the gene analysis. To do so, first all SNPs in the genotype data matrix gX  

for a gene g are centered and the interactor covariate C is standardized. For each SNP j the element-

wise product of gjX  and C (i.e., the vector with elements igji CX    for each individual i) is 

computed and added to gX . In other words, all the SNP by covariate interactions are added to the 

model. The PC regression then proceeds as normal (adding C as a covariate), computing the PCs from 

the augmented gX , and performing the F-test on the vector of its coefficients. This thus results in a 

joint test of both the genetic main effect and the gene-environment interaction component. At 

present, only one covariate can be used as an interactor at a time.  

 

Rare variants 

When analysing data containing rare variants, rare variants within a gene can be aggregated to 

improve statistical power. To do so, for each gene g a new variable  r rg XR is constructed. 

Here, r indexes over the rare variants in the gene, with ‘rare’ defined according to a user-specified 

MAF threshold. Since minor allele coding is used, giR for an individual i reflects the number of minor 

alleles on rare variants that individual has for gene g.  

 In the analysis, the new gR  variable is used instead of the rare variants themselves. The 

advantages of this approach is that this uses only a single parameter in the model rather than a 

parameter for each rare variant. Under the assumption that the minor alleles for these variants have 

the same direction of effect, this will improve the power to detect associations. 

 When a gene contains many rare variants aggregating all those variants to a single 

compound variable may be too severe, because the signal of associated variants may be drowned 

out by the noise of too many non-associated variants. To counteract this, a maximum m can be set to 

the number of rare variants that are aggregated into gR . If a gene contains more than m rare 

variants, multiple aggregate variables )( j

gR  are constructed, each corresponding to no more than m 

variants.  

 

Gene and gene-set meta-analysis 



To facilitate the analysis of multiple independent data-sets, MAGMA also has an option for fixed 

effects meta-analysis for both the gene and the gene-set analysis. For both, Stouffer’s weighted Z-

score method is used27, with weight dw  for each data-set d set to the square root of its sample size. 

Let dp  be the gene or gene-set p-value for data-set d, and define )1(1

dd pz    with 1  the 

probit function. These Z-values can now be combined across data-sets to obtain 

 d CddC Wzwz / , where  d dC wW 2 . Under the assumption that the data-sets are 

independent, Cz  has a standard normal distribution under the null hypothesis of no association for 

that gene or gene-set in any of the data-sets, and therefore the meta-analytic p-value can be 

computed as )(1 CC zp  , where   is the cumulative normal distribution function. 
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