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Extended materials and methods

Adherens Junction Location

The AJs localize below the apical surface of the epithelium and form a belt-like structure orthogonal to
that surface. Mosaliganti et al. have recently introduced a function to measure the likelihood of voxels
being part of bright planar like structures, and employed it to detect the entire cell surface of somitic cells
in zebrafish embryos [1]. We found that this function can detect the AJs in 3D space as a planar-like part
of the cell surface, and therefore employed it to detect AJs (Fig S1).

Intuitively, the planarity function exploits the fact that the image intensity values in the neighborhood
of a voxel in a planar-like structure changes slowly along some planes in the 3D space. By contrast, these
values change very rapidly in the direction normal to these planes. Thus, the planarity function locates
the plane of minimum variation around each voxel and builds a measure of the relative change of signal
intensity between the plane and the direction normal to the plane.

The plane of minimum intensity variation around a voxel x is computed from the eigendecomposition
of the Hessian Matrix ∇2u of the image intensity function U (x). Gaussian derivatives are employed to
obtain a spatially regularized Hessian matrix ∇2

σU , incorporating a local scale parameter σ > 0 to control
the size of the neighborhood employed in the regularization. Be |λ1| ≤ |λ2| ≤ |λ3| the eigenvalues of ∇2

σu
with corresponding eigenvalues e1, e2 e3. The plane of minimum variation around voxel x is spanned by
eigenvectors e1 and e2, expecting λ3 � λ2 ≈ λ1 < 0. The planarity function defined by Mosaliganti et al.
to measure this property is given by:
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where A = |λ2|
|λ3| , B =

√
|λ1λ2|
|λ3| , S =

√
λ21 + λ22 + λ23 and α,β,γ and c are some positive constants.

However, not every voxel x has the same characteristic scale σ and the planarity value varies according to
it, depending on the spatial extent of the structure. Figs 6A, 6B and 6C present planarity measurements
at different scales. The planarity value of a voxel to be employed in subsequent segmentation steps is
selected as the maximum value across a range of scales to account for signal intensity variations among
AJs produced by the imaging process and the variations in the structure of the AJs:

P(x) = max
σmin≤σ≤σmax

Pσ(x) (2)

for a set of scale values in the interval [σmin, σmax].
The volume of the AJs detected by the planarity function presents defects due to the uneven distribution

of E-cad at the cell membrane, residual noise and non-junctional signal in transport vesicles in the cytoplasm.
A membraness enhancement diffusion scheme also proposed by Mosaliganti et al. [1] enhances the planarity
properties of the plasma membrane simulating an anisotropic heat diffusion process where the maximum
propagation is done among the minimum variation plane of each voxel. Employing this scheme serves
to enhance the planarity properties of the adherens junction volumes P (x), fill gaps in the adherens
junctions and reduce the planarity response of fluorescent signal in the cytoplasm. The effects of this
process might be seen in Fig S2. The details of the method are out of the scope of this paper. Readers
are referred to the original publication for additional details.
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Adherens Junction Vertex Location

One approach to describe symbolically networks of epithelial cells is to identify vertices where three or
more cells meet and edges between adjacent pairs of cells. Our system detects vertices and employs them
as the input for the cell segmentation algorithm proposed in the next section. To this end we define a
function similar to the one used in the previous section to locate AJs.

A visual inspection of the planarity function slices shown in Fig S1 reveals that the planarity measure-
ment decreases at adherens junction vertices, as shown in Fig S3. In these regions image intensity is no
longer constant among some planes but instead changes in many directions, and appears more similar to
a blob than to plate. This fact is reflected by the Hessian eigenvalue magnitudes, as λ1 and λ2 increase
their magnitude and become similar to λ3. Now the relationship among Hessian eigenvalue magnitudes
that holds is 0 � |λ1| ≈ |λ2| ≈ |λ3|. Thus, similar to the plateness function, a vertexness function is
defined to measure how likely a voxel x is a vertex:
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where now A = |λ2|
|λ3| , B = |λ1|

|λ2| and again S =
√
λ21 + λ22 + λ23. Again, not every voxel has the same scale

property σ (see Fig S4) the vertexness value varies according to it. Thus, again, the vertexness of a voxel
is selected as the maximum across a set of scales:

V (x) = max
σmin≤σ≤σmax

Vσ(x) (4)

between a range of values σmin σmax.
The vertex locations V = {v1, ..., vn} are obtained as the local maxima of V(x). A threshold value TV

is set up to reject spurious detections so ∀x ∈ V TV ≤ V(x).

Cell tracking

Be Ct = [ct1 . . . c
t
N ] and Ct+1 =

[
ct+1
1 . . . ct+1

M

]
sets of N and M cells respectively extracted at adjacent

sampling times t and t+ 1. The temporal correspondence problem to solve is to establish the relationship
among the cells in Ct and Ct+1, that is, determine which cells in Ct+1 are the result of a morphing
operation over a cell in Ct, which pairs of cells in Ct+1 are the product of the mitosis of cells in Ct, which
of the elements in Ct+1 are new cells that have entered the scene and thus not have a corresponding
cell in Ct, which of the cells in Ct have disappeared at t+ 1 by an apoptosis event so do not have any
correspondence in Ct+1 and which of the cells in Ct have left the scene so have no correspondence in
Ct+1.

The method we propose to solve the cell correspondence problem among frames is a variation of the
coupled min cost-max flow framework proposed in [2]. The solution to the cell correspondence problem is
obtained as the solution to a flow transportation problem in a directed graph. A total of N +M units
of flow need to be sent from a source vertex T+ to a sink vertex T− traversing a network formed by
set of vertices and a set of arcs connecting the vertices that encodes the cell association problem. Arcs
have a maximum capacity and an associated cost for sending units of flow through them. The set of arcs
minimizing the cost for sending the N +M units of flow through the network gives the solution to the
cell correspondence problem. Flow has to be preserved among the network, i.e., the same amount of flow
that gets into a vertex needs to be sent to others, except at source and sink vertices.

The coupled min-cost max-flow framework we employ to solve the cell correspondence problem differs
from the original in the way correspondence hypotheses are formulated. As we track epithelial cells in a
tissue rather than freely moving particles, we exploit certain neighborhood relationships among the cells
that allow us to not consider association hypotheses corresponding to distant cells. We have found that
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only considering the association hypothesis per cell for the K=3 nearest neighbors is sufficient to solve the
cell correspondence problem, thus reducing the computational complexity attached to the association
problem. Below we restrict our exposition to the procedure followed to formulate cell correspondence
hypotheses and build the flow transport graph. Readers interested in additional details about the coupled
min-cost max-flow framework are referred to the original publication [2].

The directed graph employed to model the flow transportation problem (Fig S5) is the graph G = (V,E)
with vertices given by V = T+ ∪A∪L∪ S ∪R ∪ T− and arcs E. T+ is the source vertex sending N +M
units of flow to the network. T− is the sink vertex, receiving N +M units of flow from the network.
L ≡ Ct are the vertices representing the cells at instant t. R ≡ Ct+1 are the vertices representing the
cells at instant t+ 1. A is a vertex employed to represent new cells entering the scene at t+ 1. D is a
vertex employed to represent the destruction of cells at t either by apoptosis or by leaving the scene the
scene. S are auxiliary vertices employed to formulate cell mitosis hypotheses, with a vertex in S for each
one of the mitosis hypothesis.

First we add to the network a set of arcs employed to route flow from the source and the sink nodes to
other vertices in the network that truly model cell correspondence hypotheses. In this way an arc is added
from the source vertex T+ to each one of the vertices li ∈ L representing cells from instant t, setting
capacity(T+, li) = 1 and cost(T+, li) = 0. Similarly, an arc is added from each vertex ri ∈ R representing
the cells at instant t+ 1 to the sink vertex T−, setting capacity(ri, T

−) = 1 and cost(ri, T
−) = 0. Arcs

are also added from T+ to A, from A to D and from D to T− setting capacity(T+, A) = |L| + |R|
and cost(T+, A) = 0, capacity(A,D) = |L| + |R|, cost(A,D) = 0, capacity(D,T−) = |L| + |R| and
cost(D,T−) = 0.

Now that all those auxiliary arcs have been added to the flow transportation graph we start formulating
cell correspondence hypotheses adding the necessary arcs to represent them. We begin formulating
hypotheses about cells at t+ 1 being the result of some morphing operation over cells at t. An arc in
the flow graph from a vertex l ∈ L to a vertex r ∈ R represents the hypothesis that the cell r in Ct+1 is
the result of some morphing operation over the cell l ∈ Ct. For each cell ri ∈ Ct+1 we formulate a set of
K = 50 morphing hypotheses each one respectively postulating ri as the product of a morphing operation
over each cell lj in the set NKε(ri) ⊆ Ct of K spatially nearest cells of ri at t. The arbitrary selection of
K does not affect the quality of the solution as long as it is high enough. We fix capacity(lj , ri) = 0 and

cost(lj , ri) = α ‖φ(ri)− φ(lj)‖w (5)

where φ(c) = [b(c) a(c)w(c)h(c) r(c) p(c)] ∈ R8 is the feature vector associated to a cell c and α is a
weighting parameter and w is the vector of weights given to the distances among the different features.

We continue formulating correspondence hypotheses for pairs of adjacent cells as the daughter cells of
cellular mitosis events. Mitosis hypotheses are represented in the flow graph with the help of the vertices
in S. For every pair of adjacent cells ri, rj ∈ R a new vertex sij ≡ sji is added to S to represent the
union of ri and rj , adding arcs from sij to ri and to rj and setting capacity(s, ri) = 1, capacity(s, rj) = 1,
cost(s, rj) = 0 and cost(s, rj) = 1. For each union of cells sij ∈ S we formulate a set of K mitosis
hypotheses each one respectively postulating that cells ri and rj are the daughter cells of the mitosis of
cell lk from the set NKε(sij) ⊆ Ct of K spatially nearest cells at time t of the union sij of cells ri and rj .
We set capacity(lk, sij) = 0 and

cost(lk, sij) = β ‖φ(lk)− φ(ri, rj)‖w (6)

where φ(ri, rj) denotes the cell feature vector computed from the union of cells ri and r, j and β is a
weighting parameter. To ensure the flow constraint at sij it is necessary to add a link from A to sij ,
setting capacity(A, sij) = 1 and cost(A, sij) = 0.

Next we model hypotheses for cells leaving the scene at time t+ 1. They are represented adding links
from the cells to the auxiliary vertex D. Thus, for each cell li ∈ L and arc is added from li to D. We set
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capacity(li, D) = 1 and
cost(li, D) = γ min

x∈Border
‖B (li)− x‖wb (7)

where Border denotes the set of points in the AJ graph perimeter and γ is a weighting parameter.
Hypotheses for apoptosis events are formulated in a similar way. For each vertex li ∈ L we add an

extra arc from li to D, we set capacity capacity(li, D) = 1 and

cost(li, D) = δ a(li) (8)

where δ is a weighting parameter. The cost of the hypothesis is proportional to the area of the cell as cells
shrink during apoptosis. Note that we differentiate between cells leaving the scene or dying by apoptosis
just by the edge selected in the solution to transport the flow from li to D.

Finally, we formulate hypotheses for cells entering the scene at time t+1. They are represented adding
links from the auxiliary vertex A to the cells. Thus, for each cell ri ∈ R and arc is added from A to ri.
We set capacity(A, ri) = 1 and

cost(A, ri) = εmin
x∈Border ‖b (ri)− x‖wb (9)

where ε is a weighting parameter.
The parameters α ≥ 0, β ≥ 0, γ ≥ 0, δ ≥ 0 and ε ≥ 0 need to get proper values in order to obtain a

successful solution to the correspondence problem. We restrict them such that α + β + γ + δ + ε = 1.
The solution to the correspondence problem is given by the amount of flow to be sent among each arc in
the graph. The problem might be reformulated as an integer optimization problem as shown by [2]. The
solution is then found employing branch and bound algorithm [3]. The correspondence among cells at
frames t and t+ 1 is then recovered from the arcs selected in the solution.

Comparison of our cell segmentation method with the SeedWa-
terSegmenter method

We have performed a comparison of a 2D simplification of our cell segmentation method and the
SeedWaterSegmenter method, an open source cell segmentation software available at 1. With the aim
of performing a fair comparison, we evaluate cell detection performance instead of AJ vertex and edge
detection, as SeedWaterSegmenter has not been designed to solve this task.

The evaluation has been conducted in a similar way to the evaluation of vertex and edge detection, i.e.,
computing Precision, Recall and F1 measures from a wide variety of input parameters. SeedWaterSeg-
menter only depends on the width σ of the Gaussian kernel employing to smooth the images, while the
2D simplification of our method depends on 7 values: Vσmin , Vσmax , Pσmin , Pσmax , TV , TL and Rmax. We
consider a cell as a true detection if in the reference there is a cell centroid closer than 0.25µm to the
detected one.

Figure S10 presents a Precision-Recall plot that we have obtained after testing the system with a broad
range of input parameters processing the Notum dataset. The curve shows that the 2D simplification of
our system outperforms the SeedWaterSegmenter in achieving higher precision and recall values. The
experiment shows how the proposed approach is even able to perform well in a task it has not been
specifically designed for. The main advantage of the SeedWaterSegmenter is that it requires adjustment
of only one parameter, while our method requires adjustment of seven parameters.

1https://github.com/davidmashburn/SeedWaterSegmenter/
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