Table S1. Oligodeoxynucleotides used in this work: Probes for Northern blot analysis and primersfor cloning, site directed mutagenesis and qRT-PCR

Name	Sequence	Purpose
Probes for Northern Blot		
p-0680a	5'-CGTCGCCGCTGCTGCTGCACAGGTC-3'	24 nt probe for CcsR1 (1)
pCcsR1 (73 nt)	5'-AAGGACGGCGACACCAGGGAGGAGGAGGAGGAGGCGTCGCCGCTGCTACAGGTCCCGGGAGGAGGAGGGGGCCTC-3	83 nt probe for CcsR1 for differential detection of CcsR1-3, based on sequence determined in (1)
pCcsR2 (80 nt)	5,-TGGTGCAGCGACCCCAGGGAGGAGGAGGAGGGGGCCGCTGCGGTTCCGATCGGCCAGGGAGGAGGAGGAGGACCGTTCGAAGAGG-3	80 nt probe for CcsR2 for differential detection of CcsR1-3 based on sequence determined in [1]
pCcsR3 (88 nt)	5-GGGGGGGAGGGGCGACGGCTCCAGGGAGGAGGAGGAGGGAG	88 nt probe for CcsR3 for differential detection of CcsR1-3 based on sequence determined in [1]
p-1543	5-CAGGGAGGIAIGAGCGGAGGAG-3	Probe for KSS1543
Primer for Cloning	3-6110404600474604110-3	Probe for 55 TRIVE (2)
RSP 4352 5' HindIII fw	5'-AAGCTTLAGGTCGGGCGAAAGG-3'	Cloning of 16S r8NA (RSP 4352 Promoter) into pPHU235, forward primer
RSP 4352 5' BamHI rv	5'-GGATCCGTTTCTAGGAGCAGACGGCCC-3'	Cloning of 165 rRNA (RSP 4352 Promoter) into pPHU235, reverse primer
RSP_6037_for_BamHI	5'-GGATCCAACAGCGCGACGGCAAAG-3	Cloning of RSP_6037 + CcsR1-4 into pRK4352, forward primer
CcsR1_for_BamHi	5'-GGATCCTTTCCTGCGAGGTCCCAC-3'	Cloning of CcsR1, CcsR1+2, CcsR1-3 and CcsR1-4 into pRK4352/pBBR4352, forward primer
CcsR1-rev-EcoRI	5'- GAATTCAAAGGACGGCGACACCAG -3	Cloning of CcsR1 into pRK4352, reverse primer
CcsR2-for-BamHI	5'-GGATCCTCTTCGAACGGCCTCTCC-3'	Cloning of CcsR2 into pRK4352, forward primer
CcsR2-rev-EcoRI	5'-GAATTCATCTGGTGCAGCGACCC - 3'	Cloning of CcsR12 and CcsR1+2 into pRK4352, reverse primer
CcsR3-rev-EcoRI	5-GAATTCGGGGGCCACGGCTCC-3	Cloning of CcsR1 -3 into pRK4352, reverse primer
CcsR4_rev_xbal	5-ICLAGACICALICGCCGCALGAAL-3	Cloning of CCsK1-4 into pBbK4352, reverse primer
up2591Kon.f	S-GRATECTERGECEGATGATEATC3	Cloning of fbR unstream fragment forward primer
up2591Pst-r	S-CIGACCICICCICCICITICGGC-3	Cloning of flhR upstream fragment, reverse primer
down2591Pst-f	5'-CTGCAGGGAGCGTCGCGTGACGACAGA-3	Cloning of flhR downstream fragment, forward primer
down2591Hind-r	5'-AAGCTTCATCCGGCTCCCCGAGGGGGT-3'	Cloning of flhR downstream fragment, reverse primer
RSP_2591_Xba_fw	5'-TCTAGACGGCAACATTTGCCCGCC-3'	Cloning 166 bp 5'-UTR and 1st 18 bases of RSP_2591 into pPHU165 for lac2 fusion, forward primer
RSP_2591_Pst_rv	5'-CTGCAGTCCCGAAACATGTCCCATC-3'	Cloning 166bp 5'-UTR and 1st 18 bases of R5P_2591 into pPHU16S for lacZ fusion, reverse primer
RSP_2876_Xba_fw	5'-TCTAGAACCATTCCTGCGTCAC-3'	Cloning 204 bp in 5' direction from ATG and 1st 18 bases of RSP_2876 into pPHU16S for lacZ fusion, forward primer
RSP_2876_Pst_rv	5'-CTGCAGCAGGTCGAAATTGT-3'	Cloning 204 bp in 5' direction from ATG and 1st 18 bases of RSP_2876 into pPHU165 for lac2 fusion, reverse primer
RSP_2877_Xbal_fw	5'-TCTAGATCACCACGGCCTCCA-3'	Cloning 233 bp in 5' direction from ATG and 1st 18 bases of RSP_2877 into pPHU16S for lacZ fusion, forward primer
RSP_2877_Pstl_rv	5'-CTGCAGGCCTCCGTCCTT-3'	Cloning 233 bp in 5' direction from ATG and 1st 18 bases of RSP_2877 into pPHU165 for lac2 fusion, reverse primer
RSP_4050_Xba_fw	5'-TCTAGATCTCGAGAAGCACGCG-3'	Cloning, first by bp of KSP_4050 (panB) and 80 bp in 5° direction from ATG into pPHU165 for Ia22 tusion, forward primer
RSP_4050_Pst_rv	5'-CTGCAGCAGCCATTTCGCGA-3'	reverse primer
RSP_6132_Xba_fw	5-TETAGACCGCCATECGCCCTC-3	Cloning 180 bp 5-UTR and 1st 18 bases of RSP_6132 into pPHU165 for lac2 fusion, forward primer
RSP_6132_PSt_IV		Cloning 180 bp 5-01K and 15t 10 bases of KSP_0152 into princips for lac2 fusion, reverse primer
25910000am1	5-004 ICCT0CCC0CC0AA000AAC5	Cloning of fibR into pRK4552, rotward primer
25910VRKph1	5-GGIACCLGGGGAAACCGGAAACGGG3	Bare exchange in RSP_2501 GG627 to CCT27 for analysis in oDkill165 forward primer
Mut2591GGA27CCTrv	5'-C6G6CTA6GtCCTCCCT6C6C6G6TCTTC-3'	Base exchange in RSP_2591 GGA27 to CCT27 for analysis in pPHU165, reverse primer
Primer for generation of temp	lates for T7-RNA polymerase	
TZ CorPl f	5-TAATACGACTCACTATAGAGGTCCCACCTCCTCCTC-3	Amplification of a DNA fragment consiting of a T7 promoter and the 83 bp stretch encoding CcsR1 based on
TZ CorPl r		 forward primer Amplification of a DNA fragment consiting of a T7 promoter and the 83 bp stretch encoding CcsR1 based on
TT_Dect (reverse primer Amplification of a DNA fragment consiting of a T7 promoter and ta 135 bp stretch encoding PcrZ, forward
IV_PCI2_I	3 TRATACOACTCACTATAGOGCACCCCOGAGTGGTAC'S	primer
T7_PcrZ_r	5'-GCAGCGAAGGATGCCCGACAG-3'	Amplification of a DNA fragment consiting of a T7 promoter and ta 135 bp stretch encoding Pcr2, reverse primer
T7_2591_f	5'-TAATACGACTCACTATAGGTTGCCCGCCGAAGGGAAC-3'	Amplification of a DNA fragment consisting of a 17 promoter and a 177 bp stretch encoding the putative CCSR1 binding site in the flhR 5'UTR, forward primer
T7_2591_r	5'-TCCCGAAACATGTCCCATC-3'	Amplification of a DNA fragment consisting of a 17 promoter and a 177 op stretch encoding the putative CCSR1 binding site in the filhR S'UTR, reverse primer
T7_0285_f	5'-TAATACGACTCACTATAGCCCGCCTCGACATGGAG-3'	Amplification of a DNA fragment consisting of a 17 promoterand a 150 bp stretch encoding a putative PCr2 binding site for bchN, forward primer
T7_0285_r	5'-GATGATGCCGGTCAGTCCGC-3'	Amplification of a DNA fragment consisting of a 17 promoterand a 150 bp stretch encoding a putative PCr2 binding site for bchN, reverse primer
Primer for gRT-PCR		Farmed advantation of DCD DCD 3535
RSP2576down	3-SGILAISGILGAGAILAAGS-3'	Porward primer for oPT-PCR KSP_2576
2580RT-F	S-GATEGEGETETEGE-3'	Forward primer for oRT-PCR RSP_2580
2580RT-R	5'-CAGGGGCGAATTCGCCG-3'	Reverse primer for oRT-PCR RSP 2580
2579RT-F	5'-CATCCGCTCGATGC-3'	Forward primer for gRT-PCR RSP 2579
2579RT-R		Reverse primer for oRT-PCR RSP 2579
2077 real-A		Forward primer for oPT-PCP PSP 2877
2077 real B		Paularea primer for ADT.BCD DSD 2077
RSPAOSO real Lio	S-SAGETOCALCECTORSATA_3'	Forward primer for oPT-PCP PCP 4050
Real Duro	S-ATATCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	Pauarea primer for APT. ACR 200
61330T.E		Environ primer for oPT-PCP PCP 6132
C13201 0	3-DEMONDELEGISTING 3	Parameter primer for oPT DCD DCD C122
0132R1-R	5-CITOCOCITOGCOCAGO-5	Reverse primer for qk1+rcR KSP_6132

Table S2. Plasmids used in this work

Plasmid	Description	Source
pRK415	broad-host-range cloning vector, Tc'	see (2)
pRK4352	pRK415 with the RSP_4352 16S rRNA promoter, Tc '	see (3)
pRCcsR1	pRK4352 with the sRNA Ccsr1 under control of the RSP_4352 16S rRNA promoter, Tc ^r	This study
pRCcsR2	pRK4352 with the sRNA Ccsr2 under control of the RSP_4352 16S rRNA promoter, Tc ^r	This study
pRCcsR1+2	pRK4352 with the 2 sRNAs Ccsr1+2 under control of the RSP_4352 16S rRNA promoter, Tc ^r	This study
pRCcsR1-3	pRK4352 with the 3 sRNAs Ccsr1-3 under control of the RSP_4352 16S rRNA promoter, Tc ^r	This study
pRCcsR1-4	pRK4352 with the 4 sRNAs Ccsr1-4 under control of the RSP_4352 16S rRNA promoter, Tc ^r	This study
pR6037_CcsR1-4	pRK4352 with RSP_6037 and the 4 sRNAs Ccsr1-4 under control of the RSP_4352 16S rRNA promoter, Tc ^r	This study
pRK_flhR	pRK4352 with RSP_2591 under control of the RSP_4352 16S rRNA promoter, Tc ^r	This study
pBBR4352	pBBR1MCS2 with the RSP_4352 16S rRNA promoter, Km ^r	see (3)
pBCcsR1-4	pBBR4352 with the 4 sRNAs Ccsr1-4 under control of the RSP_4352 16S rRNA promoter, Km ^r	This study
pPHU281	Tc'	see (5)
pUC4K	Km ^r	
pPHU2591up-KM-down	pPHU281 with RSP_2591 (<i>flhR</i>) upstream and downstream fragments flanking the Km-resistance cassette from pUC4K, Tc ^r	this study
pPHU235	broad-host-range <i>lacZ</i> -fusion vector, Tc ^r	see (6)
pPHU16S	pPHU235 with the RSP_4352 16S rRNA promoter, Tc ^r	This study
pPHU16S2591	pPHU16S with the first T8bp of RSP_2591 (<i>fihR/afdR</i>) and 166 bp of the 5' region with a putative CcsR1-4 binding site in a lacZ fusion under control of the 16S rRNA promoter	This study
pPHU16S2591 _{mut3}	pPHU16S with the first 18bp of RSP_2591 (<i>flhR/afdR</i>) and 166 bp of the 5' region with a putative CcsR1-4 binding site in a lacZ fusion under control of the 16S rRNA promoter, triple mutation in the CcsR1-4 interaction site	This study
pPHU16S2876	pPHU16S with the last 194 bp of RSP_2877 with parts of a putative CcsR1 binding site, the 10bp UTR between RSP_2877 and RSP_2876 and the first 18 bp of RSP_2876 in a lacZ fusion under control of the RSP_4352 16S rRNA promoter	This study
pPHU16S2877	pPHU16S with the last 205 bp of RSP_2878, the 28 bp UTR between RSP_2878 and RSP_2877 including a putative CcsR1 binding site and the first 18bp of RSP_2877 (coxL) in a lacZ fusion under control of the RSP_4352 16S rRNA promoter	This study
pPHU16S4050	pPHU16S with the first 69 bp of RSP_4050 (pdhB) including a putative CcaR1-4 binding site and 80 bp of the respective 5' region in a lacZ fusion under control of the RSP_4352 16S rRNA promoter	This study
pPHU16S6132	pPHU16S with the first 18 bp of RSP_6132(pqqA) and 180 bp of the 5' region with a putative CcaR1-4 binding site in a lacZ fusion under control of the 16S rRNA promoter	This study
pPHU16SbchN	pPHU4352 with the first 60 bp of <i>bchN</i> (RSP_0285) and 105 bp of the 5'region with a putative binding site for the sRNA PcrZ in a lacZ fursion under control of the 16S rRNA promoter	see (3)
pDrive cloning vector	Ap', Km'	Quiagen
pJet1.2 cloning vector	Ap ^r	Thermo Scientific

Table S3. Bacterial strains used in this work

Strain	Description	Antibiotics (µg ml ⁻¹)	Source
<u>E. coli</u>			
E. coli JM109	recA1 supE44 endA1 hsdR17 gyrA96 relA1 thi (lac–proAB)	-	New England Biolabs
E. coli S17-1	recA pro hsdR RP4-2-Tc::Mu- Km::Tn7		See (7)
<u>R. sphaeroides</u>			
R. sphaeroides 2.4.1	Wild type		See (8)
R. sphaeroides 2.4.1 ∆hfq	hfq mutation in wild type 2.4.1, Sp ^r	Spectinomycin (10)	See (9)
R. sphaeroides 2.4.1 Δ flhR	<i>flhR</i> mutation in wild type 2.4.1, Km ^r	Kanamycin (25)	This study

Figure S1:Differential detection of CcsR1-3/4. Depicted are data from Northern blot experiments of *R. sphaeroides* 2.4.1 under heat stress conditions. CcsR1-4 were detected using specific probes for the individual sRNAs. Specific detection of CcsR1 and 2 was possible while CcsR3+4 showed cross hybridization of their respective probes.

Figure S2. Predicted secondary structures of CcsR2 and CcsR3: A)+B) Displayed are minimum free energy (MFE) structures of CcsR2+3. Dots in the base pairing regions indicate that the predicted base interactions occur in the MFE structures as well as in the predicted centroid structures. All secondary structures depicted in this figure were created using Sfold (9).

Figure S3. Global analysis of the transciptome data of *R. sphaeroides* 2.4.1 (pRCcsR1-4) vs. *R. sphaeroides* 2.4.1 (pRK415). Depicted are data from a microarray analysis and a gel based proteome analysis comparing *R. sphaeroides* (pRCcsr1-4) to the control strain *R. sphaeroides* (pRK415) under aerobic conditions in early exponential growth phase. Two individual microarrays (biological replicates) were hybridized to two different pools of RNAs from three independent experiments for each strain. The data of the microarray analysis have been deposited in NCBI's Gene Expression Omnibus (10) and are accessible through GEO Series accession number XY (will be provided in the final manuscript).A) MM-plot comparing the log ratios between the two replicates. Displayed is the log ratio of biological replicate one (M1) against the log ratio of technical replicate two (M2) B) 0.4% of the transcripts with reliable A-Value showed higher abundance (log₂ (ratio) ≥ 0.7) in *R. sphaeroides* (pRCcsr1-4) in comparison to the control strain, while 0.5% of the transcripts showed lower abundance (log₂ (ratio) ≤ -0.7). C) Genes with changed RNA abundance in the microarray D) Genes with changed protein abundance in the proteome analysis(log₂ ratio ≤ -0.3 ; p ≤ 0.05 or log₂ ratio ≥ 0.3 ; p ≤ 0.05)

Table S4. Whole genome sRNA-mRNA interaction predictions for CcsR1-4: Whole genome sRNA-mRNA interaction predictions were employed for CcsR1-4 with help of INTARNA (11). In order to increase the reliability of the prediction, a whole genome interaction prediction for CcsR1 by RNAPREDATOR was conducted (12). The data show sRNA-mRNA interaction predictions that indicate a redundant function of three or 4 of the sRNAs on the same messenger RNA. For these redundant interaction predictions high amounts of free energy are typical. Also these interactions are predicted by INTARNA as well as by RNAPREDATOR. On the other hand there are predicted interactions that indicate indicate unique target mRNAs for CcsR1. Predicted interaction partners of CcsR1-4 that were tested in the *in vivo* reporter system are highlighted in bold.

			IntaRNA			RNApredator		
			CcsR1	CcsR2	CcsR3	CcsR4	CcsR1 Energy [kcal/mol]	
Gene	Name	Function	Energy [kcal/mol]	Energy [kcal/mol]	Energy [kcal/mol]	Energy [kcal/mol]		
Redundant hits								
RSP_6040		Hypothetical protein	-27.4	-27.4	-25.6	-25.6	-22.70	
RSP_2255		AMP-binding domain protein	-22.7	-22.7	-21.9	-21.9		
RSP_1576	trxB	Thioredoxin reductase	-22	-22.6	-21.2	-21.3	-19.59	
RSP_2591	flhR	transcriptional_regulator	-21.8	-24.3	-22.4	-22.4	-20.26	
RSP_1195	comF	Competence protein F	-21.7	-18.8	-23.3	-18.6		
RSP_2749		P4 family integrase	-21.5	-23.1	-27	-23.1		
DCD 2073	aalE	ABC alpha-glucoside transporter, inner membrane	-21.4	-22.7	-23.8	-23.8	-20.17	
RSP_2872 RSP_0573	phoB	Response regulator receiver protein	-21.2	-21.2	-19.8	-19.8	-19.86	
RSP 2844		putative GTP-binding protein	-20.9	-20.9	-20.8	-20.8	-16.81	
		ABC sugar (ribose) transporter, periplasmic substrate- binding subunit	-20.3	-20.3	-18.9	-18.9	-19.67	
RSP_2669		ABC sugar (glycerol) transporter, ATPase subunit	-19.7	-17.3	-17.3	-17.3		
RSP_6132	pqqA	Coenzyme PQQ synthesis protein PqqA	-19.7	-19.7	-18.4	-18.4	-17.96	
RSP_2104		Hypothetical protein	-19.3	-21.1	-21.1	-21.1		
RSP 0793	paaB	Pyrrologuinoline guinone biosynthesis protein Page	-19.1	-19.1	-18.3	-18.3	-19.26	
RSP_0488	uxaC	Glucuronate isomerase	-19	-19.7	-19.7	-19.7	-18.55	
RSP_0725		thioredoxin, thioldisulfide interchange protein	-19	-19	-18.8	-18.8		
RSP_2939		Condensin subunit ScpB	-18.8	-18.8	-17.9	-17.9		
RSP_4050	pdhB	Branched-chain alpha-keto acid dehydrogenase subunit E2	-18.2	-18.2	-17.3	-17.3		
CcsR1 specific								
RSP 2719		AsnC family transcriptional regulator	-20.3					
 RSP_0598	dut	deoxyuridine 5'-triphosphate nucleotidohydrolase	-19.6					
		Putative carbon monoxide dehydrogenase medium chain	-18.4					
RSP_2521	nuoG	NADH dehydrogenase subunit G	-18.3					
RSP_0487		TRAP dicarboxylate family transporter DctP subunit	-17.1					
RSP 1438		Iron-hydroxamate transporter permease subunit	-17					
– CcsR2 specific								
RSP 2889		Transcriptional regulator		-22.2				
RSP 2376	kbl	2-amino-3-ketobutyrate coenzyme A ligase		-19.9				
RSP 2003	vihO	YihQ protein		-19				
RSP 2084	ying	Hypothetical protein		-18.7				
RSP_2004	nuck	NADH debudrogenase subunit K		-17.8				
R3P_2326	NUOK			17.0				
RSP_1019		Putative giveolate oxidase subunit protein		-17.7				
KSP_2381		3-methyladenine DNA glycosylase		-17.2				
CcsR3 specific								
RSP_0640		Putative_N-methylhydantoinase A			-24			
RSP_1077		LysR family transcriptional regulator			-19			
RSP_6242		Hypothetical protein			-18.3			
RSP_2480		Hypothetical protein			-17.3			
CcsR4 specific						-16.7		
RSP_2220	fliG	Flagellar motor switch protein				-16.5		
RSP_2932	hutC	GntR family transcriptional regulator				-16,5		

- 1. Berghoff BA, Glaeser J, Sharma CM, Vogel J, Klug G. 2009. Photooxidative stress-induced and abundant small RNAs in Rhodobacter sphaeroides. Mol. Microbiol. **74:**1497–1512.
- 2. Keen NT, Tamaki S, Kobayashi D, Trollinger D. 1988. *Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria.* Gene. **70:**191-197
- 3. Mank NN, Berghoff BA, Hermanns YN, Klug G. 2012. *Regulation of bacterial photosynthesis genes by the small noncoding RNA PcrZ.* Proc. Natl. Acad. Sci. U.S.A. **109**:16306–16311.
- 4. Hübner P, Masepohl B, Klipp W, Bickle TA. 1993. *nif gene expression studies in Rhodobacter capsulatus: ntrC-independent repression by high ammonium concentrations*. Mol Microbiol. **10:**123–132.
- 5. Hübner P, Willison JC, Vignais PM, Bickle TA. 1991. Expression of regulatory nif genes in Rhodobacter capsulatus. J. Bacteriol. **173:**2993–2999.
- 6. Simon R, Priefer U, Pühler A. 1983. A Broad Host Range Mobilization System for In Vivo Genetic Engineering: Transposon Mutagenesis in Gram Negative Bacteria. Nat Biotechnol 1:784–791.
- 7. van Niel CB. 1944. THE CULTURE, GENERAL PHYSIOLOGY, MORPHOLOGY, AND CLASSIFICATION OF THE NON-SULFUR PURPLE AND BROWN BACTERIA. Bacteriol Rev 8:1–118.
- 8. Glaeser J, Zobawa M, Lottspeich F, Klug G. 2007. Protein synthesis patterns reveal a complex regulatory response to singlet oxygen in Rhodobacter. J. Proteome Res. 6:2460–2471.
- 9. Ding Y, Chan CY, Lawrence CE. 2004. Sfold web server for statistical folding and rational design of nucleic acids. Nucleic Acids Res. 32:W135-41.
- 10.Edgar R. 2002. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Research **30**:207–210.
- 11. Smith C, Heyne S, Richter AS, Will S, Backofen R. 2010. Freiburg RNA Tools: a web server integrating INTARNA, EXPARNA and LOCARNA. Nucleic Acids Res. 38:W373-7.
- 12. Eggenhofer F, Tafer H, Stadler PF, Hofacker IL. 2011. RNApredator: fast accessibility-based prediction of sRNA targets. Nucleic Acids Research **39**:W149.