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Supplementary Figure 1: Alternative ex vivo conditions and assays for fat body TOR activity.   
(a) In vivo levels of circulating trehalose and glucose in third instar larvae. (b) Ex vivo 
phosphorylation of S6K T398 in response to increasing concentration of sucrose or glucose (0, 20 or 
40 mg/ml in M3 medium).  (c) Accumulation of mCherry-Atg8a punctae after 4 hrs ex vivo 
incubation in EBSS/leucine medium with (left) and without (right) 20 mg/ml trehalose. Scale bar 20 
µm. (d) Phosphorylation of AKT S505 is stimulated by trehalose in vivo (26.6 mg/ml in agar/
tryptone food) and ex vivo (40 mg/ml in M3 medium). Data in a, b, and d each represent three 
independent experiments. Images in c are representative of two trials each using seven carcasses per 
condition. Full size immunoblots are presented in Supplementary Figure 6. 



Supplementary Figure 2: Antibody controls.   (a, b) Specificity of Dilp antibodies.  Anti-
Dilp2 labels the IPCs in control and Dilp3-/- but not Dilp2-/- larvae.  Anti-Dilp3 labels the 
IPCs in control and Dilp2-/- but not Dilp3-/- larvae. Dilp2 fluorescence intensity is not 
significantly different between control and Dilp3-/- IPCs. Data represent mean±s.e.m., n=11. 
NS:  P>0.05, student’s t-test.  (c) Additional confocal image showing distinct patterns of 
Dilp2 and Dilp3 localization in IPCs (rabbit anti-Dilp2, mouse anti-Dilp3 as in Figure 4) 
following 4 hr complete starvation.  (d) Combined Z-stack (top) and individual (middle, 
bottom) confocal sections of Dilp2- and Dilp3-stained IPCs, using independently-derived 
1° antibodies from those shown in Figures 4 and S2C (rat anti-Dilp2, Texas Red anti-rat; 
rabbit anti-Dilp3, FITC anti-rabbit). Scale bars 50 µm (a), 5 um (c, d). Images in c and d are 
each representative of two independent experiments, n=7. 	
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Supplementary Figure 3: AKH signaling controls and effects.   (a) Efficiency of AKH 
depletion and corpora cardiaca ablation. Anti-AKH staining reveals robust loss of AKH 
protein in CC cells expressing AKH dsRNA (middle; AKH-GAL4 UAS-GFP / UAS-
AKHRNAi) and loss of the CC by targeted expression of reaper (bottom; AKH-GAL4 UAS-
GFP / UAS-reaper). Scale bar 50 µm. Representative images of seven larvae per genotype 
are shown. (b) Developmental timing measurements of AKHR null mutant and matched 
controls raised on rich and poor media (standard fly food with and without supplemental 
yeast, respectively). Data are from three vials of 30 larvae for each experimental condition.  
(c) Levels of circulating glucose in control and Dilp3-/- larvae cultured in the presence or 
absence of trehalose in vivo. Data represent mean±s.e.m. of three independent experiments. 
NS:  P>0.05, student’s t-test. 	
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Supplementary Figure 4: Whole gel scans of immunoblots presented in Figures 1 and 2. 	
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Supplementary Figure 5: Whole gel scans of immunoblots and gels presented in Figures 3, 4 and 5. 	
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Supplementary Figure 6: Whole gel scans of immunoblots and gels presented in Figures 6, 7, and 
Supplementary Fig. 1. 	



