Supporting Information

Castillo et al. 10.1073/pnas.1504378112

Fig. S1. Gating currents of BK channels coexpressed with chimeric $\beta 1/\beta 2$ -subunits. (*A*) Topological model of chimeric $\beta 1/\beta 2$ -subunit constructs, in which we exchanged the main regions of the auxiliary protein, namely the extracellular loop, transmembrane domains, and N and C termini. The $\beta 1$ -subunit is shown in orange and $\beta 2$ is in blue. (*B*) Representative recordings of BK channels with $\beta 1/\beta 2$ chimeric constructs, as indicated. (*C*) Gating charge–voltage relationship for the indicated BK+ $\beta 1/\beta 2$ chimeric complexes. For comparison, all Q–V plots include the curve from channels formed by BK/ $\beta 1$ (orange) and BK/ $\beta 2$ (blue). (*Lower*) For all chimeras, quantification of $V_{0.5}$ obtained from the Q–V curves is presented (mean ± SEM).

Fig. 52. G–V and Q–V relationships for BK channels coexpressed with different β1-mutants. (*A*, *Left*) Representative macroscopic current recordings from the $\alpha + \beta 1^{N_{L}K3AK4A}$ mutant in 0 Ga²⁺ and 1 mM K⁺. (*Right*) G–V curves from tail currents, comparing the G–V relationship between α (blue) and $\alpha + \beta 1$ (red) with the mutant $\alpha + \beta 1^{N_{L}K3AK4A}$ channel (green). (*B*, *Top*) Representative I_{g} recordings $\alpha + \beta 1_{Y74A}$ (*Right*) and $\alpha + \beta 1_{Y105A}$ channels (*Left*) measured in 0 Ca²⁺. (*Bottom*) Gating charge–voltage relationship for the $\alpha + \beta 1_{Y74A}$ (*Right*) and $\alpha + \beta 1_{Y105A}$ (*Left*) channels. Gating currents were elicited by 1-ms pulses between –90 and 350 mV in increments of 20 mV. For comparison, Q–V plots include the curve from channels formed by α (red) and $\alpha + \beta 1$ (orange). (*C*) Quantification of $V_{0.5}$ and *z* values obtained from the Q–V curves (mean ± SEM). A nonparametric *t* test was used to compare statistical significance between wild-type $\beta 1$ and the mutant β -subunits. For comparison, plots include the quantification of channels formed by α (red) and $\alpha + \beta 1$ (orange).

Fig. S3. Mg²⁺-coordinating residue in BK partially modifying Q–V relationships. Q–V relationships for the BK^{S0_D99A} mutant coexpressed with β 1 (blue; *n* = 8) compared with BK alone (black) and BK+ β 1 (red). Two-way ANOVA was used to compare statistical significance between BK wild type coexpressed with β 1 and the BK mutant protein coexpressed with the auxiliary subunit.

BK channel type	<i>V</i> _{0.5} , mV	<i>z</i> , e ₀	n
$\alpha + \beta 1^*$	112 ± 5	0.58 ± 0.02	8
$\alpha + \beta 2^*$	130 ± 7	0.61 ± 0.02	7
$\alpha + \beta 1 L \beta 2$	107 ± 9	0.61 ± 0.06	8
$\alpha + \beta 2 L \beta 1$	123 ± 6	0.62 ± 0.01	10
$\alpha + \beta 1 T M \beta 2$	108 ± 3	0.65 ± 0.02	8
$\alpha + \beta 2TM\beta 1$	129 ± 3	0.56 ± 0.01	9
α + β1NCβ2	127 ± 5	0.60 ± 0.03	7
$\alpha + \beta 2NC\beta 1$	120 ± 5	0.64 ± 0.06	5

$raple 51$. Summary of gaung properties for p_1/p_2 commend	Table S1.	Summary of gatine	properties for	$\beta 1/\beta 2$ chimeras
--	-----------	-------------------	----------------	----------------------------

 $*V_{0.5}$ and z values were determined as in Contreras et al. (1).

1. Contreras GF, Neely A, Alvarez O, Gonzalez C, Latorre R (2012) Modulation of BK channel voltage gating by different auxiliary β subunits. Proc Natl Acad Sci USA 109(46):18991–18996.

BK channel type	V _{0.5} , mV	<i>z</i> , e ₀	n
α*	169 ± 12	0.63 ± 0.06	14
$\alpha + \beta 1^*$	112 ± 5	0.58 ± 0.02	8
$\alpha + \beta 3^*$	189 ± 4	0.56 ± 0.02	8
$\alpha + \beta 1L\beta 3$	119 ± 1	0.67 ± 0.01	6
$\alpha + \beta 3L\beta 1$	174 ± 14	0.61 ± 0.01	9
$\alpha + \beta 1TM\beta 3$	116 ± 6	0.68 ± 0.02	7
$\alpha + \beta 3TM\beta 1$	165 ± 8	0.64 ± 0.02	8
$\alpha + \beta 1 NC \beta 3$	171 ± 2	0.67 ± 0.01	10
$\alpha + \beta 3NC\beta 1$	112 ± 5	0.57 ± 0.01	8
$\alpha + \beta 1 N \beta 3$	177 ± 2	0.63 ± 0.01	7
$\alpha + \beta 3C\beta 1$	177 ± 2	0.64 ± 0.02	7
$\alpha + \beta 3N\beta 1$	129 ± 4	0.64 ± 0.02	6

Table S2. Summary of gating properties for $\beta 1/\beta 3$ chimeras

 $*V_{0.5}$ and z values were determined as in Contreras et al. (1).

1. Contreras GF, Neely A, Alvarez O, Gonzalez C, Latorre R (2012) Modulation of BK channel voltage gating by different auxiliary β subunits. Proc Natl Acad Sci USA 109(46):18991–18996.

BK channel type	ΔG , kcal/mol	$\Delta\Delta G$, kcal/mol
α	2.4 ± 0.1	1.0 ± 0.2**
$\alpha + \beta 1$	1.5 ± 0.1	0
$\alpha + \beta 1L\beta 3$	1.8 ± 0.1	0.3 ± 0.2
$\alpha + \beta 3L\beta 1$	2.4 ± 0.7	0.9 ± 0.7
$\alpha + \beta 1TM\beta 3$	1.8 ± 0.2	0.3 ± 0.2
α + β3ΤΜβ1	2.4 ± 0.4	1.0 ± 0.4**
$\alpha + \beta 1 N C \beta 3$	2.6 ± 0.1	1.1 ± 0.2*
$\alpha + \beta 3NC\beta 1$	1.5 ± 0.2	0.0 ± 0.3
$\alpha + \beta 1 N \beta 3$	2.6 ± 0.1	1.1 ± 0.2*
$\alpha + \beta 3C\beta 1$	2.6 ± 0.2	1.1 ± 0.2*
$\alpha + \beta 3N\beta 1$	1.9 ± 0.2	0.4 ± 0.2

Table S3. Summary of $\Delta\Delta G$ for BK ($\beta 1/\beta 3$) channels

Free energy was calculated as $\Delta G = zFV_{0.5}$, with the z and $V_{0.5}$ values determined from Q–V relationships. Changes in free energy were determined by $\Delta\Delta G = F(z_iV_{0.5\ i} - z_0V_{0.50})$, with z_0 and $V_{0.50}$ as the values for $\alpha + \beta 1$ (reference value) and z_i and $V_{0.5\ i}$ as the values for the other $\alpha + \beta$ combinations.

**P < 0.01, *P < 0.05, nonparametric pairwise Wilcoxon test.

NAS PNAS

rable 5 m Summary of guing properties for mutant enamels			neis
BK channel type	V _{0.5} , mV	<i>z</i> , e ₀	n
α*	169 ± 3	0.63 ± 0.06	14
$\alpha + \beta 1*$	112 ± 5	0.58 ± 0.02	8
$\alpha + \beta 1^{N_K 3AK4A}$	171 ± 3	0.64 ± 0.01	16
$\alpha + \beta 1^{N_K 10AR11A}$	111 ± 18	0.62 ± 0.04	5
$\alpha + \beta 1^{Loop_Y74A}$	119 ± 19	0.64 ± 0.01	4
$\alpha + \beta 1^{Loop_Y105A}$	111 ± 16	0.70 ± 0.09	4
$\alpha^{D99A} + \beta 1$	130 ± 3	0.61 ± 0.02	6

Table S4. Summary of gating properties for mutant channels

 $V_{0.5}$ and z values were determined as in Contreras et al. (1).

1. Contreras GF, Neely A, Alvarez O, Gonzalez C, Latorre R (2012) Modulation of BK channel voltage gating by different auxiliary β subunits. Proc Natl Acad Sci USA 109(46):18991–18996.

BK channel type	ΔG , kcal/mol	$\Delta\Delta G$, kcal/mol
α + β1	1.5 ± 0.1	0
$\alpha + \beta 1^{N_K 3AK4A}$	2.5 ± 0.2	1.1 ± 0.2**
$\alpha + \beta 1^{N_{K10AR11A}}$	1.6 ± 0.5	0.2 ± 0.5
$\alpha + \beta 1^{Loop_Y74A}$	1.8 ± 0.5	0.3 ± 0.6
$\alpha + \beta 1^{\text{Loop}} 1^{\text{Y105A}}$	1.8 ± 0.7	0.4 ± 0.7

Table S5. Summary of $\Delta \Delta G$ for BK/ $\beta 1^{mut}$ channels

Free energy was calculated as $\Delta G = zFV_{0.5}$, with the *z* and $V_{0.5}$ values determined from Q–V relationships. Changes in free energy were determined by $\Delta \Delta G = F(z_iV_{0.5\ i} - z_0V_{0.50})$, with z_0 and $V_{0.50}$ as the values for $\alpha + \beta 1$ (reference value) and z_i and $V_{0.5\ i}$ as the values for the other $\alpha + \beta$ combinations.

**p < 0.01, nonparametric pairwise Wilcoxon test.

PNAS PNAS