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Fig. S1. (Expanded version of Fig. 3.) The Sr–Nd–Pb isotopic composition of basalts from the Icelandic rift and off-rift (flank) zones and the neighboring
oceanic spreading ridges. A Continental Crustal Contamination Trend (CCCT) departing from the basalt compositions of the Mid-Icelandic Belt (MIB) via the
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Eastern Rift Zone (ERZ) and the Snæfell central volcano at the northern end of the Eastern Flank Zone (EFZ) to Öræfajökull is indicated by yellow shading.
Along the well-defined ERZ trend, the distance from the source of individual eruption units to Öræfajökull is generally correlated with the isotope ratios, such
that the ERZ samples at the shortest distances are compositionally closest to the EFZ samples. The three guiding lines in the Sr–Pb and Nd–Pb diagrams indicate
approximately (not strictly linear regression) the inferred progressive melting trends, involving the following basalt series: (i) Spitsbergen via the western to
the eastern Gakkel Ridge in the High Arctic; (ii) Snæfellsnes to the Western Rift Zone; (iii) Southern Flank Zone via the Reykjanes Peninsula to the Reykjanes
Ridge. The isotope ratios of the mantle components EM1 and EM2 are given in the each of the diagrams, and the small arrows indicate the approximate
directions toward the components. The components are taken as the averages of the most enriched samples with 143Nd/144Nd ratios of less than 0.51260 for
Pitcairn (EM1) and Samoa (EM2) based on the supplementary table 1 in ref. 1. Data sources are refs. 2–13. Apart from the CCCT from MIB toward the
Öræfajökull basalts, the compositional range of basalts from Iceland and the northeast Atlantic and Arctic Oceans can be modeled by mixing and progressive
melting of mantle sources, including the Iceland plume with 10% recycled oceanic crust (ROC) and 90% of a diverse lower mantle (containing both melt-
depleted and fertile components) and local asthenosphere, contaminated by subcontinental lithospheric mantle (SCLM) (14, 15). The proportion of SCLM
increases north of Iceland (the Kolbeinsey, Mohns, and Knipovich Ridges and the Jan Mayen area) and predominates in the Pleistocene to Holocene basalts
from Spitsbergen and along the Gakkel Ridge (13–15). The Sr–Pb and Nd–Pb isotope diagrams illustrate various progressive melting trends from fertile to
depleted basalts, characterized by variable ROC/SCLM ratios. The highest ROC/SCLM ratio is found in the Southern Flank Zone (SFZ) and the Snæfellsnes Flank
Zone, melting to form more depleted basalts of the Reykjanes Peninsula and Ridge and the Western Rift Zone, respectively. The melting trends displayed by
basalts from Jan Mayen Island and Jan Mayen Plateau toward the Mohns and Knipovich Ridges (ref. 14; not shown here) represent intermediate ROC/SCLM
ratios, whereas the trend from Spitsbergen via the western to the eastern parts of the Gakkel Ridge (High Arctic) have the lowest ROC/SCLM ratios,
approaching zero. The Spitsbergen to Gakkel and Southern FZ to Reykjanes melting trends merge at the depleted end of the mid-ocean ridge basalt com-
positional spectrum, characterized by high Nd- and low Sr- and Pb-isotope ratios. A series of subparallel trends, i.e., from Snæfellsnes FZ via the Western RZ,
Northern RZ, and Kolbeinsey Ridge and from Jan Mayen to the Mohns and Knipovich Ridges (not shown), are located between the two extreme Gakkel and
Reykjanes melting trends in the various Sr–Pb and Nd–Pb isotope diagrams. The uniqueness of the CCCT is indicated by the fact that it variably intersects the
other trends in Sr–Pb and Nd–Pb isotope space. The most prominent feature of the three Nd–Pb diagrams is that the Öræfajökull end of the CCCT points
toward low 206Pb/204Pb, high 207Pb/204Pb, and intermediate 208Pb/204Pb with decreasing 143Nd/144Nd, e.g., relative to the trend from the Snæfellsnes FZ to the
Western RZ. The very low 207Pb/204Pb ratios of the picritic lavas from the northern part of the Northern Rift Zone (6) indicate extensive melting of a plume-
supplied lower mantle source that was subjected to strong melt depletion early in Earth’s history.
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Fig. S2. (A) Flow lines showing the direction and amount of (symmetric) seafloor spreading between Eurasia and Greenland and between Greenland and
JMM calculated in 2-My time intervals from stage poles derived from the Gaina et al. (1) kinematic model. That model was derived from magnetic anomalies
identified north and south of Iceland. The base map shows the total magnetic anomaly grid of the northeast Atlantic (2). Thin dark gray lines represent the
identified continent–ocean boundaries (COBs). Note the position and extent of JMM-E (dashed line) next to the Greenland COB in a reconstructed (54 Ma)
position. (B) Motion path of JMM-E relative to Eurasia (magenta lines east of JMM-E) and of the JMM-E relative to Greenland (magenta lines west of JMM-E) in
2-My intervals. Due to competing midocean-ridge propagation from northeast (the Ægir Ridge) and from southwest (the Reykjanes ridge) between 50 and
42 Ma, JMM-E experienced rotation, and its boundaries with surrounding continental and oceanic crust were subjected to transpression and strike–slip motion
(see motion path segments within the black ellipses). This time interval coincided with major reorganizations in the northeast Atlantic suggested by changes in
seafloor spreading directions and rates (1, 3). Due to these tectonic events and magmatic overprint from the Iceland plume, the magnetic anomaly data show a
quasichaotic pattern across the Iceland-Faroe ridge (orange rectangle).
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Fig. S3. Crustal thickness maps derived from gravity anomaly inversion (detailed in refs. 1–3) showing sensitivity to crustal basement density, lithosphere
thermal gravity anomaly correction, and sediment thickness correction. (A) Crustal basement density, 2,850 kg·m−3 (preferred value, as in Fig. 1). (B) Crustal
basement density, 2,800 kg·m−3. (C) Crustal basement density, 2,900 kg·m−3. (D) Omitting a lithosphere thermal gravity anomaly correction results in the
prediction of a Moho that is too deep and a crustal thickness that is too large (1). The lithosphere thermal gravity anomaly correction is calculated using a 3D
lithosphere thermal model incorporating the spatial variation in the initial lithosphere thermal perturbation and thermal reequilibration (i.e., cooling) time.

Legend continued on following page
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The lithosphere thermal perturbation for breakup and seafloor spreading is defined using the lithosphere thinning factors (1 − 1/β) and the model of McKenzie
(4). For continental lithosphere, this thinning factor is derived from the gravity inversion; for oceanic lithosphere, it may also be derived from the gravity
inversion or alternatively may be set to 1 (corresponding to β = infinity), where a priori reliable ocean isochron data exist (Fig. 8B). For continental margin
lithosphere, the cooling time is breakup age; for oceanic lithosphere, the cooling time is the ocean isochron age. Errors in ocean isochron location and age
cause errors in the lithosphere thermal gravity anomaly correction and as a consequence the Moho depth, crustal thickness, and lithosphere thinning derived
from gravity inversion. Therefore, the oldest isochrons adjacent to the continent–ocean boundary are not usually used in the gravity inversion; in this study, a
continental breakup age of 55 Ma is assumed for the northeast Atlantic and the oldest ocean isochron used is 50 Ma (about chron 22 time in Fig. 8A). Sensitivity
tests have also been carried out to the use of isochrons to condition the 3D lithosphere thermal model used to calculate the lithosphere thermal gravity
anomaly correction incorporated in the gravity inversion. These tests show that the predicted thicker crust under JMM and southeast Iceland are not sig-
nificantly dependent on ocean-age isochrons used to determine the lithosphere thermal gravity anomaly correction, and that the thicker crust under the JMM,
compared with that of the oceanic basins to the east and west, extends southwestward into southeast Iceland. (E) Omitting the sediment thickness gravity
anomaly contribution from the gravity inversion (or using too small sediment thickness) leads to an overestimate of Moho depth and crustal basement
thickness. The sediment thickness grid used in this study is a merge of the Divins (5) and Laske et al. (6) compilations, and sediment density used in the gravity
inversion assumes a compaction-controlled density–depth relationship. The same reference Moho depth of 35 km is used for gravity inversion solutions A, B,
and C.
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Fig. S4. (A) Location of seismically determined Moho depth measurements (white +) for comparison with Moho depths determined from gravity inversion (as
in Fig. 1). (B) Cross-plot of gravity versus seismically (1–16) determined Moho depths. (C) Cross-plot excluding seismically determined Moho depth using receiver
function analysis. Cross-plots show a good correlation, but at larger Moho depths, seismic values are consistently greater than gravity-determined values,
suggesting that the gravity inversion may be underestimating Moho depths. One explanation for this may be that that the densities of thicker (or deeper) crust
may be larger than the preferred value of 2,850 kg·m−3 used in the gravity inversion. Some of the seismic Moho depth determinations are large, exceeding
40 km; some of these large values correspond to receiver function determinations that may be overestimating Moho depth. (D) Crustal cross-section A–B with

Legend continued on following page
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Moho depth determined using gravity inversion. The crustal cross-section—running from the northern Denmark Strait across Iceland from Snæfellnes to
Öræfajökull and then into the northeast Iceland Basin—shows thickest crust under southeast Iceland.
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Table S1. Absolute reconstruction parameters (Euler poles) for the Cenozoic

Age, Ma Continent, microcontinent Latitude, ° Longitude, ° Angle, °

27 Greenland (as North America) 51.3 131.8 5.5
All Jan Mayen Blocks and Eurasia 58.7 316.6 −2

33 Greenland 53.8 125 6.6
Jan Mayen/Jan Mayen South* 65.5 337.7 −12.3

Jan Mayen Extended 52.8 40.8 2.4
Eurasia 59.1 293.6 −2.1

40 Greenland 44.5 114.9 7.5
Jan Mayen 55.3 310.4 −8

Jan Mayen South* 65.6 326 −16.6
Jan Mayen Extended 18 253.9 −2.6

Eurasia 50.3 264.6 −2.7
45 Greenland 47.2 107.8 7.8

Jan Mayen 58.3 309.3 −9.6
Jan Mayen South* 66.3 324.3 −18.2

Jan Mayen Extended 47.8 31 6.5
Eurasia 42.4 224.5 −2.5

52 Greenland 45.6 98.1 9.2
Jan Mayen 61.2 313.7 −15.7

Jan Mayen South* 65.9 324.3 −24.3
Jan Mayen Extended 53.5 264.5 −6.1

Eurasia 27.7 200.6 −3.4
55† Greenland 46.9 101.6 8.8

Jan Mayen 62.9 321.5 −18.3
Jan Mayen South* 66.4 329.5 −27

Jan Mayen Extended 21 240 −3.6
Eurasia 30.9 208.2 −2.9

60† Greenland 47.1 89.7 9.3
Jan Mayen 62.7 308.4 −16

Jan Mayen South* 67.5 320.3 −24.7
Jan Mayen Extended 65.1 286.3 −11.1

Eurasia 29.6 178.7 −5.2

*The Jan Mayen Microcontinent block marked S in Fig. 8B.
†Reconstructions at 55 and 60 Ma include minor prebreakup extension. Estimated prebreakup extension for
Eurasia relative Greenland based on Gaina et al. (1).

1. Gaina C, Roest WR, Muller RD (2002) Late Cretaceous-Cenozoic deformation of northeast Asia. Earth Planet Sci Lett 197:273–286.
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Table S2. Euler poles for relative motion versus a fixed Greenland

Age, Ma Continent, microcontinent Latitude, ° Longitude, ° Angle, °

27 All Jan Mayen Blocks and Eurasia 68.5 131.9 −6.5
33 Jan Mayen/Jan Mayen South* 82.3 20.8 −16.7

Jan Mayen Extended 39.3 145.3 −5.2
Eurasia 68.2 131.5 −7.6

40 Jan Mayen 84.6 75.8 −11.9
Jan Mayen South* 82.6 9.2 −20.7

Jan Mayen Extended 56.6 141.6 −7.2
Eurasia 60.0 129.5 −8.3

45 Jan Mayen 84.5 40.4 −14.1
Jan Mayen South* 81.5 3.6 −22.9

Jan Mayen Extended 6.9 149.7 −6.2
Eurasia 56.3 128.9 −8.9

52 Jan Mayen 80.9 8.3 −20.7
Jan Mayen South* 79.1 358.4 −29.6

Jan Mayen Extended 74.2 122.4 −11.9
Eurasia 50.0 125.1 −10.4

55† Jan Mayen 80.7 4.1 −21.5
Jan Mayen South* 79 356.9 −30.4

Jan Mayen Extended 83.9 73.2 −17
Eurasia 52.4 123.5 −12.0

60† Jan Mayen 80.7 4.1 −21.52
Jan Mayen South* 79.2 357.6 −30.4

Jan Mayen Extended 83.9 73.2 −17
Eurasia 48.3 124.5 −12.2

*The Jan Mayen Microcontinent block marked S in Fig. 8B.
†Reconstructions at 55 and 60 Ma include minor prebreakup extension. Estimated prebreakup extension for
Eurasia relative Greenland based on Gaina et al. (1).

1. Gaina C, Roest WR, Muller RD (2002) Late Cretaceous-Cenozoic deformation of northeast Asia. Earth Planet Sci Lett 197:273–286.
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