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LEGENDS FOR SUPPLEMENTARY FIGURES 

 

 

Figure S1 – Deletion of PU.1 in c-Kit+ CD27+ FLPs results in impaired DN progression and 

poor survival and recovery of early DN-stage T cells. E14.5 B6 and Spi1fl/fl FLPs were co-

infected with Cre- and Bcl-xL-carrying retroviruses or empty vector controls, and cultured on 

OP9-DL1 cells. A: DN progression was assayed on days 4 and 6 of culture by analysis of cells 

still expressing both retroviruses. FACS plots are representative of results from 2 independent 

experiments. Red and brown arrows indicate the comparable populations between B6 and Spi1fl/fl 

cultures on day 4 and day 6 respectively. B: Plot showing change in the proportion of each 

double-infected population (GFP+ NGFR+) relative to its day 0 value. For example, a decline 

from 50% of the day 0 population to 5% of the day 6 population would be reported as “0.1”. 

Note the log scale. Each bar represents mean values from 2 independent experiments while error 

bars indicate range. * Indicates significant increase or decrease of a cell population compared to 

its day 0 value at p < 0.05.  

 

Figure S2 – Impacts of PU.1 deletion in cells that have already entered the T-cell development 

pathway. A: Sorting B6 and Spi1-/- DN subsets. E14.5 B6 and Spi1fl/fl FLPs were co-cultured with 

OP9-DL1 as described in the methods section. Cells were harvested on day 3 of culture, 

transduced only with Cre or with Cre- and Bcl-xL-carrying retroviruses, and put back in fresh 

OP9-DL1 co-cultures. FLDN cells were harvested after 2 days and Lin- 7-AAD- CD45+ Cre+ 

Bcl-xL+ DN subsets were sorted using the gates indicated in the lower panels. FACS plots show 

the gating strategy and phenotype of retrovirally-transduced FLDN cells on the day of the sort. 

Numbers in the boxes show percentage in each quadrant or gated population. B: Spi1f/fl is rapidly 

deleted by Cre transduction. Cre mediated deletion of PU.1 in DN subsets sorted in A was 

determined immediately after the sort by measuring the undeleted WT message by qPCR. Bars 

represent mean expression values while error bars indicate 1 standard deviation. The graph 

summarizes data from 2 independent experiments. C: PU.1 supports DN proliferation in early T-

cells. Cre+ B6 and Spi1fl/fl DN1, DN2a and DN2b cells were sorted as in Fig 2F. Equal numbers 

of sorted Cre+ B6 and Spi1fl/fl DN subsets were cultured on fresh OP9-DL1 cells, harvested after 



3 

5 days and FLDN cells were counted to determine the yield from each seeded population. Cell 

numbers were normalized to B6 samples for each subset and the geometric mean was plotted as 

shown in the graph. Error bars represent 1 standard deviation around the geometric mean. Plots 

are calculated from 3 independent experiments for DN1 and 4 independent experiments for 

DN2a and DN2b each.  

Figure S3 – Effect of deletion of PU.1 on gene expression in DN1, DN2a and DN2b cells. B6 

and PU.1 KO DN subsets cells were sorted as described in fig S2 and expression of the indicated 

genes relative to Actin was determined using qPCR. A: Gene expression changes in DN1 cells 

following PU.1 deletion. Each point on the plot represents log2-transformed ratio of Spi1-/- and 

B6 expression values for a particular gene in DN1 cells from 4-5 independent experiments. The 

red dots are expression ratios from experiments in which DN1 cells were infected with Cre alone 

(to delete Spi1), while the blue dots represent experiments in which Bcl-xL was co-expressed 

with Cre to improve the recovery of Spi1-/- DN1 cells. Open triangles indicate the mean ratio 

while the black bars represent one standard deviation. B-E: Gene expression changes in B6 and 

Spi1-/- DN2a and 2b subsets sorted as in Fig 3. Actin-normalized expression values averaged 

from 2 independent experiments are expressed as fold-change relative to B6 DN2a values. The 

resulting data were plotted for B: phase 1 and alternate lineage genes; C: T-lineage genes; D: 

components of the Notch-signaling pathway and E: alternate lineage genes. Error bars represent 

one standard deviation. Significant differences at p < 0.05 in the DN2a stages are indicated with 

an asterisk (*) while those in the DN2b cells are indicated by the pound (#) sign. Similar results 

were obtained in two additional experiments in which Bcl-xL was not used. However, without 

Bcl-xL the DN1 subsets did not show as complete deletion of PU.1, suggesting selection for 

some retention of PU.1 activity.  

Figure S4 – PU.1 restricts access to the NK lineage fate in developing thymocytes. E14.5 FLPs 

were transduced with Cre and Bcl-xL carrying retroviruses and co-cultured with OP9-DL1 in 

media supplemented with 5 ng/ml each of IL-7 and Flt3L to initiate T-cell development. Cultures 

were not supplemented with any other cytokines (such as IL-15) that are known to be important 

for NK cell survival, proliferation and development. Cells were harvested on day 6 and the 

fraction of NK cells in each of the indicated populations was determined by flow cytometry. NK 
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cells were defined by the CD45+ CD25- CD122+ NK1.1+ phenotype. A: FACS plots showing 

NK cell percentage in the total CD45+ CD25- population. B: Graph showing the proportion of 

NK cells in the indicated samples from two independent experiments. 

Figure S5 – PU.1 indirectly represses T-lineage gene expression. A: Bcl2tg FLDN cells were 

processed as shown in the flowchart and sorted to purify DN2a and DN2b cells in B, or DN2 

cells in C, and used for gene expression analysis by qPCR. B-C: Retroviral supernatants used to 

express various constructs are indicated on top of each lane. Sorted DN stage cells from 2-3 

independent experiments were pooled to obtain each set of qPCR data. Average, Actin-

normalized log10 expression values from 2 such pooled datasets were used to generate the 

heatmaps shown in the figure. All values are row normalized to the control DN2a sample in B 

and to the control DN2 sample in C. The common scale on the right denotes 30-fold up- (dark 

red) and 30-fold down-regulation (dark blue) of gene expression. Bold face and arrows in panel 

B designate Notch-activated target genes, as characterized previously (Del Real and Rothenberg 

2013). 

Figure S6 – Gene expression changes in response to PU.1-Eng expression. Bcl2tg FLPs were 

cultured on OP9-DL1 and transduced to obtain EV, PU.1-Eng and PU.1 WT expressing DN1, 

DN2a and DN2b cells as shown in fig 5B. Sorted cells were used to analyze the expression of 

several genes as shown in the heatmap in fig 5C and D. Here the relative gene expression levels 

over two independent experiments are shown for DN1 (panels, A, C and E) and DN2a and DN2b 

cells (panels B, D and F) for A-B: T-cell genes C-D: alternate lineage genes and E-F: phase 1 

and alternate lineage genes. G: RNAseq experiments and data analysis were performed as 

described in materials and methods section and the table shows the effect of PU.1-Eng and PU.1-

ETS on the expression of selected cell cycle genes from two independent experiments. The last 4 

columns show the padj values obtained from comparing the expression of cell cycle genes in 

indicated samples using the DESeq package. Note that none of the cell cycle genes were 

significantly differentially expressed (padj ≤ 0.05) in both RNAseq datasets. 
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Figure S7 – Sorting DN2 cells for RNA-seq experiments. OP9-DL1 co-cultures were seeded with 

e14.5 Bcl2tg FLPs and retrovirally-transduced on day 4 with the constructs indicated on the left. 

Cells were harvested the next day and Lin- 7-AAD- CD45+ GFP+ c-Kit+ CD25+ DN2 cells 

were sorted using the gating strategy shown in the figure. GFP is a marker of retroviral infection. 

Numbers in the boxes show percentage in each quadrant or gated population. PU.1 regulates 

CD45 expression in myeloid cells (Anderson et al 2001) and here PU.1-Eng, an obligate 

repressor construct, is seen to downregulate its surface expression on infected FLDN cells. 

 

Figure S8 – Changes in expression of phase 1 genes in response to PU.1 WT and PU.1-Eng 

expression. OP9-DL1 co-cultures were seeded with e14.5 Bcl2tg FLPs and retrovirally-

transduced with the indicated constructs after 4 days as shown in fig 5B. DN1, DN2a and DN2b 

subsets were sorted the next day and expression of the indicated phase 1 genes was determined 

by qPCR. Bars represent average, Actin-normalized expression of each gene from 2 independent 

experiments and error bars indicate 1 standard deviation. 

 

 

SUPPLEMENTARY METHODS 

 

Purification of fetal liver-derived precursors, cell culture and flow cytometry  

 

Fetal liver cells from various crosses indicated in the methods section “Cell cultures” were used 

to initiate OP9-DL1 cultures as indicated for each experiment. Briefly, male and female mice 

were co-housed on the day of mating and the time until the next morning was counted as 0.5 

days. After 14 days, pregnant females were sacrificed and fetal livers were isolated. Biotin 

conjugated antibodies against Ter-119, Gr-1, NK1.1, CD19 and F4/80 (eBioscience) were used 

to stain lineage positive cells, which were then depleted using streptavidin bound magnetic beads 

(Miltenyi) per manufacturer’s protocol. The enriched fetal liver precursors (FLPs) were either 

used directly to start OP9-DL1 co-cultures or frozen at -80°C for future use. Frozen FLPs were 

first thawed in OP9 medium (α-MEM, 20% FBS, 50 µM β-ME, Pen-Step-Glutamine) 

supplemented with stem cell factor (SCF, 1 ng/ml) and IL-7 and Flt3L (5 ng/ml each) for a day 

before starting OP9-DL1 co-cultures, which were without SCF. For some experiments, depleted 
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fetal liver cells were used to sort c-Kit+ CD27+ T-cell precursors on the BD FACSAria sorter 

using 6-color flow cytometry. OP9-DL1 cultures were harvested at the indicated times, stained 

for DN progression and cytokine receptor expression, and analyzed with the MACSQuant flow 

cytometer (Miltenyi). 

 

Retroviral infection and sorting  

 

Fetal liver precursors were isolated from gestational day 14.5 embryos as above and co-cultured 

with OP9-DL1 cells in the presence of IL-7 and Flt3L (5 ng/ml each) for 3-4 days to obtain 

FLDN1, DN2a and DN2b cells. These cultures were harvested and pre-plated to obtain FLDN 

cells free of OP9-DL1 stromal cells. Briefly, culture medium was removed and the OP9-DL1 co-

cultures were trypsinized for 5-7 min at 37°C. Fresh media with cytokines was added to these 

cultures and the cells were transferred to 30 cm tissue culture dishes for 35-40 mins at 37°C to 

allow the OP9-DL1 cells to re-adhere to the plate. The non-adherent FLDN cells were then 

harvested and used for retroviral infection.  

 

Retroviral supernatants were generated by transfecting Phoenix-Eco cells with the appropriate 

retroviral constructs using Fugene 6 (Roche). Culture supernatants were collected 48 and 72 

hours after transfection, filtered through a 0.45 µm filter and were either frozen at -80°C or used 

directly to infect FLDN cells. In short, 24-well non tissue culture treated plates were prepared by 

adding 500 µl of 30-40 µg/ml Retronectin solution/well and incubated at 4°C. The next day, 

Retronectin was replaced by 500 µl retroviral supernatant and the plates were spun at 2000 x g 

for 2 hours at 32°C. Retroviral supernatant was then replaced with FLDN cells from OP9-DL1 

cultures, incubated at 37°C for 4 hours and transferred back on fresh OP9-DL1 plates. Cells were 

harvested at indicated timepoints, and the retrovirally transduced (GFP+ or NGFR+) DN1 (Lin- 

c-Kithi CD44hi CD25-), DN2a (Lin- c-Kithi CD44hi CD25+) and DN2b (Lin- c-Kit++ CD44+ 

CD25+) hematopoietic cells (all CD45+) were sorted using 6-color flow cytometry. Note that at 

later stages of infection with PU.1-Eng, the CD45 gate had to be expanded due to the 

downregulation of direct PU.1 target gene Ptprc (CD45)(Anderson et al. 2001). 

 

Determination of Spi1fl/fl deletion efficiency 
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Efficiency of deletion of Spi1 exon 5 was assessed at the RNA level (cf. Fig. S2B), by 

quantitating the level of transcripts in the cells detected with primers spanning exons 4 and 5 

(Table S6) and comparing the level in sorted Cre+ cells from the floxed genotype with Cre+ 

sorted wildtype cells at the same developmental stage. This assay measured deletion rather than 

altered transcriptional regulation, because cells with >80% deletion of Spi1 exon 5 still expressed 

equal or more RNA than the controls from the 5’ exons of the Spi1 gene (data not shown). 

 

RNA isolation and qPCR  

 

Sorted FLDN populations were used to extract RNA with the RNeasy mini kit (Qiagen). 

Typically, total RNA was eluted in 30 µl DEPC treated water and cDNA was synthesized using 

SuperScript III Reverse Transcriptase (Invitrogen). An appropriate cDNA dilution was then used 

for qPCR with SYBR® GreenerTM reagent (Life Technologies) and expression data was obtained 

on an ABI 7900 HT fast qPCR machine. Sequences of PCR primers used were from published 

work (David-Fung et al. 2009; Li et al. 2010; Yui et al. 2010; Del Real and Rothenberg 2013; 

Scripture-Adams et al. 2014).  Each reaction was run in triplicate, and the value for each 

biological sample was taken as the average of these technical replicates. The resulting data were 

normalized to Actin expression and mean values for each sample type from 2-3 experiments were 

expressed as a heat map (Matlab) or plotted as log10-scale graphs. For statistical analysis, actin-

normalized gene expression values were log10-transformed and two-tailed Student’s t tests 

(paired, equal variance) were performed to determine the significance of differences between 

expression values. Significant differences in expression with a p-value < 0.05 are indicated with 

an asterisk. Error bars in all plots represent one standard deviation, or range when experiments 

had only two biological replicates.  

 

Complete methods for transcriptome profiling and analysis of sequencing data 

 

1. Read mapping and differential expression analysis 

 

Total RNA was processed essentially as described (Zhang et al. 2012). cDNA libraries were 

sequenced with the Illumina HiSeq 2000 sequencer following manufacturer’s protocols 
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(http://www.illumina.com) and produced between 11-14 million mapped 50bp single-end reads 

per experiment. Sequenced reads were mapped onto mouse genome build NCBI37/mm9 using 

TopHat (TopHat v2.0.6, http://tophat.cbcb.umd.edu) with settings ‘--library-type fr-unstranded --

no-novel-juncs’ and bowtie settings ‘-v 2 -k 40 -m 40’. HTseq (v0.6.0 , http://www-

huber.embl.de/users/anders/HTSeq/doc/overview.html)(Anders et al. 2015) was used to process 

read alignments produced by TopHat. Read counts were obtained for each gene across all 

samples using htseq-count with the '-S no -a 10' options and with the Ensembl gene model file 

Mus_musculus.NCBIM37.66.gtf. The count data was analyzed for differential expression using 

the DESeq package (v1.16.0, http://bioconductor.org/packages/release/bioc/html/DESeq.html) 

(Anders and Huber 2010). Each replicate experiment was analyzed separately and a set of 168 

genes with an adjusted p-value of =< 0.1 in both experiments were considered to be differentially 

expressed (DE); this set was augmented by 36 genes with padj-value <0.1 in one set and 

0.1<padj<0.2 in the other. Note that the position of Spi1 (Sfpi1) in these gene lists as an 

“upregulated gene” is an artifact of the overexpressed sequences from the exogenous PU.1-Eng 

or PU.1-ETS. 

 

 

2. Gene ontology and pathway enrichment analysis 

 

We performed GO term and KEGG pathway over representation analysis on a set of genes that 

were called DE between the vector control and PU.1-Eng expressing samples at padj <= 0.1 in at 

least one experiment. This set of 290 genes was further divided into 148 repressed and 142 PU.1-

Eng upregulated genes. These lists were processed in R (R Core Team 2014)(http://www.R-

project.org/) using the package GOseq (v1.16.2), which calculates enrichment after correcting 

for transcript length bias (Young et al. 2010). Only the GO terms and KEGG pathways with an 

adjusted (Benjamini-Hochberg method) p-value of <= 0.05 were considered to be enriched in the 

DE gene set. 

 

 

3. Analysis of PU.1 binding sites for repressed and activated genes 
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A set of genes which were differentially expressed at padj <=0.1 in at least one set and at padj 

<0.2 in both sets were selected if there was a >= 2-fold expression difference in either direction 

between the PU.1-Eng and the vector control samples. The genes that were up- or down-

regulated by PU1-Eng were separated, and compared with each other and with a control set of 

non-regulated but well-expressed genes in early T cells. The control set consisted of 841 genes 

from expression clusters 16 and 18 in (Zhang et al. 2012), two clusters of genes that are 

expressed stably at moderately high levels throughout T cell development, after the removal of 4 

genes that were affected by PU.1-Eng. All DN1 and DN2a stage PU.1 peaks in the vicinity of 

each gene (Supp. Table 5, from (Zhang et al. 2012)) were first ordered by strength of occupancy 

signals (rpm) and all sites in order of strength were matched to the relevant genes on the three 

lists. The cumulative occupancy index for each gene was then calculated by summing the peak 

signals from DN1 and DN2a stages for peaks assigned to that gene. Although the number of sites 

per gene ranged from zero to 21 (Haao), only values for the top 4 sites from the two stages were 

summed to minimize background error and reduce outlier effects. The distribution of the sum of 

binding strength for each group of genes was tested for similarity using a pairwise Z-test for 

means using the R package BSDA (Kitchens 2002). This score does not take into account gene 

length, but there was no significant difference in gene length distribution among the three groups 

of genes (Z scores -1.47 to +1.46, p values 0.14-0.43, Table S2). 

4. Indexing developmental state by principal component analysis

We used a set of 173 developmentally regulated transcription factors to assess the developmental 

state of our RNA-seq samples (Scripture-Adams et al. 2014). The expression values for these 

genes in 11 wild-type samples spanning DN1/ETP to DP stages and 6 samples from the present 

study were first log-transformed and normalized so that the mean of the expression values for 

each gene across all samples was zero. Then, the signals from the wildtype samples were used to 

calculate the principal components using the prcomp function from the R stats package (R Core 

Team 2014). These values provide a framework within which a perturbed sample can be related 

to normal development. We then used the principal component loadings for the 173 genes from 

the normal samples to transform the values from the six experimental samples, so that they could 
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be plotted on the scales defined by the normal reference ones. The first two principal components 

for the experimental and reference samples were plotted using the R package ggplot2 (Wickham 

2009).  

 

 

5. Gene Set Enrichment Analysis (GSEA) 

 

We used the “GSEAPreranked” tool in order to fully characterize the effects of PU.1-ENG on 

developmentally regulated and lineage-restricted genes sets. All genes that were expressed at 

>=1 FPKM in at least 1 sample were included in the analysis. Genes were ranked in descending 

order of mean log2 ratios between all pairwise comparisons from both RNA-seq experiments. 

These ranked lists were used to test a number of gene sets obtained from two previous reports. 

First, we used 25 gene sets from our previous study (Zhang et al 2012) that were obtained by K-

means clustering of all genes expressed during T-cell development. The most important ones 

included clusters of genes whose expression was a) highest in pre-commitment stages (clusters 3, 

7, 9 and 23) b) upregulated as PU.1 expression is silenced (clusters 1, 6, 15 and 25). Some 

clusters, which showed similar expression patterns, were combined into larger sets that were 

tested in addition to running each cluster by itself. Additionally, we used data from a report by 

Kamath et al looking at changes in gene expression in myeloid precursor cells expressing PU.1 at 

2% (Blac allele) of WT levels. This dataset was used to identify genes that were repressed by 

PU.1 (2-, 5-, or 10-fold upregulated in Blac samples compared to WT) and positively regulated 

(5-, 10-, or 15-fold downregulated in Blac samples compared to WT). This dataset was chosen 

for two reasons - 1) a decrease in PU.1 dosage was shown to upregulate T-lineage-specific genes 

in myeloid cells similar to our results showing that PU.1 represses the T-lineage developmental 

program in early T-cells and 2) several myeloid genes are expressed in early T-cells and we 

wanted to identify PU.1 functions that are common to both these lineages. GSEAPreranked was 

run using phenotype permutations and by using the conservative “classic” setting to calculate 

enrichment score as suggested on the GSEA website 

(http://www.broadinstitute.org/gsea/index.jsp). All gene sets with FDR <=0.01 were considered 

to be significantly enriched. 
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