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Figure S1: Prediction workflow. Depending on the data set between 2% and 8% of all agent predictions
are excluded in the final outlier removal.
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2 Classification Performance

Table S1 summarizes the performance on binary classification. Note that MAESTRO was not specially
trained for binary classification, in contrast to the other tools listed in Table S1. Nevertheless, MAESTRO
performs similar to the main competitor methods. A prediction is considered to be true positive or true
negative, respectively, if the sign of the predicted ∆∆G (or score in case of MAESTRO−Score) matches
the sign of the experimental determined ∆∆G. The results are based on the n-fold cross validation
experiments (SP1 with 5-fold, SP3 with 20-fold, SP4 with 10-fold) as presented in the main results.

Data Recall Prec. Recall Prec.
set Method Acc. [+]a [+]a [-]b [-]b MCC AUC
SP1 MAESTRO-Score 0.65 0.71 0.36 0.63 0.88 0.29 0.73

MAESTRO 0.82 0.59 0.61 0.89 0.88 0.48 0.84

SP4 MAESTRO-Score 0.63 0.66 0.30 0.62 0.88 0.22 0.68
MAESTRO 0.83 0.41 0.59 0.93 0.87 0.40 0.80

SP3 AUTOMUTE (RF)c 0.86 0.70 0.81 0.93 0.88 0.66 0.91
I-Mutant 2.0c 0.80 0.56 0.73 0.91 0.83 0.51 -
mCSMc 0.86 0.67 0.82 0.94 0.87 0.65 0.90
MAESTRO-Score 0.65 0.69 0.45 0.63 0.82 0.29 0.72
MAESTRO 0.84 0.74 0.74 0.89 0.89 0.63 0.90

Table S1: Binary classification results for the SP1 and SP3 data sets. aResults for mutations that
stabilize the structures. bResults for mutations with a destabilizing effect. cData taken from Pires et al.
(supplementary material) [5].

3 Blind Tests

All data sets used in this work contain multiple mutations for certain proteins or even certain mutation
sites. In the experiments reported above, the possibly arising correlations introduced by this different
types of mutations may eventually have led to a little overfitting on structure or position base. Thus, we
performed blind tests to investigate the generalization capabilities of MAESTRO.

In the first experiments, the effect of the exclusion of certain mutation sites was investigated. We per-
formed n-fold cross validation experiments, where all mutations of a mutation site are either exclusively
in the training or in the test set. The n-fold cross validations were performed on the SP1 and the SP3
data set. Further, we show the performance on a low-redundancy subset derived from the SP1 data set,
provided by Pires et al. [5]. The set includes 351 mutants. For this experiment MAESTRO was trained
on the remaining 2297 mutations of the SP1. Regarding the results for this subset, Pires et al. remarked
that ’It is important to point out that this data set may not be completely blind for PoPMuSiC, since the
chosen mutations could have been considered while training its artificial neural network.’

Table S2 shows that the prediction performance on the SP1 and SP4 data set only decreases marginally,
in comparison to the 5-fold cross validation experiment (ρ = 0.68) and 10-fold cross validation experiment
(ρ = 0.68), respectively, presented in the main results. In case of the blind test on the subset of 351
mutants the performance is similar to the results on the SP2 data set (ρ = 0.70). The relatively large
difference in performance on the SP3 data set in comparison to the 20-fold cross validation experiment
(ρ = 0.84) can be explained by the high number of mutations per site in this set1.

1Average/median mutations per mutation site: SP1 . . . 1.85/1.00; SP3 . . . 3.05/2.00
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Method Data set Validation Pearson’s ρ σ (kcal/mol)
mCSMa SP1 5-fold cross validation 0.54 1.23
MAESTRO-Score SP1 5-fold cross validation 0.45 -
MAESTRO SP1 5-fold cross validation 0.67 1.12

MAESTRO-Score SP3 20-fold cross validation 0.44 -
MAESTRO SP3 20-fold cross validation 0.74 1.23
MAESTRO-Score SP4 10-fold cross validation 0.40 -
MAESTRO SP4 10-fold cross validation 0.65 1.36
mCSMa SP1 351 blind test 0.67 1.19
PoPMuSiCa SP1 351 blind test 0.73 1.09
MAESTRO-Score SP1 351 blind test 0.59 −
MAESTRO SP1 351 blind test 0.71 1.16

Table S2: Prediction performance in case of excluded mutation sites. aData obtained from Pires et al.
(supplementary material) [5].

In the second type of blind test experiments we investigated the effect of excluded proteins. This
reflects best the real world application of a prediction method. Therefore we first performed n-fold cross
validation experiments on the SP1, SP3 as well as on the SP4 data set, where all mutations of a certain
protein are either exclusively in the training or in the test set. In a second set of experiments we aimed
to determine the impact of sequence similarity between a protein in the training set and in the test
set. All proteins in a certain set (SP1,SP3,SP4) were clustered by sequence similarity using BLASTclust
with similarity cutoff of 30% identical residues in the alignment (BLASTclust parameter -S = 30, the
remaining parameters were left at their default values). In the blind test a certain protein cluster is then
either exclusively in the training or in the test set. We finally performed an experiment on data set SP1
where we used the n-fold definition as kindly provided by Pires et al. [5] on their web pages2. The results
are summarized in Table S3 below.

Method Data set Validation Pearson’sρ σ (kcal/mol)
mCSMa SP1 5-fold cross validation 0.51 1.26
MAESTRO SP1 5-fold cross validation 0.63 1.17
MAESTRO SP1 5-fold cross validation (BLASTclust) 0.63 1.17
MAESTRO SP1 5-fold cross validation (Pires def.) 0.62 1.18
MAESTRO SP3 20-fold cross validation 0.70 1.32
MAESTRO SP3 20-fold cross validation (BLASTclust) 0.69 1.33
MAESTRO SP4 10-fold cross validation 0.60 1.44
MAESTRO SP4 10-fold cross validation (BLASTclust) 0.61 1.44

Table S3: Prediction performance in case of excluded proteins. aData obtained from Pires et al. (sup-
plementary material) [5].

In general, we observe a decrease in performance with this protein based blind test compared to the
random n-fold tests (see results on single point mutations in the main text) and also compared to the
blind test regarding the mutation site (Table S2). However, the performance decrease is less pronounced
for MAESTRO then for mCSM. The appearance of homologous proteins in training set and test set has
little impact on the results. The differently grouped 5-fold cross validation sets for data set S1 (ours vs.
the mCSM ones) does not influence the MAESTRO result.

Besides the regression performance we analyzed the impact of the two blind test experiments on the
binary classification performance. The results in Table S4 show that the classification performance is
less affected as the regression performance.

2http://bleoberis.bioc.cam.ac.uk/mcsm/data
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Data Recall Prec. Recall Prec.
set Blind test Acc. [+] [+] [-] [-] MCC AUC
SP1 5-fold mutation site 0.81 0.55 0.59 0.88 0.87 0.45 0.83

5-fold protein 0.80 0.55 0.55 0.87 0.87 0.42 0.81
5-fold protein (BLASTclust) 0.80 0.53 0.55 0.87 0.86 0.41 0.81
5-fold protein (Pires def.) 0.79 0.56 0.54 0.86 0.87 0.42 0.81

SP3 20-fold mutation site 0.82 0.70 0.69 0.87 0.87 0.57 0.85
20-fold protein 0.81 0.70 0.67 0.85 0.87 0.55 0.85
20-fold protein (BLASTclust) 0.80 0.73 0.65 0.83 0.88 0.54 0.84

SP4 10-fold mutation site 0.82 0.39 0.57 0.93 0.86 0.37 0.79
10-fold protein 0.82 0.32 0.57 0.94 0.85 0.33 0.77
10-fold protein (BLASTclust) 0.82 0.39 0.57 0.93 0.86 0.37 0.78

Table S4: Classification performance on blind test experiments on mutation site and protein level.

Finally, we performed jack knife tests on the SP1 data set, where either a wild type amino acid or
an exchange amino acid type was excluded from the training. In both cases the predictive power was
reduced only marginally. The jack knife test on the wild type amino acids results in an overall ρ = 0.65
with σ = 1.14, while the jack knife test on the exchange amino acid results in an overall ρ = 0.67 with
σ = 1.13.
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4 Agents and SSF Performance

Here we present the performance of the SSFs (MAESTRO-Score) and the three agent types. The data
shown in the following table, are the results of ten repeats for each experiment. In case of the n-fold
validation experiments the folds were randomly defined for each repeat. For the blind-test experiment on
the SP2 set (350 mutants), MAESTRO and therewith its agents were trained ten times on the remaining
2298 mutants of the SP1 set.

Data Pearson’s ρ Spearman’s ρ σ (kcal/mol)
set Validation Agent Type avg.[min.,max.] avg.[min.,max.] avg.[min.,max.]
SP1 5-fold MAESTRO 0.68 [0.67, 0.68] 0.66 [0.65, 0.67] 1.11 [1.10, 1.12]

MAESTRO No S.A. 0.63 [0.62, 0.63] 0.63 [0.62, 0.63] 1.20 [1.19, 1.21]
NN Agents 0.67 [0.63, 0.71] 0.65 [0.60, 0.69] 1.12 [1.05, 1.18]
SVM Agents 0.68 [0.65, 0.72] 0.67 [0.65, 0.71] 1.09 [1.03, 1.11]
MLR Agents 0.56 [0.56, 0.56] 0.57 [0.57, 0.57] 1.58 [1.58, 1.59]
MAESTRO-Score 0.45 0.43 -

SP2 blind MAESTRO 0.69 [0.68, 0.70] 0.65 [0.63, 0.67] 1.15 [1.13, 1.17]
MAESTRO No S.A. 0.67 [0.65, 0.68] 0.63 [0.61, 0.65] 1.18 [1.16, 1.21]
NN Agents 0.66 [0.63, 0.69] 0.62 [0.57, 0.66] 1.20 [1.16, 1.24]
SVM Agents 0.67 [0.65, 0.69] 0.65 [0.63, 0.67] 1.17 [1.15, 1.20]
MLR Agents 0.61 [0.61, 0.61] 0.57 [0.57, 0.57] 1.53 [1.53, 1.53]
MAESTRO-Score 0.56 0.49 -

SP3 20-fold MAESTRO 0.83 [0.82, 0.84] 0.80 [0.79, 0.81] 1.05 [1.03, 1.08]
MAESTRO No S.A. 0.76 [0.75, 0.77] 0.75 [0.74, 0.76] 1.23 [1.21, 1.25]
NN Agents 0.82 [0.80, 0.84] 0.79 [0.78, 0.81] 1.04 [0.99, 1.09]
SVM Agents 0.82 [0.78, 0.86] 0.80 [0.76, 0.84] 1.03 [0.93, 1.14]
MLR Agents 0.56 [0.56, 0.56] 0.58 [0.58, 0.58] 1.77 [1.77, 1.77]
MAESTRO-Score 0.44 0.43 -

SP4 10-fold MAESTRO 0.68 [0.67, 0.68] 0.64 [0.63, 0.65] 1.33 [1.32, 1.33]
MAESTRO No S.A. 0.61 [0.60, 0.62] 0.59 [0.58, 0.60] 1.47 [1.46, 1.49]
NN Agents 0.69 [0.65, 0.71] 0.65 [0.61, 0.67] 1.29 [1.25, 1.38]
SVM Agents 0.67 [0.66, 0.70] 0.64 [0.63, 0.67] 1.31 [1.26, 1.33]
MLR Agents 0.49 [0.49, 0.49] 0.49 [0.49, 0.49] 2.03 [2.02, 2.03]
MAESTRO-Score 0.40 0.38 -

MP 10-fold MAESTRO 0.75 [0.73, 0.77] 0.69 [0.67, 0.70] 1.45 [1.41, 1.51]
MAESTRO No S.A. 0.66 [0.64, 0.67] 0.64 [0.63, 0.66] 1.65 [1.63, 1.68]
NN Agents 0.77 [0.70, 0.79] 0.71 [0.64, 0.73] 1.36 [1.30, 1.52]
SVM Agents 0.76 [0.74, 0.77] 0.71 [0.69, 0.72] 1.38 [1.35, 1.42]
MLR Agents 0.46 [0.44, 0.46] 0.42 [0.41, 0.44] 2.34 [2.33, 2.35]
MAESTRO-Score 0.32 0.27 -

Table S5: Agent type and SSF (MAESTRO-Score) performance on n-fold cross validation experiments
and the SP2 data set, in comparison to the combined prediction (MAESTRO). MAESTRO No S.A.
refers to an experiment where the specialized agents are disabled.

6



Agents Classification Performance

In the following table we show the classification performance of the three agent types (NN, SVM and
MLR) in comparison to the whole MAESTRO ensemble and MAESTRO with disabled specialized agents
(MAESTRO No S.A.). The results are derived from the n-fold cross validation experiments on the SP1
set as well as on the blind test on SP2, as presented before and in the main text.

Recall Prec. Recall Prec.
Data set Agent Type Acc. [+]a [+]a [-]b [-]b MCC AUC
SP1 MAESTRO 0.82 0.59 0.61 0.89 0.88 0.48 0.84

MAESTRO No S.A. 0.77 0.62 0.5 0.82 0.88 0.4 0.81
NN Agents 0.82 0.51 0.64 0.91 0.86 0.46 0.85
SVM Agents 0.83 0.43 0.69 0.94 0.85 0.45 0.83
MLR Agents 0.63 0.85 0.36 0.56 0.93 0.35 0.77

SP1 MAESTRO 0.80 0.53 0.55 0.87 0.86 0.41 0.81
BLASTclustc MAESTRO No S.A. 0.74 0.56 0.44 0.79 0.86 0.32 0.76

NN Agents 0.80 0.42 0.59 0.91 0.84 0.38 0.82
SVM Agents 0.80 0.37 0.62 0.93 0.83 0.37 0.80
MLR Agents 0.62 0.81 0.35 0.56 0.91 0.31 0.76

SP1 MAESTRO 0.79 0.56 0.54 0.86 0.87 0.42 0.81
Pires def.d MAESTRO No S.A. 0.74 0.58 0.44 0.78 0.87 0.34 0.77

NN Agents 0.80 0.49 0.57 0.89 0.86 0.40 0.82
SVM Agents 0.81 0.38 0.62 0.93 0.84 0.38 0.80
MLR Agents 0.62 0.82 0.36 0.56 0.92 0.32 0.76

SP2 MAESTRO 0.77 0.56 0.58 0.85 0.84 0.41 0.81
MAESTRO No S.A. 0.73 0.52 0.49 0.8 0.82 0.32 0.78
NN Agents 0.76 0.54 0.56 0.84 0.83 0.39 0.80
SVM Agents 0.78 0.36 0.67 0.93 0.80 0.37 0.81
MLR Agents 0.62 0.83 0.40 0.54 0.90 0.33 0.75

Table S6: Agents binary classification results for the SP1 and SP2 data sets. aResults for mutations that
stabilize the structures. bResults for mutations with a destabilizing effect. cBlind test on protein level
with respect on sequence similarities found by BLASTclust, as described above. dBlind test on protein
level where we used the n-fold definition as provided by Pires et al. [5].

ANN Ensemble Confidence Estimation

We performed n-fold cross validation experiments using an ensemble of seven ANNs instead of the seven
MAESTRO agents for deriving the confidence estimation. Three of these ANNs are used as general
agents, trained on the whole training set and the remaining four ANNs are trained on either stabilizing
or destabilizing mutations. To overcome side effects by the fold definition, the folds are defined in the
same way as for the results shown in Figure 3 of the main text. As shown in Figure S2, a lower prediction
error can still be expected with higher estimated confidence, but the estimation is less reliable as the
estimation based on the three different methods (ANN, SVM and MLR). The predictions error increases
for high confidence values and more correct predictions receive a low confidence, compared to MAESTRO
results.
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Figure S2: Confidence estimation and prediction error in case of an ANN ensemble. In contrast to
the results presented in Figure 3 of the main text, in this experiment seven ANNs were utilized for
the prediction. The figure shows the deviation between experimental determined ∆∆G values and the
predictions for different confidence value ranges. The prediction error is defined as the absolute difference
between the experimental determined ∆∆G and the predicted ∆∆G. Data are given for the three main
single point mutation sets (SP1, SP3, SP4) as well as the multi-point mutation set (MP). The numbers
of prediction per group are shown at the top.
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5 Disulfide Bond Prediction

MAESTRO provides a special scan mode for disulfide bridges. Below we show the prediction performance
on the SS1 set provided by Salam et al. [6]. The set includes 75 single chain X-ray structures with a
resolution of 1.5Å or better. Each structure contains exactly one disulfide bridge.

For the prediction experiments the cysteine residues responsible for the disulfide bonds were exchanged
to alanine by simply keeping the main chain and Cβ coordinates, removing the Sγ and changing the
residue type to ALA in the PDB file.

Table S7 shows the prediction results of the MAESTRO ∆∆G prediction as well as the results based
on the MAESTRO-Score in comparison with the results reported by Salam et al.. In contrast to the
method of Salam et al. MAESTRO was not particularly trained on disulfide bridge data. Still in 13
cases MAESTRO ranked the native bond on top compared to 15 cases of Salam’s method.

MAESTRO MAESTRO-Score Salam
PDB SS- PDB struct.a minimizedb PDB struct.a minimizedb et al.
ID Bridge rabs

c rrel
d rabs

c rrel
d rabs

c rrel
d rabs

c rrel
d FROe

1ABA 14 / 17 1 0.03 0 0.00 4 0.1 1 0.02 0.00
1C7K 99 / 112 1 0.02 3 0.04 8 0.12 12 0.17 0.00
1DYQ 96 / 106 16 0.12 5 0.04 23 0.18 12 0.09 0.05
1GV9 198 / 238 14 0.09 103 0.63 33 0.21 125 0.76 0.04
1KNG 92 / 95 6 0.09 23 0.29 12 0.18 39 0.49 0.02
1LF7 76 / 168 4 0.04 1 0.01 8 0.08 3 0.03 0.07
1LJU 82 / 89 1 0.02 3 0.04 1 0.02 2 0.03 0.17
1M40 77 / 123 13 0.08 50 0.34 27 0.17 91 0.63 0.17
1MF7 128 / 318 7 0.06 − − 20 0.18 − − 0.09
1MJN 161 / 299 5 0.05 37 0.36 11 0.11 45 0.44 0.03
1NKO 46 / 106 6 0.09 9 0.13 6 0.09 15 0.22 0.02
1OAL 52 / 147 3 0.03 2 0.02 0 0.00 4 0.04 0.03
1OLR 6 / 35 23 0.15 27 0.17 41 0.26 44 0.28 0.00
1P3C 32 / 48 12 0.08 22 0.14 26 0.17 42 0.26 0.06
1QGV 38 / 79 6 0.1 2 0.03 5 0.08 3 0.05 0.35
1QK8 40 / 43 0 0.00 0 0.00 0 0.00 4 0.06 0.02
1R26 30 / 33 3 0.06 4 0.08 3 0.06 6 0.12 0.05
1RIE 144 / 160 11 0.15 12 0.16 22 0.3 24 0.32 0.62
1SHU 39 / 218 18 0.19 9 0.08 23 0.24 15 0.13 0.01
1T2I 7 / 96 7 0.17 5 0.11 13 0.31 10 0.23 0.00
1T2J 22 / 92 11 0.13 24 0.31 18 0.22 23 0.3 0.09
1UNR 60 / 77 14 0.3 − − 7 0.15 − − 0.06
1VHU 111 / 154 17 0.14 21 0.17 14 0.12 21 0.17 0.02
1WCU 63 / 141 5 0.05 9 0.08 15 0.15 19 0.18 0.1
1XBU 245 / 250 9 0.05 8 0.05 29 0.16 20 0.11 0.07
1XT5 26 / 109 7 0.08 13 0.15 11 0.13 13 0.15 0.05
1Y9L 69 / 95 9 0.17 12 0.25 15 0.28 20 0.42 0.00
1ZK5 53 / 110 29 0.27 17 0.15 36 0.34 27 0.25 0.00
2A6Y 151 / 185 14 0.1 4 0.03 22 0.16 17 0.12 0.1
2A6Z 151 / 185 10 0.08 9 0.06 23 0.18 24 0.17 0.05
2AQM 55 / 150 15 0.15 4 0.04 15 0.15 8 0.07 0.01
2CE0 67 / 73 0 0.00 0 0.00 1 0.02 0 0.00 0.18
2E0Q 64 / 67 3 0.07 2 0.04 6 0.13 6 0.12 0.02
2ERF 153 / 214 2 0.01 9 0.06 2 0.01 10 0.07 0.09
2FWG 461 / 464 0 0.00 8 0.16 1 0.02 12 0.24 0.05
2HSH 32 / 35 5 0.11 2 0.04 6 0.13 4 0.07 0.03

Continued on next page
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MAESTRO MAESTRO-Score Salam
PDB SS- PDB struct.a minimizedb PDB struct.a minimizedb et al.
ID Bridge rabs

c rrel
d rabs

c rrel
d rabs

c rrel
d rabs

c rrel
d FROe

2I1U 37 / 40 3 0.06 5 0.09 2 0.04 12 0.21 0.00
2I4A 32 / 35 0 0.00 4 0.07 6 0.13 5 0.09 0.03
2ICC 22 / 94 5 0.1 25 0.45 4 0.08 26 0.46 0.00
2NWF 134 / 151 7 0.07 18 0.2 25 0.26 37 0.42 0.15
2P39 95 / 113 34 0.44 21 0.26 34 0.44 24 0.29 0.07
2P52 173 / 239 4 0.04 6 0.06 12 0.12 21 0.2 0.03
2PY0 129 / 142 9 0.15 46 0.79 9 0.15 45 0.78 0.07
2QO4 80 / 91 0 0.00 0 0.00 1 0.02 0 0.00 0.07
2RKQ 48 / 54 11 0.1 11 0.11 23 0.21 25 0.24 0.01
2VYO 22 / 215 10 0.1 14 0.15 24 0.24 24 0.26 0.01
2XFD 90 / 101 1 0.01 4 0.06 7 0.1 9 0.13 0.00
2YXF 25 / 80 0 0.00 0 0.00 0 0.00 0 0.00 0.06
3CB9 147 / 204 4 0.03 13 0.1 11 0.08 44 0.33 0.04
3E8T 8 / 15 1 0.01 4 0.03 4 0.04 20 0.17 0.03
3EDI 42 / 198 4 0.04 1 0.01 8 0.08 5 0.04 0.01
3FSA 3 / 26 0 0.00 2 0.03 5 0.07 12 0.15 0.00
3FZ4 10 / 13 3 0.06 2 0.04 4 0.08 4 0.07 0.05
3GA4 55 / 58 3 0.05 10 0.16 4 0.07 21 0.33 0.02
3GNZ 37 / 63 7 0.06 1 0.01 22 0.19 18 0.14 0.00
3GUI 21 / 142 3 0.05 8 0.11 1 0.02 8 0.11 0.04
3HNB 2174 / 2326 5 0.05 14 0.13 14 0.15 30 0.28 0.03
3HZ8 57 / 60 8 0.09 5 0.06 12 0.13 10 0.11 0.04
3KFF 64 / 157 0 0.00 2 0.03 0 0.00 4 0.05 0.05
3L4R 64 / 157 5 0.06 6 0.06 7 0.08 9 0.1 0.00
3M1W 5 / 64 0 0.00 4 0.03 10 0.07 13 0.08 0.07
3O22 89 / 186 0 0.00 10 0.1 2 0.02 13 0.14 0.03
3RT2 27 / 153 10 0.11 39 0.43 25 0.28 62 0.69 0.06
3RXW 68 / 237 46 0.29 7 0.04 67 0.42 23 0.14 0.02
3SEB 93 / 113 0 0.00 4 0.03 1 0.01 20 0.16 0.19
3SH4 159 / 193 3 0.02 13 0.09 6 0.04 20 0.14 0.04
3T0V 23 / 88 15 0.21 25 0.32 16 0.22 27 0.34 0.16
3TPK 22 / 96 8 0.11 13 0.16 9 0.13 13 0.16 0.00
3VOR 106 / 170 6 0.05 21 0.17 20 0.18 26 0.21 0.05
3ZYP 22 / 52 8 0.06 69 0.46 35 0.25 116 0.78 0.02
4EQ8 7 / 148 4 0.04 5 0.05 12 0.12 13 0.13 0.03
4F0W 7 / 148 3 0.03 8 0.08 14 0.14 12 0.12 0.00
4FH4 77 / 123 6 0.04 80 0.47 14 0.08 115 0.68 0.04
4FTF 74 / 111 0 0.00 0 0.00 0 0.00 2 0.05 0.00
4HWM 68 / 124 0 0.00 3 0.04 1 0.02 5 0.07 0.00
Average 7.2 0.08 13.5 0.13 13 0.13 22.1 0.21 0.06
Median 5 0.06 8 0.08 11 0.13 15 0.15 0.03

Table S7: Disulfide bridge prediction performance on the SS1 data set, in comparison to the results
reported by Salam et al. [6]. Results are shown for MAESTRO ∆∆G prediction and SSFs (MAESTRO-
Score). aResults on original PDB structures. bResults on minimized structures. In the cases of 1MF7
and 1UNR, the Cβ distance become slightly larger than the cutoff distance of 5Å, after the minimization.
cThe absolute rank rabs is given in the range of 0 (top) to n − 1. dThe relative rank rrel is defined as
rabs/(n− 1). eData obtained from Salam et al..
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6 Mutation Scan

MAESTRO provides three scan methods: optimal, greedy, and EA (Evolutionary Algorithm) for the
search of combinations of point mutations which stabilize or destabilize a structure as much as possible.
Below, we compare the performance of the three approaches. All experiments were performed on eight
randomly selected PDB structures as well as two structures with a sequence length of exactly 30 residues.

As the optimal search is potentially very time consuming, we set up a first experiment, in which the
number of allowed mutation sites was limited to 30 and the number of mutations points was set to three.
The mutation sites were randomly selected. Scans for the most stabilizing and the most destabilizing
mutants were performed.

As shown in Table S8, the scan methods behave very similar in the case of a small number of allowed
mutation sites and a small number of maximum substitutions. Only in two cases, the greedy search
performs marginally worse than the other methods.

Method
PDB Scana Optimalb Greedyb EAb

1fxf stabilize 1.000 1.000 1.000
destabilize 1.000 1.000 1.000

1q2u stabilize 1.000 0.998 1.000
destabilize 1.000 0.999 1.000

1urw stabilize 1.000 1.000 1.000
destabilize 1.000 1.000 1.000

2ds1 stabilize 1.000 1.000 1.000
destabilize 1.000 1.000 1.000

2ph8 stabilize 1.000 1.000 1.000
destabilize 1.000 1.000 1.000

3ati stabilize 1.000 1.000 1.000
destabilize 1.000 1.000 1.000

3loe stabilize 1.000 1.000 1.000
destabilize 1.000 1.000 1.000

4bfh stabilize 1.000 1.000 1.000
destabilize 1.000 1.000 1.000

4gpr stabilize 1.000 1.000 1.000
destabilize 1.000 1.000 1.000

4kfj stabilize 1.000 1.000 1.000
destabilize 1.000 1.000 1.000

Table S8: Performance comparison of the three mutation scan methods. Limited to 30 mutation sites and
three mutation points. aScan mode, either the search for the most destabilizing or the most stabilizing
set of point mutations. bThe performance is given relative to the optimal search.

In a second experiment the number of mutation sites was not limited and the number of maximum
substitutions was set to either 3, 5, or 10. For runtime reasons this experiment was only performed with
the greedy and EA search.

As shown in Table S9, the results are more divergent than in the experiment before. In most cases, the
EA performs better than the greedy search.
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Mutation 3 substitutions 5 substitutions 10 substitutions
PDB sitesa Scanb Greedyc EAc Greedyc EAc Greedyc EAc

1fxf 124 stabilize 1.000 1.000 0.872 1.000 0.812 1.000
destabilize 0.962 1.000 0.827 1.000 0.956 1.000

1q2u 189 stabilize 1.000 0.944 0.979 1.000 1.000 0.745
destabilize 1.000 0.996 1.000 0.999 0.970 1.000

1urw 274 stabilize 0.777 1.000 0.826 1.000 0.942 1.000
destabilize 0.986 1.000 1.000 0.959 1.000 0.948

2ds1 290 stabilize 1.000 0.982 1.000 0.966 1.000 0.942
destabilize 0.951 1.000 0.959 1.000 1.000 0.921

2ph8 365 stabilize 0.999 1.000 1.000 0.942 0.774 1.000
destabilize 0.872 1.000 0.890 1.000 0.961 1.000

3ati 223 stabilize 1.000 0.994 1.000 0.960 1.000 0.914
destabilize 0.971 1.000 0.973 1.000 0.952 1.000

3loe 30 stabilize 0.749 1.000 0.717 1.000 0.800 1.000
destabilize 1.000 1.000 1.000 0.999 1.000 0.997

4bfh 30 stabilize 0.833 1.000 0.864 1.000 0.939 1.000
destabilize 0.963 1.000 0.944 1.000 0.992 1.000

4gpr 149 stabilize 0.938 1.000 0.949 1.000 0.952 1.000
destabilize 1.000 1.000 1.000 0.991 1.000 0.916

4kfj 259 stabilize 0.923 1.000 0.923 1.000 0.935 1.000
destabilize 0.889 1.000 0.846 1.000 0.735 1.000
Average: 0.941 0.996 0.928 0.991 0.936 0.969
Std.dev.: 0.078 0.013 0.080 0.018 0.084 0.062

Table S9: Performance comparison of the three mutation scan methods. Limited to three, five or ten
substitutions. aNumber of mutation sites in the structures. bScan mode, either the search for the most
destabilizing or the most stabilizing set of point mutations. cThe performance is given relative to the
best result (per n substitutions).

The runtime of a scan depends strongly on the chosen method, the number of mutations sites, the
structure size and the number of maximum substitutions. In the first experiment, the optimal search
had a runtime between six hours and five days, while the EA run took between 30 and 85 minutes and
the greedy search was finished after 40 seconds and two minutes.

In the second experiments we observed that the greedy algorithm strongly depends on the number of
maximum substitutions, as expected. While in the first experiment the maximum runtime was about
two minutes, the maximum runtime increased to 35 minutes in case of a maximum of five substitutions
and to 80 minutes in case of a maximum of ten substitutions. In contrast to that, the runtime of the EA
algorithm was only slightly affected and not longer than 90 minutes.

For all these reasons, we recommend the optimal search only for small structures or a small set of allowed
substitutions. The greedy search is, in most cases, faster than the EA variant, but the EA provides better
results in many cases and a more stable runtime. Thus, from our point of view, the EA will be the best
choice for most use cases.
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7 Misclassified ProTherm Entries

On the ProTherm web page in the “Known Problems” section, the database maintainers hint to the “Sign
convention for free energy change” and they claim that they are not able to check whether submitting
authors did fully comply with the given conventions. Therefore, users of ProTherm should cross-check
the ∆∆G values. As mentioned in the main results, we found some serious classification errors in the data
set provided by Tian et al. [8]. We then took three samples from the Tian set, the ten most destabilizing
mutants, the ten most stabilizing, as well as a random sample of 100 mutants of the remaining data set.
In these samples we found eight entries which are misclassified.

ProTherm entry PDB ID Mutation Wrong ∆∆G/class Reference
12235 1OH0 Y16S 11.90 (stabilizing) Nam et al. [3]
12236 1OH0 Y32S 13.70 (stabilizing) Nam et al. [3]
12237 1OH0 Y57S 9.50 (stabilizing) Nam et al. [3]
15807 1FKJ W59F −2.72 (destabilizing) Fulton et al. [2]
17632 1TIT L60A 5.27 (stabilizing) Fowler et al. [1]
17628 1TIT V13A 2.37 (stabilizing) Fowler et al. [1]
16141 1RX4 G95A 1.30 (stabilizing) Svensson et al. [7]
10581 1BTA L34V 1.10 (stabilizing) Nölting et al. [4]

Table S10: Sign error examples.

The first consequence was, that we were not able to compare our prediction results with the work of
Tian et al. [8]. The second consequence was the retrieval of our own sets SP4 and MP, where we cross
check the ∆∆G in ProTherm values with literature. Although we still cannot claim that there are no
sign and value errors in our sets at least some errors have been resolved.

8 Statistical Scoring Function Parameters

Parameter Value
Cα − Cα pair SSF

Lower distance cutoff 0.0Å
Upper distance cutoff 19.0Å
Bins 95
σ 0.6Å

Cβ − Cβ pair SSF
Lower distance cutoff 1.0Å
Upper distance cutoff 11.0Å
Bins 50
σ 0.8Å

Cα contact SSF
Contact radius 10.0Å
Maximum counts 100
Bins 7
σ 1.4 contact counts

The contribution of single measurements were smoothed with a Gaussian kernel. The corresponding
values of σ are given in the above table.
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