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Figure S1 (Related to Figure 1). SynIII expression is temporally and spatially regulated 

during development. (A) Western blots showing the temporal expression of SynIa, SynIIa 

and SynIIIa in comparison to actin in lysates of rat brain cortices. (B) Quantification of SynIa 

(blue), SynIIa (black), SynIIIa (red) expression patterns in experiments, as in A. The data 

were normalized first to actin and then to the maximum detected optical density value for 

each protein; the values are expressed as means ± SEM (n = 3 animals/age). (C-F) Confocal 

images of SynIII immunoreactivity (green) from coronal sections of the rat somatosensory 

cortex at various ages. SynIII is abundantly expressed in both the VZ/SVZ and CP at E21, 

whereas it is concentrated in the CP at P7 and P14. The fluorescence intensity of the images 

at P7 and P14 was increased for better visualization of SynIII distribution across cortical 

layers. The slices were counterstained with the nuclear marker Hoechst (blue), and Nestin (C, 

D, red) or Tubulin III (E, F, red). Scale bars: C, E = 200 m; D, F = 50 m. (G) Confocal 

images of SynIII immunoreactivity (green) from coronal sections of rat somatosensory cortex 

at E21 electroporated with tdTomato (red) at E17. Scale bar: 200 m. (H) High-magnification 

image of cells in the IZ from the cortical slice shown in F, showing the expression of SynIII 

(green) in migrating cells (red). The slices were counterstained with Hoechst (blue). CP, 

cortical plate; IZ, intermediate zone; VZ/SVZ, ventricular/subventricular zone. Scale bar: 25 

m. 

 

 

 

 



	

 



	

Figure S2 (Related to Figure 1). ShRNA#1 downregulates SynIII, but not SynI or II, 

expression, without affecting the RG scaffold, PN fate or proliferation. (A) 

Representative western blots showing the specificity of ShRNA#1 in downregulating SynIII in 

comparison to SynI and SynII when exogenously expressed in COS7 cells. (B) 

Quantification of the levels of SynI, II and III, as in A. The data are expressed as mean 

percentages (± SEM) normalized to the control (ShRNAscr, a scrambled sequence) from n = 

3 independent experiments for SynIII and n = 5 independent experiments for SynI and SynII. 

Asterisks: One-way ANOVA, post-hoc Holm-Sidak vs ShRNAscr, ***p< 0.001. (C)	Confocal 

images of CUX1 immunoreactivity (red) from coronal sections of the somatosensory cortex 

of a rat electroporated at E17 with ShRNA#1 (green) and processed at P7. The slices are 

counterstained with Hoechst (blue). The fields within the white broken lines are given at high 

magnification in the right insets. Cell fate was not affected by ShRNA expression. Scale bars: 

50 μm and 25 μm (insets). (D) Confocal images of nestin immunoreactivity (red) in the 

somatosensory cortex coronal sections of a rat electroporated at E17 with ShRNAscr 

(control) or ShRNA#1 (green) and processed at P7. The slices are counterstained with 

Hoechst (blue). The RG scaffold was not altered by ShRNA expression. Scale bar, 100 μm. 

(E) The cumulative distribution of the average tdTomato fluorescence intensity at the soma 

of neurons transfected with tdTomato/ShRNA#1 and residing in the CP (black circles) or in 

ectopic positions (open squares) was quantified as a reporter of SynIII downregulation at P7. 

The ectopic cells exhibited higher tdTomato fluorescence intensity, consistent with the 

severe developmental defects that were associated with higher levels of ShRNA expression. 

Kolmogorov–Smirnov test, *p<0,05. n= 98 cells in total for each group from 3 different brains.	

(F) Histogram showing the total number of counted cells in cortices electroporated with 

ShRNAscr (control) or ShRNA#1. The data are expressed as mean percentages (± SEM) of 

the total number of fluorescent cells. No difference is detected between the two groups 

(Student’s t-test), indicating that the ShRNA did not affect the proliferation of electroporated 

cells.  



	

 

 

 

 



	

 

Figure S3 (Related to Figure 1). SynIII downregulation affects neuronal radial 

migration and orientation, but not the electrophysiological properties of PNs at P14. 

(A) Confocal images of coronal sections of the rat somatosensory cortex at P14 after IUE at 

E17 with ShRNAscr or functional ShRNA. Scale bar, 50 μm. (B) Quantification of the 

distribution of cells in the three classes defined, as in Figure 1D. The data are expressed as 

mean percentages (± SEM) of the total number of fluorescent cells at the CP. As observed at 

P7, misoriented cells were also found in the CP at P14. Asterisks: Student’s t-test: * p<0.05, 

**p<0.01, ***p<0.001. UR = upright, HOR = horizontal, IN = inverted. (C, D) Example 

reconstruction of control and ShRNA+ neurons in the CP (C), as well as ShRNA+ neurons in 

ectopic positions (D) from images as in A. Scale bars, 50 μm. (E) Quantification of the 

number of control and ShRNA+ neurons that did not complete migration. The data are mean 

percentages (± SEM) of the total number of fluorescent cells in the section (Student’s t-test: 

** p<0.01). The results observed at P14 were similar to those found at P7; some migrating 

cells resided in deep layers, and misoriented cells were present. (F-L) Electrophysiological 

analysis of transfected neurons at P14. Bar histograms represent the mean (±SEM) of the 

cell resting potential (F), membrane resistance (G), membrane capacitance (H) and maximal 

firing rate (I) measured in current-clamp recordings at P12-16 in ShRNAscr+ and ShRNA+ 

PNs residing in the CP or ectopically. (L) Quantification of the action potential frequency with 

respect to the injected current. The numbers of recorded cells are indicated in parenthesis. 

The statistical analysis (one-way ANOVA) showed no difference between groups, suggesting 

that SynIII KD and/or cell position do not affect the basic electrophysiological properties of 

the treated PNs.   

 



	

 



	

Figure S4 (Related to Figure 1). SynIII downregulation affects the morphology and 

orientation of PNs. (A) Confocal images of γ-tubulin immunoreactivity (red) from coronal 

sections of the rat somatosensory cortex electroporated at E17 with scramble (control) or 

ShRNA (green) and processed at P7. The slices are counterstained with Hoechst (blue). γ-

tubulin immunoreactivity always colocalized with the apical dendrite, independently of cell 

orientation. UR = upright, HOR = horizontal, IN = inverted as defined in Figure 1D. P = pia, V 

= ventricle. (B) Confocal images of coronal sections of the rat somatosensory cortex at P7 

after IUE at E15.5 with ShRNAscr (control) or ShRNA. The slices are counterstained with 

Hoechst (blue) to better visualize the cortical layers (numbered on the left). Scale bar, 100 

μm. SynIII downregulation also affects deep layer development. (C, D) Mean dendrite length 

(C) and the Sholl analysis (D) of control and ShRNA+ PNs located in the CP or in ectopic 

positions. The cells are divided into different classes, as defined in Figure 1D. ANOVA on 

ranks vs control, post-hoc Dunn’s test: *p<0.05, **p<0.01. (E) The orientation of axons of 

ShRNA+ cells located in the CP or in ectopic positions divided into the classes defined in 

Figure 1D. The number of cells analyzed from 5 brains (3 slices/brain) is shown in 

parentheses.  

 



	

 

Figure S5 (Related to Figure 3). SynIII KO mice do not show cortical layering defects. 

Confocal images of FOXP2, CUX1 and CTIP2 immunoreactivities (green) in WT and SynIII 

KO mouse brains at P7. The slices are counterstained with Hoechst (blue). SynIII KO brains 

did not exhibit any gross defect in cortical layering in comparison to WT brains. Scale bar, 

100 m. 

 



	

 

 

 



	

Figure S6 (Related to Figure 2 and 4). The co-expression of ShRNA and ShRNA-

resistant SynIII at a 1:1 ratio rescues the orientation defects of ectopic cells but 

results in ectopic cell localization. (A) Confocal images of cortical coronal sections from 

animals at P7 that were transfected with ShRNAscr (control) or rSynIII/ShRNA (1:1 ratio). 

Scale bar, 100 μm. The arrowheads point to sample PNs that did not complete radial 

migration. Note that all ectopic cells are in an upright position. (B) Quantification of the 

number of control PNs and rSynIII/ShRNA (1:1 ratio)+ PNs that did not complete migration, 

as in A. The data are mean percentages (± SEM) of the total number of fluorescent cells in 

the section. ANOVA on ranks, post-hoc Dunn’s test: **p<0.01. (C) Quantification of the 

number of ectopic PNs that display inverted orientation in control and rSynIII/ShRNA (1:1 

ratio)+ cortices, as in A. The data are expressed as mean percentages (± SEM) of the total 

number of ectopic cells in the section. (D) Confocal images of cortical coronal sections from 

animals at P14 transfected with tdTomato only (control) or SynIII/tdTomato. Scale bar, 50 μm. 

(E, G) Reconstruction of representative PNs from control or SynIII-overexpressing cortices; 

the cells were distributed in the CP (E) or among SynIII-overexpressing ectopic PNs in deep 

layers (G). Scale bars, 50 μm. (F) Quantification of the distribution of cells in the three 

classes, as defined in Figure 1D. The data are mean percentages (±SEM) of the total 

number of fluorescent cells at the CP. UR = upright, HOR = horizontal, IN = inverted. (H) 

Quantification of the number of control and SynIII-overexpressing PNs that did not complete 

migration. The data are expressed as mean percentages (± SEM) of the total number of 

fluorescent cells in the section. Student’s t-test, **p<0.01. (I) Confocal images of 3 DIV 

neurons tdTomato+ or SynIII+ (red). The cells were electroporated by AMAXA with the 

indicated constructs before plating. The fixed cells were stained for SynIII (green) and SMI 

312 (blue). Endogenous SynIII localized to the cell body and the axon, while overexpressed 

of SynIII displayed a diffuse distribution in all cell compartments. Scale bar, 20 μm. 

 



	

 

 



	

Figure S7 (Related to Figure 5,6 and 7). The pseudo-phosphorylated SynIII mutant is 

able to significantly rescue the ShRNA-induced migration defect.  

(A) The alignment of the SynIII amino acid sequence across species shows that the 

consensus sequence for CDK5 (PSPLRP, yellow) is conserved in higher vertebrates. The 

serine targeted by CDK5 (Ser404 in the rat) is highlighted in red. (B) Representative western 

blots showing the specificity of the antibody against SynIII phosphorylated at Ser404. The 

antibody was probed against SynIII KO neurons (at 3 DIV) that were either non-transfected 

(NT) or electroporated by AMAXA with WT, S404A and S404D rSynIII or with two unrelated 

SynIII phosphomutants (UPM1, UPM2). (C, D) Representative western blots (C) and 

quantification of the levels of WT, S404A and S404D rSynIII (D), showing the similar 

expression of these constructs in COS7 cells. The data are means ± SEM and normalized to 

the control (ShRNAscr) from n = 8 independent experiments. Statistical analysis (ANOVA on 

ranks) showed no difference between groups. (E) Confocal images of 3 DIV SynIII KO 

neurons expressing WT, S404A or S404D SynIII. The cells were electroporated by AMAXA 

before plating. The fixed cells were stained for SynIII (green). WT, S404A and S404D SynIII 

displayed similar intracellular distributions. Scale bar, 10 m. (F) Confocal images of cortical 

coronal sections from animals at E21 transfected with ShRNAscr (control), S404D 

rSynIII/ShRNA or ShRNA. Scale bar, 100 m. (G) Quantification of the number of PNs 

transfected with ShRNA alone or S404D rSynIII/ShRNA and residing in the VZ/SVZ, IZ, or 

CP. The data are mean percentages (± SEM) of the total number of fluorescent cells in the 

section. The distribution of PNs transfected with ShRNA and S404D rSynIII/ShRNA was 

significantly different in the VZ/SVZ and CP. Student’s t-test *p<0.05). White dashed 

columns representing controls from Figure 1B are included for comparison.  

	
	
	 	



	

	
	
Supplemental Experimental Procedures: 

 

Generation of Constructs  

ShRNAs. ShRNA#1 was designed against the sequence encoding the C domain 

of SynIII, according to (Elbashir et al., 2001). ShRNA#2 against the SynIII B 

domain coding sequence was designed with the aid of the BLOCK-iT™ RNAi 

Express Software (Invitrogen). ShRNA specificity for the mRNA of interest was 

verified by BLAST aligning with a non-redundant database. The ShRNAs were 

synthesized by Sigma, annealed in vitro, and ligated into pRNAT-U6.3/Hygro 

vectors (GenScript).  

ShRNA sequences: 

#1: TAACCAGAATGAAGTCAGGTTttgatatccgAACCTGACTTCATTCTGGTTA 

#2: AAGGAGCTAAACAGGCTGGATttgatatccgATCCAGCCTGTTTAGCTCCTT 

	
SynIIIa. pEGFP-C3-SynIIIa (gift from H.T. Kao) was digested, and the DNA 

fragment containing SynIIIa was cloned into the pCAGGs-IRES-tdTomato vector. 

The obtained pCAGGs-SynIIIa-IRES-tdTomato construct was used as a template 

in site-directed mutagenesis for the generation of the ShRNA-insensitive 

pCAGGs-rSynIIIa-IRES-tdTomato (rSynIII) construct. The mutagenesis protocols 

were performed with QuickChange lightning mutagenesis kit (Stratagene).  

Silent mutations: (477C>T; 480C>T; 483T>C; 484C>T). 

Silent mutations were generated in the targeting sequence of ShRNA#1 (470-

490) 5’-AACCTGACTTCATTCTGGTTA-3’ with the following primers:  



	

FW 5’- GCGGTCCTTCAAACCTGATTTTATCTTGGTTAGACAGCATGCC -3’  

RV 5’- GGCATGCTGTCTAACCAAGATAAAATCAGGTTTGAAGGACCGC -3’. 

SynIII phosphomutants: S404A rSynIII and S404D rSynIII. 

pCAGGs-rSynIIIa-IRES-tdTomato was used as a template for the generation of 

CDK5 phosphorylation site mutants. The non-phosphorylatable mutant 

(pCAGGs-SynIIIaS404A-IRES-tdTomato) was generated with the following 

primers:  

FW 5’-CCTCGGTGCCCGCCCCCCTGAGACCTTG  

RV 5’-CAAGGTCTCAGGGGGGCGGGCACCGAGG  

This design allowed the replacement of the TCC codon encoding for Ser with the 

GCC codon encoding for Ala.  

The pseudo-phosphorylated mutant (pCAGGs-SynIIIaS404D-IRES-tdTomato) 

was generated with the following primers: 

FW 5’-CCTCGGTGCCCGACCCCCTGAGACCTTG 

RV 5’-CAAGGTCTCAGGGGGTCGGGCACCGAGG 

This design allowed the replacement of the TCC codon encoding for Ser with the 

GAC codon encoding for Asp. 

To generate constructs for immunoprecipitation experiments, SynIII and its 

mutants were tagged at the amino terminal with 3XFLAG. pCAGGs-SynIII-IRES-

tdTomato was digested, and the SynIII-containing fragment was cloned into the 

N-terminal p3XFLAG-CMV vector (Sigma). pEGFP-C1-SynIa (gift from H.T. Kao) 

was digested, and the DNA fragment containing SynIa was cloned into the 

pCAGGs-mCherry vector (gift from A. Contestabile). All of the constructs were 



	

verified by sequencing. All of the enzymes were purchased by Promega 

Corporation, if not otherwise indicated. 

 

COS7 Transfection 

The day before transfection, 3.8 x 105 COS7 cells were plated on 6-cm plates. 

The medium was replaced with fresh medium 1 h before transfection. COS7 cells 

were co-transfected with 1.5 g of SynIII cDNA and 3 g of empty vector, 

ShRNAscr, ShRNA#1 or ShRNA#2 using Fugene 6 (Roche). For the in vitro 

phosphorylation assays, 6 x 105 COS7 cells were plated on 10-cm plates for 24 h 

and then and transfected with 2 g of either FLAG-SynIIIa WT, FLAG-SynIIIa 

S404A cDNA or empty vector using Effectene (Qiagen). The cells were 

incubated at 37°C in a 5% CO2 humidified atmosphere for 48 h and then 

processed for WB. 

 

Neuronal Nucleofection and Immunofluorescence 

Before plating, 4x106 neurons were transfected by electroporation with the 

Amaxa basal Nucleofector kit for primary neurons (Lonza) and 0.5 µg of plasmid 

DNA. The Amaxa Nucleofector device was used according to the manufacturer’s 

protocol. For immunofluorescence, 3 DIV neurons were fixed with 4% PFA 

(Sigma) and 4% sucrose in phosphate-buffered saline (PBS), 

permeabilized/blocked with PBS containing 0.1% Triton X-100 and 3% BSA and 

then incubated with primary antibodies diluted in the same solution [anti-SynIII 

1:800 (Synaptic System), anti-Smi 312, 1: 800 (Covance), anti-NP1, 1:100 (R&D 



	

Systems), anti-p35, 1:50 (Abcam)]. Immunostaining was detected using Alexa 

488, 546 or 647 fluorescent secondary antibodies (Invitrogen) diluted 1:500 in 

PBS containing 0.1% Triton X-100 and 3% BSA. The samples were mounted in 

Vectashield Mounting Medium (Vector Laboratories) and examined with confocal 

microscopy. 

 

Western Blotting 

The cells were lysed in lysis buffer (1% SDS, 1 mM EDTA, 10 mM HEPES, pH 

7.4) supplemented with 1 mM PMSF, 10 mM NaF, complete mini EDTA-free 

protease inhibitor cocktail (Roche), phosphatase inhibitor cocktails (P0044, 

P5726; Sigma) and clarified by centrifugation (10 min at 20,000 x g). Rat cortices 

were lysed in lysis buffer (2% SDS, 2 mM EDTA, 10 mM HEPES, pH 7.4, 150 

mM NaCl) supplemented with TissueLyserII (QIAGEN) by agitation with metallic 

beads. The lysates were boiled for 10 min, sonicated and clarified by 

centrifugation (15 min at 20,000 x g). The protein concentration of the samples 

was estimated using the BCA assay (Pierce). Equivalent amounts of protein were 

subjected to electrophoresis on 10% polyacrylamide NuPAGE precast gels 

(Invitrogen), according to the manufacturer’s instructions. The gels were then 

transferred onto nitrocellulose membranes (Whatman), and the transfer quality 

was assessed by brief staining of the blot with 0.1% Ponceau stain. The blotted 

membranes were blocked for 1 h in 5% milk in Tris-buffered saline (10 mM Tris, 

150 mM NaCl, pH 8.0) plus 0.1% Tween-20 and incubated overnight at 4°C with 

the following primary antibodies: anti-actin (1:5000, Sigma), anti-SynIII (RU486, 



	

1:1000;	Pieribone et al., 2002), anti-PSer404-SynIII (1:500, YenZym), anti-

GADPH (1:1000, Sigma), anti-Syn domain E G304 (for SynIa and SynIIa, 

1 :2000; Kao et al., 1998), anti-NP1 (1 :2000), and anti-CDK5 (1 :1000, Millipore). 

The anti-PSer404-SynIII antibody was a custom-made phospho-specific antibody 

generated by injecting a synthesized phosphorylated peptide into rabbits and 

double affinity-purification of the immune serum on dephospho- and phospho-

peptide columns. The membranes were washed and incubated for 1 h at room 

temperature with peroxidase-conjugated anti-rabbit antibodies (1:5000; BioRad). 

The bands were revealed with SuperSignal West Pico chemiluminescent 

substrate (Pierce). Fluorograms were digitally scanned using an Epson V750 Pro 

Scanner (Seiko Epson Corporation), and band optical density (OD) was 

quantified using ImageJ software (RSB). 

 

Co-Immunoprecipitation of SynIII-CDK5 

Primary cultures of cortical neurons at 4 DIV were lysed in lysis buffer (50 mM 

Tris pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100) supplemented with 1 

mM PMSF and 10 mg/ml Pepstatin and clarified by centrifugation (10 min at 

16,000 x g, 4°C). Equivalent amounts of cell extracts were incubated for 3 h at 

4°C with either the RU486 anti-SynIII polyclonal antibody (10 g/sample) or the 

anti-CDK5 monoclonal antibody (10 g/sample; Millipore), which were pre-

coupled with protein A and protein G Sepharose, respectively (25 l of settled 

prewashed beads), or with Ctrl IgG. After extensive washing of the beads, the 



	

sedimented immunocomplexes were subjected to SDS-PAGE and WB with anti-

SynIII (1:1000) and anti-CDK5 (1:1000) antibodies. 

 

 

Immunoprecipitation and in Vitro Protein Dephosphorylation/ 

Phosphorylation Assays 

Following transient transfection, COS7 cells were washed three times in ice-cold 

HBSS (Gibco), scraped in lysis buffer (50 mM Tris pH 7.4, 150 mM NaCl, 1 mM 

EDTA, 1% Triton X-100; supplemented with 1 mM PMSF, 10 mg/ml pepstatin) 

and clarified by centrifugation (10 min at 16,000 x g, 4°C). The protein 

concentration was determined using the Bio-Rad protein assay (Biorad), and 

equivalent amounts of protein were incubated under rotation at 4°C with ANTI-

FLAG M2 affinity gel (Sigma) that was pre-washed in lysis buffer. After 2 h, the 

bound proteins were washed three times with Tris-buffered saline (TBS), 

resuspended in phosphatase buffer (20 mM Tris pH 7.4, 100 mM NaCl, 5 mM 

MgCl2, 1 mM CaCl2, 0.5 mg/ml BSA, 1 mM DTT, 15 g/ml calmodulin) and 

incubated with 2U calcineurin (Sigma) for 30 min at 30°C. The reaction was 

stopped by washing twice with ice-cold TBS. Phosphorylation was then initiated 

by adding 0.7 g CDK5/p35 active enzyme (Millipore) in CDK5 reaction buffer 

(40 mM MOPS pH 7.0, 20 mM MgCl2) in the presence of 50 M [γ-32P]ATP and 

1.5 Ci/sample (specific activity 3000 mCi/mmol; Perkin Elmer) for 40 min at 

30°C. After washing four times with TBS, bound radio-labeled proteins were 

resuspended in SDS-PAGE sample buffer, boiled for 2 min and resolved on 10% 



	

acrylamide gels in SDS. The gels were stained with Coomassie blue and dried to 

analyze 32P incorporation by autoradiography, followed by quantification with 

ImageQuant (GE Healthcare). 

 

 

IUE 

Briefly, E17 timed-pregnant Sprague-Dawley rats were anesthetized with 

isoflurane (induction, 3.5%; surgery, 2.5%), and the uterine horns were exposed 

by laparotomy. The day of confirmation of vaginal plug was defined as E0, and 

the day of birth was defined as P0. The DNA (0.15-1.5 µg/µl in water) together 

with the dye Fast Green (0.3 mg/ml; Sigma) was injected (5-6 µl) through the 

uterine wall into one of the lateral ventricles of each embryo using a 30G needle 

(Pic indolor). The embryo’s head was carefully held between tweezer-type 

circular electrodes (10 mm diameter; Nepa Gene) that were wet with PBS while 

held across the uterine wall. For the electroporation protocol, 5 electrical pulses 

(amplitude, 50 V; duration, 50 ms; intervals, 150 ms) were delivered with a 

square-wave electroporation generator (CUY21EDIT; Nepa Gene). After 

electroporation, the uterine horns were returned into the abdominal cavity, and 

the embryos were allowed to continue their normal development. Given that the 

co-electroporation of two constructs in vivo leads to their concomitant expression 

in the vast majority of the transfected cells, the ShRNA constructs were always 

co-electroporated with the pCAGGs-IRES-tdTomato or EGFP vector (Fiumelli et 

al., 2005; Bony et al., 2013), which ensures both visualization of transfected cells 



	

up to 1 month after birth (Cancedda et al., 2007) and balanced total plasmid 

mass in each electroporation. 

 

 

 

Electrophysiology on brain slices 

The rats were anesthetized with isoflurane and decapitated. Coronal slices (300 

μm thickness) were cut using a Microm HM 650V microtome equipped with a 

Microm CU 65 cooling unit (Thermo Fisher Scientific) at 2°C in a solution 

containing (in mM): 87 NaCl, 25 NaHCO3, 2.5 KCl, 0.5 CaCl2, 7 MgCl2, 25 

glucose, and 75 sucrose and saturated with 95% O2 and 5% CO2. After cutting, 

the slices were left to recover for 30-45 min at 35°C and for 1 h at room 

temperature (RT) in the recording solution (see below). Whole-cell patch-clamp 

recordings were performed with a Multiclamp 700B/Digidata1440A system 

(Molecular Devices). tdTomato+ PNs were selected for recording using an upright 

Olympus BX51WI microscope equipped with the appropriate filters (Olympus, 

Japan) and a Lambda LS lamp (Sutter). The extracellular solution used for 

recordings contained (in mM): 125 NaCl, 25 NaHCO3, 2.5 KCl, 1.25 NaH2PO4, 2 

CaCl2, 1 MgCl2 and 25 glucose (bubbled with 95% O2 and 5% CO2). For current-

clamp experiments, the internal solution contained (in mM): 126 K-gluconate, 4 

NaCl, 1 MgSO4, 0.02 CaCl2, 0.1 BAPTA, 15 glucose, 5 HEPES, 3 ATP, and 0.1 

GTP (pH 7.3). Current-clamp recordings were performed at a holding potential of 

-70 mV, and action potential firing was induced by injecting current steps of 10 



	

pA lasting 500 ms. All of the parameters were analyzed using pClamp (Molecular 

Devices) and the Prism (GraphPad Software, Inc.) software. 

 

 

 

Slice Histology and Immunostaining 

E21 brains were dissected and fixed for at least 24 hours in 4% PFA in PBS. P7-

P14 brains were fixed by transcardial perfusion of 4% PFA in PBS. The brains 

were cryopreserved in 30% sucrose. The brains were frozen and sectioned 

coronally into 80 µm-thick sections with a microtome-refrigerator (Microm HM 

450 Sliding Microtome equipped with Freezing Unit Microm KS34, Thermo 

Scientific). Free-floating slices were permeabilized and blocked with PBS 

containing 0.3% Triton X-100, 10% NGS and 0.2% BSA. The primary antibodies 

[mouse anti-NeuN (1:500; Chemicon) and rabbit anti-SynIII (RU316, 1:200; Kao 

et al., 1998), anti-βIII-tubulin (TUJ1,1 :400, Covance), anti-nestin (1 :100, 

Abcam), anti-γ-tubulin (1 :500, Sigma), anti-CUX1 (CDP, 1 :100, Santa Cruz), 

anti-CTIP2 (1 :100, Abcam) and anti-FOXP2 (1 :100, Abcam)] were incubated in 

PBS containing 0.3% Triton X-100, 5% NGS and 0.1% BSA. For CTIP2 staining, 

antigen retrieval was performed before blocking for 10 min at 95°C with citric acid 

buffer (10 mM, pH 6). For γ-tubulin staining, the slices were incubated at -20°C in 

ice-cold methanol for 10 min before blocking and permeabilization. 

Immunostaining was detected using Alexa 488 or Alexa 647 fluorescent 

secondary antibodies (Invitrogen) diluted 1:600 in PBS containing 0.3% Triton X-



	

100, 5% NGS and 0.1% BSA. The slices were counterstained with Hoechst (2,5 

µg/µL; Sigma). The samples were mounted in Vectashield Mounting Medium 

(Vector Laboratories) and examined with confocal microscopy. 

 

 

Confocal and Neurolucida Images Acquisition and Analysis 

For analysis of migration at E21, images from sections that were counterstained 

with Hoechst were acquired using a confocal laser-scanning microscope (TCS 

SP5; Leica Microsystems) equipped with a 20 X immersion objective (NA 0.7). 

Confocal images of one slice for each experimental animal were acquired, and Z-

series of confocal images were projected as two-dimensional (2-D) 

representations. To facilitate cell counting, the contrast of the images was 

adjusted to enhance the fluorescence of the cell bodies while attenuating the 

signal from neuronal processes. For representative pictures of P7/P14 neurons, 

80-µm thick z-stacks were acquired with a 20 X immersion objective (NA 0.7), 

and Z-series of confocal images were projected as two-dimensional (2D) 

representations. For high-magnification images of cell morphology (ectopic cells 

and CP) and reconstructions of representative PNs, z-stacks covering the entire 

thickness of the cell of interest were acquired with a 40 X immersion objective 

(NA 1.25), and Z-series of confocal images were projected as 2D representations. 

To allow a better visualization of neuronal processes, the contrast of the images 

was adjusted to decrease the fluorescence of cell bodies. Reconstructions of 

representative PNs were drawn with Adobe Photoshop (Adobe System) using 



	

these pictures as templates. 

For analysis of the orientation of layer II/III PNs, 80-µm thick Z-stacks were 

acquired with a 40 X immersion objective (NA 1.25), and Z-series of confocal 

images were projected as 2D representations. The contrast of the images was 

adjusted to enhance the fluorescence of cell bodies and the apical dendrite while 

attenuating the signal from minor neuronal processes. 

For analysis of ectopic cells at P7/P14, images from sections stained with an 

anti-Neu N antibody (for visualization of layer II/III) were acquired on an 

epifluorescence microscope equipped with a 10 X air objective (NA 0.3) and 

Neurolucida (MicroBrightField) software. The orientation of CP PNs was 

calculated using ImageJ by measuring the angle formed by the apical dendrite 

with the CP. UR PNs were defined as cells with apical dendrites making an angle 

between 45° and 135°with the pial surface. IN PNs were defined as cells with 

apical dendrites making an angle between 225° and 315° with the pial surface, 

and HOR PNs were the remaining cells. For all of the experiments, images of 

one slice per experimental animal were acquired.  

For the correlation analysis of different fluorescence levels (Fig. S2E), images of 

cells were acquired with a 40 X immersion objective using a confocal laser-

scanning microscope (TCS SP5; Leica Microsystems). One single focal plane 

was imaged at the level of the brightest tdTomato fluorescence for cells in the CP 

and ectopic PNs. The average fluorescence of the cell body was measured with 

LEICA SP5 software. The fluorescence of each cell was normalized to the 

average fluorescence for the cells in the same slice.  



	

For dendrite morphology analysis, PNs were acquired using an epifluorescence 

microscope with a 40X air objective (NA 0.75) and traced with Neurolucida 

Neuron Tracing Software (MBF Bioscience). The traces were analyzed for total 

length and branches with NeuronJ (Plugin for ImageJ). Sholl analysis was 

performed manually using a mask made of concentric circles with increasing radii 

(10 μm distance each) and centered on the neuronal cell body. 

For axonal orientation analysis, E18 brains were electroporated with ShRNA, 

LCK-GFP as an axonal marker and tdTomato, as previously described (Zuccaro 

et al., 2014). The brains were perfused and processed for microscopy at P7. The 

slices were analyzed using an epifluorescence microscope with a 40 X air 

objective. Cell orientation was verified through tdTomato fluorescence, axonal 

orientation was verified through GFP fluorescence and the axon was followed 

along its length as long as possible. Only cells with a clearly distinguishable axon 

were included in the analysis. 

 

 

Mass spectrometry 

Briefly, P1 rat pups were sacrificed. The cortices were dissected, put in lysis 

buffer (25 mM Tris pH 7.2, 137 mM NaCl, 10% glycerol, 1% Triton, 25 mM NaF, 

1 mM Na3 VO4, 1 mM PMSF, 10 g/l leupeptin and 10 g/l pepstatin A) and 

dissociated first by pipetting up and down and then by passing the lysate through 

a 29 G needle. The homogenate was centrifuged at maximum speed in a table-

top centrifuge for 15 min at 4°C. The supernatant was first pre-cleared for 1 h at 



	

4°C and then incubated overnight at 4°C with anti-SynIII polyclonal antibodies 

(RU486; Kao et al., 1998). Lastly, the homogenate was incubated for 3 hours at 

4°C with protein A Sepharose beads that were previously washed and 

equilibrated with lysis buffer. After incubation, the beads were washed with lysis 

buffer, resuspended in SDS-PAGE sample buffer 2X, boiled for 5 min and 

vortexed. The recovered sample was loaded on 10% polyacrylamide NuPAGE 

precast gels that were then stained with Blue Coomassie. The band 

corresponding to SynIII was cut out and processed for mass spectrometry 

analysis. 

Tryptic peptides were resuspended in 2.5% FA and 2.5% MeCN and loaded 

using a Finnigan Micro AS Autosampler and a Finnigan Surveyor MS Pump Plus 

(Thermo Electron) onto a microcapillary column with a 100-μm inner diameter. 

The column was packed with 12 cm of reverse phase Magic C18 packing 

material (5 μm, 200 Å; Michrom Bioresources, Inc.). The flow rate over the 

column was 300-400 nl/minute. After a 14.5-min isocratic loading in 2.5% MeCN, 

0.15% FA (Solvent A) peptides were eluted using a 5–35% gradient of Solvent B 

(99.85% MeCN, 0.15% FA) over 30 min and electrosprayed (1.8 kV) into a LTQ-

Orbitrap Discovery mass spectrometer (Thermo Electron). The precursor scan 

(365-1600 m/z) was followed by ten collision-induced dissociation (CID) tandem 

mass spectra for the top 10 most abundant ions. The dynamic exclusion of the 

precursors chosen for MS/MS was enabled with a repeat count of three, a 

duration of 180 s, and an exclusion m/z width of  1.5. The AGC setting was 

30,000, and the precursors were scanned with one microscan and a 10-ms 



	

maximum injection time. The MS/MS scans had a 100-ms maximum injection 

time, a normalized collision energy of 35, an activation Q of 0.25, an activation 

time of 30 s and an isolation m/z width of  1. SEQUEST searches were 

performed using the Rattus norvegicus SynIII amino acid sequence as a 

database, requiring no enzyme specificity and allowing for the phosphorylation of 

serine, threonine and tyrosine (+79.9663 Da), the oxidation of methionine 

(+15.9949 Da), and the acrylamidation of cysteine (+71.0371 Da). All of the 

phosphopeptides were manually examined for phosphorylation site assignment, 

and phosphorylation localization assignments were also supported by Ascore 

software (Beausoleil et al., 2006).  

 

 

Supplemental Results: 

 

SynIII is expressed during cortical development in vivo 

 

To investigate the role of SynIII in cortical development, we first addressed the 

expression pattern of its full-length isoform “a” (Porton et al., 1999) at various 

perinatal ages in rat cortices. SynIIIa was expressed at low levels at embryonic 

day 15 (E15), increased continuously to peak at postnatal day 7 (P7), and 

suddenly decreased to low levels at P16 and P35 (Figure S1A, B). In contrast, 

before P7, SynIa was present at lower levels than in the adult, while SynIIa was 

not expressed at detectable levels (Figure S1A, B). At E21, SynIII was present in 



	

all cortical layers, with a high expression in the subventricular zone (SVZ) and 

cortical plate (CP, Figure S1C-F). SynIII+ cells colocalized with nestin+ neural 

progenitors in the VZ/SVZ (Figure S1C, D) and with tubulin β III+ neurons in the 

CP (Figure S1E, F). At P7 and P14, SynIII expression was highest in the CP and 

decreased gradually to reach low levels in the VZ; SynIII+ cells only colocalized 

with tubulin β III+ PNs (Figure S1C-F). 

 

 

SynIII downregulation does not affect neuronal identity, proliferation, or 

radial glia (RG) scaffold organization 

 

Ectopic cells exhibited higher fluorescence intensity in comparison to CP cells, 

suggesting that the higher levels of ShRNA#1 expression (and thus, SynIII KD; 

Bony et al., 2013) correlated with larger defects (Figure S2E). Nonetheless, the 

ectopic PNs maintained their layer identity since they were CUX1+ (layer II/III 

neuron marker; Figure S2C). Upon SynIII KD, although we found a strong defect 

in neuronal migration of the PNs, a process relying on radial glial (RG) fiber 

integrity, there was no significant impairment in the general architecture of the 

nestin+ RG fiber scaffold (Figure S2D). Notably, we did not observe a significant 

difference in the number of daughter cells generated by the electroporated RG 

progenitors (Figure S2F), suggesting that KD did not affect cell proliferation.  

 

 



	

SynIII regulates the morphological maturation but not basic 

electrophysiological proprieties of PNs 

 

To investigate whether SynIII KD affects neuronal morphological maturation, we 

analyzed dendritic development in ShRNA-electroporated and control brains 

(Figure S4C). We found that neuronal orientation influenced dendritic 

morphology; IN cells in the CP or in ectopic positions displayed an increased 

mean length of dendritic branches in comparison to controls (Figure S4C). 

Moreover, Sholl analysis showed that misoriented PNs in the CP (HOR and IN) 

and UP ectopic cells displayed decreased complexity of the apical dendrite, while 

CP IN neurons showed decreased complexity of basal dendrites (Figure S4D). 

 

We next addressed axonal development and found that regardless of their 

location, the majority of the ShRNA+ PNs had axons with an orientation that was 

opposite to that of the apical dendrite. Interestingly, the majority of the cells with 

no defined apical dendrite (i.e., HOR PNs) displayed an axon that still pointed to 

the ventricle, suggesting that external factors that repel/attract the axon play a 

key role in axonal orientation (Figure S4E). 

 

We lastly used whole-cell patch-clamp recordings to assess whether the defects 

caused by SynIII KD in PNs impact their basic electrophysiological proprieties. 

SynIII ShRNA+ PNs displayed unaltered resting potential, passive membrane 



	

properties (resistance, capacitance), action potential frequency and maximal 

firing rate compared to control cells (Figure S3F-L). 

 

 

Supplemental discussion: 

 

Tight spatial and temporal regulation of SynIII controls neuronal migration 

and orientation during development 

 

A broad range of molecules, including transcription factors (e.g., MeCP2; Chao 

and Zoghbi, 2012) and proteins implicated in neuronal polarization (e.g., LKB1; 

Shelly et al., 2007; p75; Zuccaro et al., 2014) or cell migration (e.g., Reelin; 

Pujadas et al. 2010; Eriksson et al., 2001), have been described to be 

detrimental to normal cortical development both when knocked down/out and 

overexpressed. Commonly, the damaging effect of the KD/KO relies on the 

permanent loss of the pathway that the protein participates in. By contrast, the 

final outcome of an overexpression is not easily predicted, but this manipulation 

often results in the dysregulation of the protein’s activity (e.g., MeCP2 over-

dosage in Rett Syndrome, Chao and Zoghbi, 2012). The effect of SynIII 

overexpression described here could be due to the diffusion of the protein to 

parts of the cell where it is usually not expressed (e.g., dendrites), as our results 

show.  

 



	

 

SynIII is part of the Sema3A pathway 

 

The in vitro phosphorylation by CDK5 of the SynIII mutant, in which Ser404 was 

replaced by a non-phosphorylatable residue, was significantly lower than what 

we observed for the WT protein. The residual phosphorylation of S404A mutant 

may be due to other phosphorylation sites targeted by CDK5 or to the lack of 

regulatory mechanisms normally present in the cell (e.g., activator/inhibitor 

proteins, phosphatases), which leads other phosphorylatable residues to act as 

decoy sites. 

 

The rescue experiments performed in vivo with phospho-mutants proved that 

Ser404 phosphorylation is functional and has a biological significance. Indeed, 

when expressed alone, the non-phosphorylatable mutant S404A rSynIII acted as 

a dominant negative on the endogenous protein, resulting in the appearance of 

ectopic cells. Interestingly, S404A rSynIII overexpression did not cause 

misorientation defects, suggesting that even a small fraction of endogenous 

phospho-SynIII is sufficient to control neuronal orientation. In accordance with 

the dominant negative effect, S404A rSynIII, unlike WT rSynIII, was unable to 

rescue the defects caused by SynIII KD. Consistent with this, we observed that 

the pseudo-phosphorylated mutant S404D rSynIII partially rescue the delay in 

radial migration caused by SynIII KD. The lack of a full rescue may be due to the 

inability of the S404D rSynIII mutant to cycle between phosphorylated and 



	

dephosphorylated states. Nonetheless, these results suggest that the 

phosphorylation of SynIII by CDK5 is essential for SynIII’s role in radial migration 

and that the phenotype we observed in SynIII-null PNs is at least partially due to 

a missing step in CDK5 signaling. 

 

By means of a custom-made phospho-specific antibody against the 

phosphorylated Ser404 residue of SynIII, we showed that phosphorylation 

increased upon Sema3A stimulation, proving that SynIII is a downstream effector 

of Sema3A/CDK5 signaling. Additionally, the expression of the Sema3A receptor 

NP1 during cortical development strongly resembled the expression pattern of 

SynIII at the same ages, and the two proteins colocalized in developing neurons 

in culture.  Further confirming the data above, our in vivo data showed a 

significant rescue of the defect in radial migration caused by NP1 KD by in utero 

co-transfection of the pseudo-phosphorylated mutant S404D rSynIII. As this 

mutant mimics SynIII phosphorylation by CDK5 upon Sema3A activation, its 

presence may partially compensate for the loss of Sema3A signaling caused by 

NP1 KD. Thus, our data demonstrate that SynIII is part of the Sema3A III 

pathway (Figure 7I). 

 

 

 

 

 



	

Hypothetical mechanisms of action of SynIII 

 

Neuronal migration is strongly affected in neurons with defective axon/dendrite 

polarization (Shelly et al., 2007; Shelly et al., 2011; Zuccaro et al., 2014). 

Although we found defects in dendrite morphology and axonal orientation in 

SynIII-KD PNs, we did not directly analyze a possible defect in neuronal 

polarization due to SynIII KD. Nevertheless, in vitro data from the literature 

suggest that polarization defects may occur (Ferreira et al., 2000; Feng et al., 

2002). As SynIII carries a phosphorylation site for PKA, its functions with respect 

to polarization may also be regulated by Sema3A through negative regulation of 

cAMP production and consequent PKA activity (Shelly et al., 2011). Lastly, our 

partially penetrant phenotype could be due to SynIII being only one component of 

a Sema3A-directed program, as many different molecules act downstream of 

Sema3A (e.g., the CRMP family,	Schmidt and Strittmatter, 2007) to coordinate 

multiple aspects of neuronal development. 
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