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Supplementary Figure 1

Sorting and gating strategy.

Upper left, FACS plots show isolation of different CD4" Ty populations from B6 or OPN-i-KI mice after
immunization with KLH in CFA. Ty: CD4*CD44°CXCR5°PD-1°GITR™ naive cells; Tgy: CD4*CD44"CXCR5*PD-
1*GITR™ cells; Ter: CD4"CD44"CXCR5*PD-1*GITR* cells; Non-Tgy: CD4*CD44"CXCR5°PD-1°GITR™ cells;
Treg: CD4*CD44™“CXCR5 PD-1"GITR" cells. Bottom left, FACS plots show isolation of CD4* Tgy or Teg cells
from OPN-i-KI or OPN-KO mice 5 d after immunization with KLH in CFA, shown in Fig. 2e. Gating control
stains that lack (-) either anti-PD-1 or biotin-anti-CXCR5 using OPN-i-KIl cells are shown. Upper right, gating
strategy for Ty (CD4*CD44"CXCR5'PD-1*Foxp37), Ter (CD4*CD44"CXCR5'PD-1*Foxp3*) and non-Tey
(CD4*CD44"CXCR5°PD-1°) cells in Fig. 3a. Bottom right, Gating controls for defining the PD-1*CXCR5*
surface phenotype of CD4" Tgy and Teg cells in Fig. 3c. Negative control: CD4*CD44"° cells; Positive control
(for CXCRS5 stains): Fas'™B220" B cells; FMO PD-1 control: all antibodies except (-) anti-PD-1; CXCR5 control:

D-1

- ! o =1 - ey Ei
[ __E,j i E: B E,_ﬁ
ETE ; k W’E 0_04[ . lf 565 ~CXCRS

T —

E @j‘ ’;i- .#.Eceus

CXCR5 >

all antibodies except (—) biotin-anti-CXCR5 (streptavidin-APC alone).



Generation of OPN-i knockin mice
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Supplementary Figure 2

Generation and confirmation of OPN-i-KI mice.

a, Spp1 genomic locus and targeting strategy. Boxes represent exons; exon 2 (gray) indicates the mutation
site with deletion of the 45 nucleotides after the translational start site (ATG) that encode an N-terminal signal
sequence while sparing other endogenous elements. A transcriptional STOP element flanked by loxP sites
(black triangles) was inserted upstream of this mutation site to prevent OPN-i expression. Germline transmitted
Spp1™°P* mice were backcrossed to B6 mice for at least 5 generations before crossing with mice carrying the
Cre recombinase to allow OPN-i expression. neo', neomycin-resistance gene. b, PCR of genomic DNA
showing wild-type, OPN-i-KI and OPN-KO mice after crossing with Ella-Cre mice using genotyping primers
indicated as gray triangles in a. OPN-KO mice gained the STOP element (194 bp) compared to wild-type
allele. wild-type: 324 bp, OPN-i-KI (after Cre recombination): 453 bp, OPN-KO: 518 bp. ¢, Secreted OPN
protein measured by ELISA from supernatants of purified DC, NK, T cells and peritoneal macrophages from
each mouse strain after stimulation with the indicated reagents for 24 h or 2 d for macrophages. d, Immunoblot
analysis of splenocyte lysates from the indicated mouse strains, probed with anti-OPN and anti-actin. Right,
quantification of ratio of OPN to actin (n = 5 mice per group). e, Secreted IFN-a protein in pDC after stimulation
by CpG-B (ODN-1668) (n = 3 mice per group) (***P < 0.001; error bars, mean + s.e.m).
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Supplementary Figure 3

OPN-i deficiency does not affect B cell activity or other helper T cell differentiation.

a, Quantification of CD44 expression (MFI) by CD4" T cells, percent CD4" T cells and Foxp3'CD44"CD4" T
cells from OT-ll, OT-lIl OPN-KO and OT-Il OPN-i-KI mice (as in Fig. 1b) 7 d post-challenge. Data represent at
least three independent experiments with 6 mice per group (error bars, mean and * s.e.m). b, Titer of total
(NP3) and high-affinity (NP,) NP-specific IgG in the serum of Rag2’ Prf1™~ hosts transferred with OT-Il CD4*
T cells from OPN wild-type or OPN-KO mice and OPN wild-type or OPN-KO B cells followed by immunization
with NP3-OVA in CFA and analysis 10 d later. Data represent two independent experiments with 4 mice per
group. ¢, Frequency and numbers of donor CD45.2°Vg5°CD4" T cells and surface expression of CD44 by
these cells from spleens of CD45.1 congenic recipients 7 d post-immunization with OVA in CFA. d, Flow
cytometry of donor Vg5'CD4" T cells in €. Numbers adjacent to outlined areas indicate percent Bcl-6"'CXCR5*
Tey cells and Vg5°CD4" T cells expressing intracellular cytokines. Below, frequency of Tgy cells and cytokine-
producing cells (n = 6 mice per group). *P < 0.05 (unpaired two-tailed Student’s t-test); NS, not significant.
Error bars indicate mean * s.e.m. e, Cytokine production by naive CD44"°CD25 CD4* T cells purified from the
indicated OT-II mice and differentiated for 5 d under Ty1, Ty2, Ty17 and Tgy conditions. *P < 0.05 (error bars,
mean + s.e.m of triplicate wells).
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Supplementary Figure 4

Effects of OPN-i deficiency on Bcl-6 expression and the differentiation of inducible T4 cells and Teg
cells.

a, Flow cytometry of CD25"Foxp3* Ty differentiated from sorted naive CD25°CD4* T cells, stimulated with
plate-bound anti-CD3 (2 ug/ml) and anti-CD28 (1 ug/ml) in the presence of TGF-B1 (5 ng/ml) and hIL-2 (100
U/ml) for 5 d. b, iTregs from (a) were co-cultured with CFSE-labeled naive CD25°CD4" T cells (responder)
activated with anti-CD3 and irradiated APC at different ratios. Histograms of CFSE dilutions, analyzed by flow
cytometry, as readout of responder proliferation. Serum titers of total (NP,3) and high-affinity (NP,4) IgG (c) and
anti-KLH (d) 1gG from recipients in Fig. 2c (n = 5 mice per group). *P < 0.05, **P < 0.01 and ***P < 0.001
(unpaired two-tailed Student’s t-test; error bars, mean * s.e.m). e, Immunoblot analysis of enriched
CD447CD4" T cells from the indicated mice at days 1-15 after immunization with KLH in CFA, probed with the
indicated Abs. Below, ratio of Bcl-6 to actin. f, RT-PCR analysis of Bcl6 and Prdm1 mRNA in CD44°CD4* T
cells purified from OPN-i-KI or OPN-KO mice from e. Bcl6 or Prdm1 expression was normalized to the Rps18
control and results are presented relative to that of OPN-i-KI mice at d1, set as 1. Data are representative of
two independent experiments (e) or one experiment with 3 mice per time point (f; error bars, mean * s.e.m).
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Supplementary Figure 5

Microarray analysis of genes upregulated in CD4* T cells by costimulation with ICOS.

a, Multiplot of genes upregulated in CD4" T cells after restimulation with anti-CD3 and anti-ICOS (duplicates)
compared to anti-CD3 alone (quadruplicates) as described in Fig. 4a. 210 (red) genes upregulated and 9
(blue) genes downregulated after co-ligation of CD3 and ICOS (cut-off 1.5 fold and P < 0.01). b, Functional
analysis performed by Ingenuity pathway analysis (IPA) of 210 genes upregulated by ICOS co-stimulation in a.
Functional annotations that are related to T-cell activation, differentiation, antibody production and antibody-
mediated autoimmune disease with P values and numbers of genes are listed. ¢, Heatmap analysis displays
31 genes upregulated in ICOS-activated CD4" T cells that correlate with systemic autoimmune syndrome
revealed by IPAinb (P=2.65 x 10™).
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Supplementary Figure 6

OPN-i does not interact with p110, and p85a deficiency does not impair other helper T cell
differentiation in vivo.

Immunoassay of lysates of 293T cells transfected with plasmids expressing HA-p110a (a) or HA-p1106 (b) and
increasing concentrations of OPN-i, assessed by immunoprecipitation with anti-HA and immunoblot analysis
with the indicated Abs. ¢, Purified CD44°CD4" T cells from OPN-i-KI or OPN-KO mice 3 d after immunization
with KLH and CFA were treated as in Fig. 4a. Quantification of ratios of phospho-Akt (pAkt) to total Akt by
ELISA from cells after 30 min of crosslinking. d, Flow cytometry of splenocytes of OT-Il OPN-i-KI or OT-II
OPN-KO mice 3 d post-immunization with NP43-OVA in CFA, stimulated with (+) or without () IL-6 (20 ng/ml)
for 15 min. Overlay of histograms of intracellular phospho-STAT1 and phospho-STAT3 among CD4°CD44" T
cells. e, Flow cytometry of splenocytes from p85a wild-type and p85a KO mice 3 d after injection with KLH and
CFA. Numbers indicate percent Foxp3 Bcl-6"CXCR5" Tgy cells and Foxp3*Bcl-6"CXCR5" Tgg cells. Right, Bel-
6 MFI (n = 4 mice per group). **P < 0.01 (unpaired two-tailed Student’s t-test; error bars, mean * s.e.m). Data
represent two independent experiments. f, Quantification of numbers and surface CD44 expression of CD45.1~
CD4" donor cells from Fig. 5a. g, Gating controls for defining Bcl-6"CXCR5* CD4* Tgy or Tgr cells in Fig.
5a,b,d. CXCR5 control: all antibodies except (—) biotin-anti-CXCR5 (streptavidin-APC alone); Bcl-6 control: all
antibodies except anti-Bcl-6; in this case, an IgG isotype-matched control for anti-Bcl-6 was used; Negative
control: splenic CD44°CD4" T cells from B6 mice at day 8 post-injection with KLH in CFA; Positive control:
splenic CD44"CD25™“CD4" T cells from B6 mice at d8 post-immunization with KLH in CFA; or Bcl-6"CXCR5"
cells in CD19* B cells from Tcra™ recipients of p85a KO T, in Fig. 5b. h, Flow cytometry of donor CD45.1~
CD4* T cells from Fig. 5a, stimulated with PMA and lonomycin for 5 h. Numbers indicate percent CD4" T cells
expressing intracellular cytokines. Right, frequency of cytokine-producing CD4" T cells. Data represent two
independent experiments with 3-4 mice per group (error bars, mean + s.e.m). i, Imnmunoassay of lysates of
293T cells transfected with vectors expressing Flag-p85a and OPN-i, treated with calf intestinal phosphatase



(CIP), and assessed by immunoprecipitation with anti-Flag followed by immunoblot analysis. j, Diagram of a
short sequence motif of OPN with a tyrosine at position 166 that may interact with the p85a SH2 domain. Kk,
Expression of surface ICOS receptor and intracellular Bcl-6 in CD44*CD4" T cells from OPN-i-KI mice 3 d after
immunization with KLH in CFA.
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Supplementary Figure 7

Wild-type OPN-i interacts with and stabilizes Bcl-6, but the Y166F OPN-i mutant does not.

a, Confocal microscopy of 293T cells transfected with plasmids encoding p85a, Flag—Bcl-6 and OPN-i—GFP
wild-type or OPN-i—-GFP Y166F mutant, assessed by pre-extraction of soluble nuclear proteins with 0.5%
Triton X-100 after 24 h of transfection followed by immunostaining as indicated. Yellow in the merged image
shows colocalization of Bcl-6 and OPN-i wild-type. b, Immunoassay of nuclear and cytosolic fractions of 293T
cells transfected with plasmids encoding Flag—Bcl-6, OPN-i wild-type or OPN-i Y166F mutant, assessed by
immunoprecipitation (IP) with anti-Flag and then immunoblot analysis. ¢, Top, lllustration of Bcl-6 protein
deletion mutants. Immunoassay of lysates of 293T cells transfected with plasmids encoding OPN-i and Flag—
Bcl-6 wild-type or deletion mutants, assessed by IP and immunoblot analysis as in b. Right, immunoassay of
lysates of 293T cells transfected with plasmids encoding OPN-i—Flag and Bcl-6 ZF deletion mutant (no Flag
tag) followed by IP with anti-Flag and immunoblot with anti-Bcl-6 and anti-Flag. Arrowhead: IgG heavy chain.
d, Immunoblot analysis of lysates of 293T cells transfected with plasmids encoding OPN-i (100 ng) and graded
concentrations of Flag—Bcl-6 wild-type or deletion mutants (lane 1,4,7,10: 450 ng; 2,5,8,11: 300 ng; 3,6,9,12:
150 ng). Cell lysates from lanes 1,4,7,10 were used for immunoassay in Fig. 7b. e, Inmunoblot analysis of
lysates of 293T cells transfected with plasmids encoding Flag—Bcl-6 and/or OPN-i, treated with (+) or without
(—) DUBI for 8 h, probed with anti-Flag and anti-actin. Below lanes, ratio of Flag (Bcl-6) to actin.
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Supplementary Figure 8

Schematic of sustenance of Bcl-6-dependent follicular T cell differentiation mediated by the p850~
OPN-i axis.

Engagement of ICOS and TCR on CD4" T cells by APC (e.g., DC) promotes p85a—OPN-i complex formation
that requires the tyrosine site 166 of OPN-i. p85a chaperones OPN-i entry into the nucleus, where intranuclear
OPN-i interacts with Bcl-6 via the sequences within the RD2 and protects Bcl-6 from ubiquitination-mediated

degradation. This p85a—OPN-i axis connects ICOS signals to stable Bcl-6 expression (highlighted in blue) and
ensures functional follicular T cell differentiation program.



