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Figure S1. Metagene profiles at steady-state, Related to Figure 2 

For each modification, data were aligned by the transcription start site (TSS) of annotated open 

reading frames, and grouped according to transcription rate as in Figures 2E-G. 
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Figure S2. Features contributing to steady-state histone modification patterns, Related to 

Figure 3 

(A) Genome browser views for chromosomes II and IV, showing H3S10ph enriched around 

centromeres, and H2AS129ph enriched at telomeres, as indicated. (B) Contribution of 

experimental noise to the total variance in different histone modifications. For each modification 

dataset, we used the difference between adjacent diamide time points to estimate noise in the 

measurement, assuming that histone marks are relatively stable between adjacent time points. 

This naturally overestimates the noise in the dataset as yeast are changing their transcriptome 

and modifying the chromatin template in response to diamide stress. Nonetheless, this provides 

a reasonable measure of noise given that the features with the lowest noise here are generally 

associated with transcription-related marks (H3K4me3, etc.) which would be expected based on 

diamide stress to exhibit the most changes between time points. The higher noise estimated for 

marks such as H3S10ph and others thus likely reflects true measurement noise, either resulting 

from relatively nonspecific antibodies, or resulting from widespread marks with lower peak to 

trough values and thus lower “signal to noise”. 

 

  





 

Figure S3. Chromatin landscape of rDNA repeats, Related to Figure 4 

The mapping of nucleosomes and 26 histone modifications in the 9.1kb rDNA repeat region. 

(top) Browser track showing transcripts from the repeat region. (bottom) Tracks showing 

enrichment of modifications along the repeat region. Line color saturation in each track ranges 

from dark (0’) to light (60’). 
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Figure S4. Stress-induced changes in histone modifications, Related to Figure 4 

(A) Venn diagram showing the overlap between nucleosomes on genes that changed 

expression or Pol2 levels (red and blue circle respectively) to nucleosomes that changed in at 

least 1, 2, …, 7 modifications (gray circles). Inset: histogram of the number of nucleosomes in 

each gray circle. (B) The number of nucleosomes that show significant movement in each of the 

modification. These numbers are broken according to location within induced, repressed genes, 

and other locations. (C) Correlation of change in expression to change of modification (as in 

Figure 4H) broken by nucleosome position.  

 

  





 

Figure S5. Patterns of stress-induced changes in histone modifications, Related to 

Figure 4 

Hierarchical clustering of histone modification patterns for 5948 nucleosomes with four or more 

changing marks (see Supplemental Figure S4A). Each row is a nucleosome, and columns as 

follows. (A) Time course values of input levels (relative to median levels), and histone marks 

relative to input. (B) Time course values of input and histone marks relative to their levels at t=0. 

(C) Annotation of the nucleosome as 5’ or gene body. (D) Maximum change in RNA for the 

associated gene during diamide response. Gray cell denote missing values. Although clustering 

was performed on the values of (A) and (B), they form coherent clusters in terms of nucleosome 

position and direction of RNA change. 

 

  





 

Figure S6. Nucleosomes traversing non-canonical combinations, , Related to Figure 5 

(A) Heatmap showing input levels and modification levels (relative to input) for 1915 

nucleosomes that leave the high-density region in the 26-dimensional space. Several prominent 

clusters are noted. (B-C). Movements of nucleosomes through 2D modification space. (B) The 

anticorrelation between H3K36me3 and Htz1 (and H2AK5ac) was violated by a number of 

nucleosomes at late timepoints. (C) Nucleosomes that transiently gain the repression-related 

H2AS129ph despite carrying high levels of H3K36me3 throughout the time course. (D) 

Movement of +1 nucleosomes of Ribosome Protein Genes in the H3K18ac/H3K4me3 space. 

Blue dots show nucleosomes at the relevant time point, gray dots show nucleosomes at t=0. (E) 

Trajectories for specific sets of nucleosomes are shown, with the t=0 domain being shown as an 

empty oval, and the stress domain shown as points and a filled oval (as in Figures 5G and H). 
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Figure S7. Timing of changes, Related to Figure 7 

(A) t1/2 global by mod Moreover, there are noticeable differences between specific acetylation 

marks, as H3K18ac, H3K23ac, H3K27ac, and H4K5ac change earlier in the response, while 

H3K56ac and H4K16ac are slower. Changes in H3S10ph and Htz1 also change as rapidly as 

the earliest acetylations, while H2AS129ph is relatively slow. (B) Repressed genes and (C) 

Induced genes. Right: matrix of relative timing as in Figure 7D. Left: box-plot of t1/2 for each 

modification relative to RNA t1/2. (D) Interpolated time course data for RiBi genes and RPGs for 

30 minutes of stress response (as in Figure 7G), shown in heat map representation. The left-

most and right-most cells denote level relative to genome wide mean at t=0, 30, respectively. 

The middle row shows changes relative to t=0.  

  



 

Supplemental Tables 

Table S1. Sample details, Related to Figure 1 

Contains information for each time series: antibody details (supplier, clone, lot #), experimental 

batch, sequencing batch, and number of sequenced reads.  

Table S2. Nucleosome atlas, Related to Figure 2 

Contains information for each nucleosome in the annotated atlas: genomic location of 

nucleosome center, coverage in the reference mid-log input, and annotation to a position in a 

gene (if one exists). 

Table S3. Normalized modification levels, Related to Figure 2 

Table of nucleosome (rows) vs. samples (columns). Each entry is the log2 modification level 

relative to input. Samples have been normalized as described below. 

Table S4. Modification change analysis, Related to Figure 4-5 

Table of nucleosomes (rows) vs samples (column). Fore each nucleosome X sample, listed are 

the t1/2, maximum change, interpolation error, and significance analysis for coherent change 

(see below). 

Table S5. Pairwise moving nucleosome analysis, , Related to Figure 5 

Number of moving/leaving nucs in each pairwise comparison. 

Table S6. Gene sets, Related to Figure 5 
List of genes within each gene set in our non-redundant set. 

Table S7. Gene set analysis, Related to Figure 5  

Gene sets (rows) vs enrichment p-value at different gene positions (see below). 

  



 

Supplemental Methods 

Stress response experiment  

All cultures shake in  

#  Innova44 shaking incubator 

#  30°C, 220RPM 

 

1. Culture 400 mL of yeast in 2L baffled flask x 6 (six time points: 0, 4, 8, 15, 30, and 

60 min) overnight to OD ~0.55. 

note 1.  Cell number is ~ 0.8 – 1 x 107 cells/mL  

note 2.  Adjust the total volume of culture based on your experiment design, but the 

basic principle is to keep the ratio of culture to bottle = 1:5 (400mL : 2000mL) 

note 3.  Use a baffled flask to keep constant oxygenation 

note 4.  Although the diamide treatment will slow yeast growth, they still grow ~1.2-

1.3x at 60-mins point in our system. In order to get constant condition between time 

points, please check the growth curve of your strain beforehand 

2. Add reagents as following table. Once you add diamide into ‘60mins-culture’, start 

the timer, and then add diamide into next bottle every 1 min after (ex. Add to 
30min-culture at 1min on timer, 15min-culture at 2min on timer, and so on). 

 

note 1.  Freshly prepare 1M diamide stock [MW = 172.19] in TE buffer. If not, store 

in -20 freezer, don’t freeze and thaw over 3 times. 

  1M Diamide 37% Formaldehyde 
30C for 15min 

2.5M Glycine 
RT for 5min à on 

ice 
    Final conc 1.5 mM 1% 125 mM 

Add 600 uL 10.7 mL 20.5 mL 
0 min x 6 21 
4 min 4 8 23 
8 min 3 11 26 

15 min 2 17 32 
30 min 1 31 46 

60 min Start → 0 
(min) 60 End → 75 (min) 



 

3. Spin for 5mins @ 4000rpm, 4°C 

4. Wash cell pellets by 50mL water 
5. Spin for 5mins @ 4000rpm, 4°C 

MNase-ChIP Protocol (beads-beating) 

Solution: 
§ 0.5mm diameter ZIRCONIA/SILICA beads Cat.11079105z, BioSpec 
§ 2mL Screw-cap tubes 
§ Cell breaking buffer(0.1M Tris, pH7.9, 20% glycerol), 4°C 
§ Sigma protease inhibitor cocktail for fungi (PIC), 100X  
§ NP Buffer:  0.5 mM spermidine, 1 mM β-ME, 0.075% NP-40, 50 mM NaCl, 10 mM Tris pH 

7.4, 5 mM MgCl2, 1 mM CaCl2.  Do NOT include Sorbitol! 
 Ex: 5 ml of NP Buffer: 
         10 ul 250 mM spermidine 
        3.5 ul of 1:10 (diluted in water) b-ME 
      37.5 ul 10% NP-40 
      Bring up to 5 ml with MNP buffer. 

§ Buffer L: 50 mM Hepes-KOH pH 7.5, 140 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% 
sodium deoxycholate.   

§ Buffer W1: Buffer L with 500 mM NaCl 
§ Buffer W2: 10 mM Tris-HCl pH 8.0, 250 mM LiCl, 0.5% NP-40, 0.5% sodium deoxycholate, 

1mM EDTA 
§ Buffer Z: 1 M sorbitol, 50 mM Tris pH 7.4 

Ex: 1 L of buffer Z: 
      500 ml 2 M sorbitol 
        50 ml 1 M Tris-HCl pH 7.4 
      450 ml ddH2O 

§ TE: 10 mM Tris-HCl pH 8.0, 1 mM EDTA 
§ “2X” Proteinase K solution: TE with 0.8 mg/ml glycogen, 2 mg/ml proteinase K 
§ Elution buffer: TE pH 8.0 with 1% SDS, 150 mM NaCl, and 5 mM DTT Do not add the DTT 

until just before use 
§ Zymolyase solution (10 mg/ml in Buffer Z; lasts up to 2 weeks at 4°C) 
§ Micrococcal Nuclease (Worthington Biochem):  resuspended from lyophilized powder at 20 

U/ul in Tris pH 7.4.  Aliquot into tubes upon first use and freeze at –80°C. 
 
 
Protocol: 

1. Pour ~1000uL of 0.5mm beads into screw-cap tubes and leave on ice. 
2. For each pellet collected from 400mL culture, resuspend with 1000uL of cell breaking 

buffer (+1X PIC), and then aliquot to 2mL screw-caps tube x2 from step 1. 
3. Put 12 tubes in pre-chilled (-20°C) magnetic bead-beating rack and bead-beating for 3 

mins twice by Biospec beads beater. 
4. Stab a hole at bottom of tube by a heating needle. Move stabbed tube into 5mL big tube 

and collect sample by spin for 1min @ 700g, 4°C. 
5. To collect nuclei, pipette sample to 1.5mL canonical tube and spin for 10mins @ Max 

speed, 4°C. 
6. Get rid of the supernatant. Resuspend the pellet with 2400uL NP buffer. 



 

7. Add appropriate volume of MNase (Note: Titrate it beforehand. Usually getting 90% 
monomer + 10% dimer + little trimer band would be ok). Briefly mix and incubate for 
20mins @ 37°C. 

8. Add 24uL of 0.5M EDTA and incubate for 10min @ 65°C to inactivate enzyme activity. 
9. Prepare Protein A beads. Pipette 1500ul slurry (250uL per sample) à Spin down for 

30sec @ 3000g, 4°C à Wash beads twice in Buffer L à Recover to original volume in 
Buffer L.  

10. Pool the digested material and add the following to the digestion products to simulate 
Buffer L conditions.  Add the salts before the detergents!  Amounts below are per a 
600 ul digestion aliquot; scale accordingly (here is 2400uL, so x4 for each one).  

Volume 

(ul) 

Component 

80 0.5 M HEPES-KOH pH 7.5 

22.4 5 M NaCl 

6.4 12.5% sodium deoxycholate 

80 10% Triton X-100 

8 Sigma protease inhibitors 

11. Set aside at least 200 ul (~5%) of pool as non-IP control; needed also for gel verification 
of the MNase digest.   

12. Pipette 250uL protein A to each sample and rotate at 4°C on tube rotisserie for one hour. 
13. Spin for 30 seconds @ 3000g, 4°C, and transfer 700-800uL of supernatant to each tube 

containing the appropriate amount of antibody  (total is 6 time points x 4 sets = 24 tubes). 
14. Incubate with rotation at 4°C for 4 hours to overnight (up to 16 hours). 
15. Add 100uL of protein A bead to each tube. 
16. Incubate with rotation at 4°C for 1 hour (longer is allowable but not necessary). 
17. Spin for 30 seconds at 3000g at 4°C and for subsequent pelleting steps in washes. 
18. Wash beads successively with 1 ml of the following buffers, for 5 minutes (on rotisserie 

at 4°C) each, in the following order:  Buffer L (twice), W1 (twice), W2 (twice), and TE pH 
8.0 (twice). 

19. Incubate and mix the beads in 125ul of elution buffer at 65°C for 10 minutes on thermal 
mixer.  Be sure to add the DTT in the elution buffer (to 5 mM final concentration) 
beforehand. 

20. Pellet the beads by centrifugation at 10000g for 2 minutes and keep the supernatant.   
21. Repeat Steps 19 and 20 and discard the protein A beads when done. 

 
22. Reverse cross-linking by Proteinase K 
23. Extract DNA with PCI 
24. Ethanol precipitation of DNA 
25. RNAase digestion 
26. CIP 
27. Clean-up by Minelute 



 

Data Quality and Antibody Quality Control 

Although the dataset analyzed here consists of single replicate data, numerous preliminary 

datasets were gathered for several modifications, including several ChIP-Seq datasets for 

H3K36me3 as well as several published (Weiner et al., 2012) and unpublished microarray 

analyses of over ten distinct histone marks during a diamide stress response. All such replicates 

were highly concordant with the data presented here. 

In selecting antibodies for this studies, we analyzed reports of antibody quality (Egelhofer et 

al., 2011) (http://compbio.med.harvard.edu/antibodies/), and did not consider antibody lots with 

previous reports of cross-reactivity. For six modifications, we performed ChIP-chip [as detailed 

in (Weiner et al., 2012)] in strains lacking the modified residue (Dai et al., 2008) and removed 

those that showed cross-reactivity – all antibodies to H4K91ac were eliminated based on this 

step, as they gave similar ChIP-chip profiles in wild-type and H4K91A mutants. Finally, we 

assessed the quality of antibodies which passed these filters by evaluating how different they 

are from the input distribution. Specifically, we estimated the percent of their variance explained 

by normalizing them to the input, and conditioning on position and expression information 

(Supplementary Tables S2 and S3). A visual inspection revealed that indeed the ten least 

explained antibodies are almost identical to the input, with the exception of H3S10ph, which is 

localized to the centromeres. To quantify the visual inspection, a genome wide correlation score 

to the input revealed a clear separation between these ten antibodies, which were discarded, 

and all other antibodies (Supplementary Table S1). 

Data Processing 

The normalization was done in few steps: 

1. We generated coverage plots from uniquely mapped reads. Since the data was from 

mono-nucleosomal fragements, each read was extended to 100bp before computing 

coverage. The coverage was normalized to 107 total number of reads in each sample 

and smoothed running window averages of 15bp width. 

2. To call nucleosome peaks, we first identified local maxima in coverage in each input 

experiments (all time points X all batches). We then applied a greedy procedure to select 

the ones with the highest coverage as the centers of nucleosomes, where each selected 



 

peak removes from consideration all other peaks whose center is within +/- 100bp. The 

selected peaks formed the nucleosome atlas of Supplementary Table S2. 

3. Coverage estimation.  For each nucleosome, we computed the coverage in each 

experiment as the maximum number of reads covering a single base within 100 bp of 

the nucleosome center. To prevent overflow in normalization to input, we add 25 

“pseudo reads” to all coverage values (in both input and ChIP samples). 

4. Each sample was then represented as log2 of the ratio to input. To take into account 

batch differences, this ratio was computed as the average of the input signal from the 

matching batch and the mean of all other inputs. 

5. We then applied QQ normalization to each time series (each antibody). This 

normalization assumes that the distribution of values in in each antibody through time 

remains the same. The normalization matches quantiles in each time-course to each 

other (using MATLAB’s quantilenorm, version R2013a). 

6. The normalized log ratios are reported in Supplemental Table S3 and used throughout 

the analysis. 

7. Final output of these steps was visually compared to raw genome browser tracks. 

TSS mapping and Expression Data 

Expression data during diamide stress response was taken from (Gasch et al., 2000). For a 

subset of analyses, Pol2 ChIP-chip from (Kim et al., 2010) was used instead  place of mRNA 

abundance, with all key conclusions being qualitatively identical using either dataset.  

 

We annotated nucleosome positions along the gene (-1,+1,+2,…,+N) based on TSS mapping 

data, generated as in (Ni et al., 2010). Briefly, Polyadenylated RNA was treated with bacterial 

alkaline phosphatase (TAKARA), then decapped using Tobacco Acic Pyrophosphatase 

(Epicentre). An oligo containing an MmeI site was ligated selectively to previously capped 5’ 

ends of RNA using RNA ligase. After reverse transcription and low cycle amplification using 

biotinylated primers, MmeI was used to digest 20bp downstream from where the 5’ cap had 

been. This DNA was then isolated with streptavidin beads and ligated to a modified Illumina 

adaptor. After elution from the beads, TSS sequences were amplified by PCR, cloned, and deep 

sequenced.  



 

Noise estimation 

To estimate the technical noise levels of each ChIP experiment we treated time-point 

measurements as biological replicate by selecting the time point with the smallest differences to 

time t=0 as the second replicate for noise estimation. 

 

Regression and sparse regression  

We used multiple linear regression analysis to reconstruct histone modifications levels from a 

collection of features. Feature of the regression are: 

(a) Nucleosome position relative to transcription start site (Supplemental Table S2). 

(b) Mid-log occupancy level taken from the merged MNase input signal (Supplemental 

Table S2). 

(c) RNA polymerase levels from published NET-seq data (Churchman and Weissman, 

2011). For each nucleosome we counted the number of sense and antisense (AS) NET-

seq reads up-to 100 bp from its dyad. Sense/AS were determined based on SGD genes 

annotations. 

(d) Turnover data was taken from (Dion et al., 2007), for each nucleosome we considered 

the average value from microarray probes with distance of 100 bp for its center. 34830 

nucleosomes had at least one probe, the rest were discarded from the analysis. 

(e) Positions relative to nearest centromere/telomere in base pairs (log). 

(f) Replication Timing was based on (Raghuraman et al., 2001), we assigned timing value 

in minutes for each nucleosome using linear interpolation of the reported data. 

 

In total, we assigned 6 features to each nucleosome plus it’s position along the genome. 

Finally, we learned the multiple regression coefficients for each genomic position separately. 

PCA  

PCA analysis was performed using MATLAB’s pca method where all 6 time-points were merged 

to one large matrix (66360 X 6): 398160 X 26.  



 

Detecting nucleosomes at low density regions 

To investigate the 26-dimensional modification space, we employed a semi-parametric 

technique of kernel density estimation. We define the density function at point 𝑥 ∈ 𝑅! to be: 

𝑑 𝑥,𝜎 =
1
2𝜋𝜎!

𝑒!
!!!!!"

!
!

!

!∈!!!

 

Where 𝜎 is the bandwidth of the kernel, 𝑁𝑁! are the 20 nearest neighbours to 𝑥, at t=0, 

omitting the single nearest neighbor (for stabilization considerations). 

To find the optimal bandwidth, we use a cross-validation approach; we randomly draw half 

of the nucleosomes to form a training set, and estimate the likelihood of the other, unseen, part 

of the data. The optimal bandwidth is the one that maximizes the likelihood: 

𝜎∗ = argmax
!!!

𝑑(𝑥! ,𝜎)
!∉!"#$%

 

Given the optimal bandwidth, σ∗, we can continue to estimate the density with respect to 

mid-log modification space at all time points.  

Compendium of gene sets 

We assembled a compendium (Supplemental Table S6) of gene sets of functional groups 

(Ashburner et al., 2000; Dutkowski et al., 2014; Segal et al., 2003), DNA binding data (Harbison 

et al., 2004; Rhee and Pugh, 2012; Venters et al., 2011), genetic perturbations (Chua et al., 

2006; Lenstra et al., 2011; Mnaimneh et al., 2004), and RNA binding data (Gerber et al., 2004). 

We removed redundant gene sets by selecting a smaller set of representative gene sets such 

that all gene sets have a Jaccard distance of 0.2 or lower to one of these representatives 

(keeping ~60% of ~13000 original gene sets). 

Gene-sets with rare modification states 

For each pairwise modification space, gene-set and nucleosome position we tested whether 

nucleosomes at the position in genes in this set is over-represented in the low-density region of 

the pairwise combination (hyper-geometric p-value).  We corrected for multiple testing with 5%-

FDR, removing non-significant results. We then average the log of these p-values over all the 

2D spaces to assign aggregated p-values for each gene-set (Supplemental Table S6). 



 

Fit and t1/2 estimation 

We have no specific prior on a functional form for the modification responses so we use a 

non-parametric approach for our estimation. We do assume that the responses are smooth, and 

that modification levels are at mid-log steady state when t=0. 

To estimate the response we introduce steady-state pseudo-measurements at -60 and 120 

minutes (values as in t=0) based on previous observations in the literature that the yeast return 

to baseline transcriptional state after 90min (Gasch et al., 2000; Kim et al., 2010). We then 

iterate over internal points (4,8,15,30 minutes), leave each one out, and calculate the cubic 

interpolation (MATLAB's interp1, version R2013a). The estimated response is the mean of all 

these leave-one-out (LOO) interpolated responses. 

Given the estimate, the peak change is defined as the point in time which has the maximal 

absolute change, relative to t=0. After evaluating the peak change, one can define t1/2, as the 

time at which the estimated response reaches half the peak change, and tr1/2, as the time at 

which the estimated response is at half the return to the value at t=0 (tr1/2 is not necessarily 

applicable). These time points re estimated using a cubic interpolation resolution of less than .6 

minutes, along with a linear interpolation between t1/2 flanking time-points. 

The error of the estimate is calculated as the mean difference between each of the LOO-

interpolated responses and the data point omitted, divided by the standard deviation of the data 

series. Formally: 

𝑒𝑟𝑟 𝑥! =   
1

𝑆𝑇𝐷(𝑥!)
𝑦!!! 𝑡 − 𝑥!"
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Where 𝑦!!! 𝑡   is the interpolated response obtained when time point t is omitted, evaluated 

at time point t. 𝑥! is the measured log-fold change vector (from t=0) of a nucleosome indexed by 

i, at a certain modification.  

 

Coherent Movement determination 

For each modification, we use a permutation test to estimate which nucleosomes exhibit a 

coherent change in their response. The null hypothesis is that changes are random fluctuations 

in measured data, is obtained by permuting the nucleosomal measurements independently at 

each time point. This maintains the overall distribution of change values but eliminates any 



 

connection between these measurements through time. On this permuted dataset we employ 

the same procedure described above (LOO interpolation) to obtain error estimates, as 

described above. Finally, for each nucleosome, i, in each modification, m, we define the 

following statistic: 

𝑠!! =   𝑃𝐶(𝑥!! )−𝑎! log 𝑒𝑟𝑟(𝑥!! )  

Where 𝑃𝐶(𝑥!! ) is the (log) peak change of nucleosomes i in modification m, 𝑒𝑟𝑟(𝑥!! ) is the 

error of the LOO interpolation, and 𝑎! is a global modification constant weighing the relative 

weight of the two numbers: 

 

 
Now, for each modification, for a given FDR 𝛼, we set the threshold over this s statistic to 

be the maximal such that at most 𝛼% of nucleosomes above the threshold are not from the 

randomly permuted data set. For most analyses we use an FDR of 10%, a visual inspection 

reveals that this is generally a stringent cut-off. For the timing-of-events analysis we use a more 

lenient FDR of 25%, to allow for greater statistical power in downstream analysis, assuming that 

the selection of specific nucleosomes of specific genes is independent of false discoveries in 

this s-statistic. To set the 𝑎! per modification, we optimize over the number of nucleosomes 

passing a certain FDR (10%). While this might increase the actual FDR, the stability of this 

global constant across modifications and FDR thresholds, and a visual inspection of results, 

suggests that the optimal constants represent an actual tradeoff between these quantities, 

rather than an arbitrary number. 



 

Event Pair Statistics 

Given the collection of coherent events in a gene set of interest, we next ask "How do these 

events relate to each other?" We define the precedence of one event, A, over the other, B, with 

respect to a gene-set G: 

𝑃!(𝐴,𝐵) =   
1
|𝐺|

1 !! !
!! !!! !

!! !!
!∈!

 

Or in words – we simply count the fraction of genes in which event A is preceded by event 

B, plus some confidence interval   (𝜏 = 1 𝑚𝑖𝑛 ,   this means that any events with a timing 

difference of less than one minute is ambiguous and ignored). 

Also, for each such coherent event pair, a one sided t-test was performed to exclude the 

possibility of a random timing difference between these events. The t-test associated p-value 

was collected, and only those p-values that passed an FDR threshold of 5% were further 

considered. These p-values allow us to define the timing of events (TOE) graph w.r.t to a gene-

set G - 𝑉! ,𝐸! , as follows: 

𝑉! = 𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑡  𝑒𝑣𝑒𝑛𝑡𝑠  𝑖𝑛  𝐺 

𝐸! = 𝐴,𝐵   |  𝐴  𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑠  𝐵  𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡𝑙𝑦  𝑖𝑛  𝐺  

 

Order of Events 

Note that the TOE graph is a directed acyclic graph (DAG) by definition (and the linearity of 

time), so it provides us with a partial order of events. Ideally, we would like to find the optimal 

order of events, 𝜋∗, which is consistent with the TOE graph, T, such that: 

𝜋∗ = argmax
!∈!|!|⊆!

𝑃(𝜋! ,𝜋!)
!!!!

 

Where 𝑆|!| is the permutation set over the vertices of the graph, i.e. over events, and the 

notation 𝑆|!| ⊆ 𝑇 means that they are consistent with the order dictated by the edges of T. In 

other words, we are looking for the order of events that maximizes the "overall precedence" of 

the data, while conforming to precedence significance in the data. Unfortunately, this problem 

(optimal order w.r.t. an edge weight function, even without constraints) has been shown to be 

NP-complete problem usually called the LINEAR-ORDER-PROBLEM (or LOP). 

As a heuristic we perform a topological sort of the data (which guarantees that the graph 

constraints are satisfied), and in the cases where two events are incomparable in the partial 



 

order, we use the overall precedence of these events (w.r.t to all other events) to obtain a total 

linear order. 

Event Grouping 

Given the TOE graph, a natural follow-up question is whether there are groups of events 

that succeed certain events, precede other events, but show no specific relations amongst 

themselves, i.e. – are there groups of events that are indistinguishable by their timing?  

To address this question, and given the total order described in the previous section, we 

wish to partition the events to groups and optimize the total weight of edges between 

subsequent groups. Visually, if the edge matrix is the following binary matrix (this is easily 

extended to non-binary matrices, or weighted edges): 

 

 
 

We are looking for a partition of the events (collection of blue lines) that maximizes the sum 

of the highlighted rectangles: 



 

 
This problem can be solved using a simple dynamic programing. By iteratively answering 

the question: "which is the optimal partition up to index i", and selecting the i for which the 

maximal-valued partition is obtained. Note however, that the conjoining of two sub-solutions 

also requires us to know the size of the last set in the optimal sub partition. Since every partition 

must have a final set, and the order is fixed, this strategy searches the partition-space 

exhaustively for the optimal solution in 𝑂(𝑛!) time, which is reasonable for our problem size 

(𝑛 ≤ 200). 
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