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Web-based Supplementary Materials for

Computational aspects of N-mizture models

by Emily B. Dennis, Byron J.T. Morgan & Martin S. Ridout

Web Appendix 1

The effect of the choice of K on fitting the N-mixture model

Section 5 of the paper demonstrates that the infinite values of A shown in Section 3.2 for
the bivariate Poisson are limited by the value of K adopted in the corresponding Poisson
N-mixture model. Here this effect of K is discussed further.

Web Figure 1a illustrates the effect of K for a single simulated dataset, with A increasing
linearly with K. The corresponding relationships from different simulations and parameter
values are found to be very similar. The heuristic reason for this, and the fact that the
green line in Web Figure la lies below the line of unit slope through the origin, is that in
the mixture in (1), for large A the Poisson distribution is approximately Normal, N(A\).
For values of K in the approximate range A+ 2v/\, the effect of K is to lose a large fraction
of this probability, and hence reduce the likelihood. Therefore it would not be possible to
estimate A values that correspond to reduced values of the likelihood and thus in practice
K> A

For a negative-binomial mixing distribution, we find that where ) is infinite for the Pois-
son distribution, the green solid line in Web Figure 1a is unchanged for the negative binomial.
However, for a different simulation (blue lines), when the sample covariance diagnostic (5) is
positive, for a Poisson mixing distribution, A = 6.64 for increasing K, but using the negative
binomial \ increases with K but with a smaller slope than that of the Poisson line. Hence the

single covariance diagnostic is not sufficient for the negative-binomial distribution, which can
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produce large estimates that increase with K in cases where the diagnostic is positive and
A from the Poisson distribution is stable. We encounter this latter case again in Section 7.
An additional diagnostic for the negative-binomial case is given in Section 6 and explored
via simulation in Web Appendix 2.

Web Figure 1b shows that as the value of \ increases, the smaller eigenvalue of the Hessian
matrix of the log likelihood evaluated at the maximim-likelihood estimate, estimated within
optim, decreases towards zero. The model becomes near singular (Catchpole et al., 2001),
with only the product Ap being estimable, corresponding to the thinned Poisson situation.
Estimates from K=200 and K=1000 are equivalent for finite A (and hence overlap in the
main peak in Figure 2), but differ when A should be infinite and A approaches K. In
particular, the spread of non-zero eigenvalues when A is close to K is reduced for larger K
(Web Figure 1b). The artificial truncation of the range of A by K (demonstrated in Figure 2
and Web Figure 5) is responsible for the non-zero values of the smaller eigenvalue for the
largest values of A (Web Figure 1b).

The sampling distribution of the product X}\J is unbiased (Web Figure 2), hence when
finite estimation of \ is impossible, only a single thinned-Poisson parameter \p is estimable,
the hyperbola for which is shown in Web Figure 3a. Web Figure 3b illustrates the log-log
transform of Web Figure 3a, rotated 135° about the axis to examine possible differences for
an increasing number of visits, 7. The main distribution shows similar spread for different
values of T but fewer small estimates of A as more visits are made. For cases where X is
truncated by K, estimates of A do not vary with 7', as found also when the green line of Web
Figure 1a did not vary for alternative parameter values. However corresponding estimates of
p (not given here) show less variation for greater T', corresponding to the greater information

available for more visits.



« References

w Catchpole, E. A., Kgosi, P. M., and Morgan, B. J. T. (2001). On the near-singularity of

50 models for animal recovery data. Biometrics 57, 720-726.



1000

800
!

<<

400
Smaller eigenvalue

200
!

T } T T T T
0 200 400 600 800 1000 0 1 2 3 4 5 6 7

K log()
(@ (b)

Web Figure 1: a) A plotted against increasing K for a single simulation (green) with default
values of K for unmarked (K = max(count) + 100, dotted) and PRESENCE (K = 200,
dashed) also shown. A s plotted against increasing K for a different simulation in blue, with
a comparison of A estimates for a Poisson (solid) and negative-binomial (dashed) mixing
distribution. b) A plot of log()) versus the smaller eigenvalue of the estimated Hessian
at the maximum-likelihood estimate for XK' = 200 & 1000 (black), K = 200 (green) and
K = 1000 (red) based upon 1000 simulated datasets. The parameter values used were

T=2 R=20,A=5and p=0.25.
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Web Figure 2: Kernel density estimate for 5\;) from the Poisson N-mixture model, based
upon 1000 simulated datasets for K =200, T'=2 and R =20, A =5 and p = 0.25.
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Web Figure 3: (a) A plot of A versus p and (b) log()) versus log(p) rotated 135° clockwise
about the origin, for 7' = 2 (black), T' = 3 (blue), T" = 4 (green) and 7" = 5 (red) based upon
1000 simulated datasets for K = 200, R =20, A =5 and p = 0.25. 2, = —\%logﬁ + \/Lélog)\

and zo = —\%logﬁ — \/iglogj\. In a) the solid line represents the hyperbola for Ap and the

straight lines correspond to the known values of p (dashed) and A (dot-dash). In b) the
straight lines represent the rotated logarithms of Ap (solid), p (dashed) and A (dot-dash).
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Web Appendix 2

Performance of the method-of-moments estimation

We assess the performance of MOM estimation as a simple method for parameter estimation
compared to maximum likelihood estimation (MLE) from the N-mixture model. For the
Poisson case, estimates for where the covariance diagnostic is negative were excluded in this
comparison. Correspondingly, estimates for the negative-binomial were excluded when one
or more of the diagnostics was negative. Additionally, for both the Poisson and negative-
binomial, cases where either the MLE or MOM estimate of A is finite but large (A > 100)
were excluded to provide a fair comparison.

For the Poisson case, when p = 0.25, the MOM approach only performs better than
MLE based upon RMSE when T'= 2 (Web Table 1). However for smaller p = 0.10, MOM
estimation performs better for almost all cases (Web Table 2). In the negative-binomial case,
results are not greatly affected by varying o (Web Tables 3-6). As in the Poisson case, when
p = 0.25, MOM only outperforms MLE when few visits are made, which is emphasised when
A is small. For smaller p = 0.10, MOM often performed better than MLE in terms of RMSE,
although the difference was reduced for increasing 7" and .

Method of moments can quickly provide good estimates of A and p, but it does not
consistently outperform MLE. We suggest using MOM estimates as sensible starting values

for optimisation of the N-mixture likelihood.



Web Table 1: Comparison of estimation via method-of-moments (MOM) and the N-mixture
model (MLE) for the Poisson case with A = 2,5,10, p = 0.25 and R = 20 for 1000 sim-
ulations. RMSE is the root mean-squared error for A. The upper bound K for the MLE
was automatically selected such that the tail proportion was 107°. EPD is the proportion
of simulations discarded when the covariance diagnostic was negative or either estimate of
A > 100. EPN is the proportion of simulations when both diagnostics were negative.
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Web Table 2: Comparison of estimation via method-of-moments (MOM) and the N-mixture
model (MLE) for the Poisson case with A = 2,5,10, p = 0.1 and R = 20 for 1000 simu-
lations. RMSE is the root mean-squared error for A\. The upper bound K for the MLE
was automatically selected such that the tail proportion was 107°. EPD is the proportion
of simulations discarded when the covariance diagnostic was negative or either estimate of
A > 100. EPN is the proportion of simulations when both diagnostics were negative.
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Web Table 3: Comparison of estimation via method-of-moments (MOM) and the N-mixture
model (MLE) for the negative-binomial case with A = 2,5,10, p = 0.25, « = 1.25, and
R = 20 for 1000 simulations. RMSE is the root mean-squared error for \. The upper bound
K for the MLE was automatically selected such that the tail proportion was 107°. EPD
is the proportion of simulations discarded when either covariance diagnostic was negative
or either estimate of A > 100. EPN is the proportion of simulations when both diagnostics

were negative.
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Web Table 4: Comparison of estimation via method-of-moments (MOM) and the N-mixture
model (MLE) for the negative-binomial case with A = 2,5,10, p = 0.1, « = 1.25, and R = 20
for 1000 simulations. RMSE is the root mean-squared error for A\. The upper bound K for
the MLE was automatically selected such that the tail proportion was 1071°. EPD is the
proportion of simulations discarded when either covariance diagnostic was negative or either
estimate of A > 100. EPN is the proportion of simulations when both diagnostics were
negative.
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Web Table 5: Comparison of estimation via method-of-moments (MOM) and the N-mixture
model (MLE) for the negative-binomial case with A = 2,5,10, p = 0.25, « = 5, and R = 20
for 1000 simulations. RMSE is the root mean-squared error for A. The upper bound K
for the MLE was automatically selected such that the tail proportion was 1071%. EPD is
the proportion of simulations discarded when either covariance diagnostic was negative or
either estimate of A > 100. EPN is the proportion of simulations when both diagnostics

were negative.
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Web Table 6: Comparison of estimation via method-of-moments (MOM) and the N-mixture
model (MLE) for the negative-binomial case with A = 2,5,10, p = 0.1, « = 5, and R = 20
for 1000 simulations. RMSE is the root mean-squared error for \. The upper bound K
for the MLE was automatically selected such that the tail proportion was 107°. EPD is
the proportion of simulations discarded when either covariance diagnostic was negative or
either estimate of A > 100. EPN is the proportion of simulations when both diagnostics

were negative.
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» Web Appendix 3

» Supplementary tables and figures
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Web Figure 4: Log(A) from the multivariate Poisson model with 7" = 3 plotted against the
covariance diagnostic, cov*(ny,ns, ng) < 0 from (6), based upon 1000 simulated datasets for
R =20, A\=2,5,10 and p = 0.25. Values at which the covariance diagnostic is negative are

shown by crosses.
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Web Figure 5: Kernel density estimates of A from the Poisson N-mixture model for R = 50
sites, A = 5 and p = 0.25 based upon 1000 simulated datasets for T'= 2,3,4 and K = 100
(red), 500 (blue) and 1000 (black).
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Web Figure 6: Diagnostic 1 (13) versus diagnostic 2 (14) from the multivariate negative

binomial model when 7" = 3, based upon 1000 simulated datasets for R = 20, A = 2,5, 10,

a =5 and p = 0.25. Values where A > 500 and A < 500 are shown by circles and crosses,
respectively.
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Diagnostic 2

Web Figure 7: Diagnostic 1 (13) versus diagnostic 2 (14) from the bivariate negative binomial
model, based upon 1000 simulated datasets for R =20, A = 2,5,10, o = 1.25 and p = 0.25.
Values where A > 500 and A < 500 are shown by circles and crosses, respectively.
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Web Figure 8: Diagnostic 1 (13) versus diagnostic 2 (14) from the multivariate negative

binomial model when 7' = 3, based upon 1000 simulated datasets for R = 20, A = 2,5, 10,

a = 1.25 and p = 0.25. Values where A > 500 and A < 500 are shown by circles and crosses,
respectively.
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