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Web Appendix 14

The effect of the choice of K on fitting the N-mixture model5

Section 5 of the paper demonstrates that the infinite values of λ̂ shown in Section 3.2 for6

the bivariate Poisson are limited by the value of K adopted in the corresponding Poisson7

N-mixture model. Here this effect of K is discussed further.8

Web Figure 1a illustrates the effect of K for a single simulated dataset, with λ̂ increasing9

linearly with K. The corresponding relationships from different simulations and parameter10

values are found to be very similar. The heuristic reason for this, and the fact that the11

green line in Web Figure 1a lies below the line of unit slope through the origin, is that in12

the mixture in (1), for large λ the Poisson distribution is approximately Normal, N(λ,λ).13

For values of K in the approximate range λ± 2
√
λ, the effect of K is to lose a large fraction14

of this probability, and hence reduce the likelihood. Therefore it would not be possible to15

estimate λ values that correspond to reduced values of the likelihood and thus in practice16

K > λ̂.17

For a negative-binomial mixing distribution, we find that where λ̂ is infinite for the Pois-18

son distribution, the green solid line in Web Figure 1a is unchanged for the negative binomial.19

However, for a different simulation (blue lines), when the sample covariance diagnostic (5) is20

positive, for a Poisson mixing distribution, λ̂ = 6.64 for increasing K, but using the negative21

binomial λ̂ increases withK but with a smaller slope than that of the Poisson line. Hence the22

single covariance diagnostic is not sufficient for the negative-binomial distribution, which can23
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produce large estimates that increase with K in cases where the diagnostic is positive and24

λ̂ from the Poisson distribution is stable. We encounter this latter case again in Section 7.25

An additional diagnostic for the negative-binomial case is given in Section 6 and explored26

via simulation in Web Appendix 2.27

Web Figure 1b shows that as the value of λ̂ increases, the smaller eigenvalue of the Hessian28

matrix of the log likelihood evaluated at the maximim-likelihood estimate, estimated within29

optim, decreases towards zero. The model becomes near singular (Catchpole et al., 2001),30

with only the product λp being estimable, corresponding to the thinned Poisson situation.31

Estimates from K=200 and K=1000 are equivalent for finite λ̂ (and hence overlap in the32

main peak in Figure 2), but differ when λ̂ should be infinite and λ̂ approaches K. In33

particular, the spread of non-zero eigenvalues when λ̂ is close to K is reduced for larger K34

(Web Figure 1b). The artificial truncation of the range of λ by K (demonstrated in Figure 235

and Web Figure 5) is responsible for the non-zero values of the smaller eigenvalue for the36

largest values of λ̂ (Web Figure 1b).37

The sampling distribution of the product λ̂p is unbiased (Web Figure 2), hence when38

finite estimation of λ̂ is impossible, only a single thinned-Poisson parameter λp is estimable,39

the hyperbola for which is shown in Web Figure 3a. Web Figure 3b illustrates the log-log40

transform of Web Figure 3a, rotated 135◦ about the axis to examine possible differences for41

an increasing number of visits, T . The main distribution shows similar spread for different42

values of T but fewer small estimates of λ as more visits are made. For cases where λ̂ is43

truncated by K, estimates of λ do not vary with T , as found also when the green line of Web44

Figure 1a did not vary for alternative parameter values. However corresponding estimates of45

p (not given here) show less variation for greater T , corresponding to the greater information46

available for more visits.47
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Web Figure 1: a) λ̂ plotted against increasing K for a single simulation (green) with default
values of K for unmarked (K = max(count) + 100, dotted) and PRESENCE (K = 200,
dashed) also shown. λ̂ is plotted against increasing K for a different simulation in blue, with
a comparison of λ estimates for a Poisson (solid) and negative-binomial (dashed) mixing
distribution. b) A plot of log(λ̂) versus the smaller eigenvalue of the estimated Hessian
at the maximum-likelihood estimate for K = 200 & 1000 (black), K = 200 (green) and
K = 1000 (red) based upon 1000 simulated datasets. The parameter values used were
T = 2, R = 20, λ = 5 and p = 0.25.
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Web Figure 2: Kernel density estimate for λ̂p from the Poisson N-mixture model, based
upon 1000 simulated datasets for K = 200, T = 2 and R = 20, λ = 5 and p = 0.25.
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Web Figure 3: (a) A plot of λ̂ versus p̂ and (b) log(λ̂) versus log(p̂) rotated 135◦ clockwise
about the origin, for T = 2 (black), T = 3 (blue), T = 4 (green) and T = 5 (red) based upon
1000 simulated datasets for K = 200, R = 20, λ = 5 and p = 0.25. z1 = − 1√

2
logp̂ + 1√

2
logλ̂

and z2 = − 1√
2
logp̂ − 1√

2
logλ̂. In a) the solid line represents the hyperbola for λp and the

straight lines correspond to the known values of p (dashed) and λ (dot-dash). In b) the
straight lines represent the rotated logarithms of λp (solid), p (dashed) and λ (dot-dash).
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Web Appendix 251

Performance of the method-of-moments estimation52

We assess the performance of MOM estimation as a simple method for parameter estimation53

compared to maximum likelihood estimation (MLE) from the N-mixture model. For the54

Poisson case, estimates for where the covariance diagnostic is negative were excluded in this55

comparison. Correspondingly, estimates for the negative-binomial were excluded when one56

or more of the diagnostics was negative. Additionally, for both the Poisson and negative-57

binomial, cases where either the MLE or MOM estimate of λ is finite but large (λ̂ > 100)58

were excluded to provide a fair comparison.59

For the Poisson case, when p = 0.25, the MOM approach only performs better than60

MLE based upon RMSE when T = 2 (Web Table 1). However for smaller p = 0.10, MOM61

estimation performs better for almost all cases (Web Table 2). In the negative-binomial case,62

results are not greatly affected by varying α (Web Tables 3-6). As in the Poisson case, when63

p = 0.25, MOM only outperforms MLE when few visits are made, which is emphasised when64

λ is small. For smaller p = 0.10, MOM often performed better than MLE in terms of RMSE,65

although the difference was reduced for increasing T and λ.66

Method of moments can quickly provide good estimates of λ and p, but it does not67

consistently outperform MLE. We suggest using MOM estimates as sensible starting values68

for optimisation of the N-mixture likelihood.69
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Web Table 1: Comparison of estimation via method-of-moments (MOM) and the N-mixture
model (MLE) for the Poisson case with λ = 2, 5, 10, p = 0.25 and R = 20 for 1000 sim-
ulations. RMSE is the root mean-squared error for λ. The upper bound K for the MLE
was automatically selected such that the tail proportion was 10−10. EPD is the proportion
of simulations discarded when the covariance diagnostic was negative or either estimate of
λ̂ > 100. EPN is the proportion of simulations when both diagnostics were negative.

a) λ = 2

T Method Mean Median RMSE EPD EPN

2
MLE 2.28 1.58 2.49

0.312 0.219
MOM 1.9 1.41 1.5

3
MLE 2.53 1.89 2.66

0.18 0.098
MOM 2.43 1.63 2.61

4
MLE 2.73 2.01 3.19

0.091 0.033
MOM 2.97 1.82 4.03

5
MLE 2.7 2.04 3.11

0.055 0.012
MOM 2.93 1.93 4.37

b) λ = 5

T Method Mean Median RMSE EPD EPN

2
MLE 5.97 3.87 7.92

0.258 0.171
MOM 5.45 3.64 5.72

3
MLE 6.95 4.74 7.97

0.152 0.083
MOM 6.68 4.27 9.01

4
MLE 6.44 4.93 6.74

0.081 0.017
MOM 6.97 4.57 8.29

5
MLE 6.47 5.04 6.03

0.046 0.008
MOM 6.59 4.8 6.63

c) λ = 10

T Method Mean Median RMSE EPD EPN

2
MLE 11.5 8.07 11.52

0.255 0.157
MOM 9.96 7.21 8.79

3
MLE 12.89 9.51 11.72

0.147 0.072
MOM 12.39 8.76 11.82

4
MLE 12.89 9.87 10.72

0.094 0.029
MOM 12.78 9.34 11.44

5
MLE 12.14 10.08 7.82

0.055 0.016
MOM 12.42 9.53 9.87
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Web Table 2: Comparison of estimation via method-of-moments (MOM) and the N-mixture
model (MLE) for the Poisson case with λ = 2, 5, 10, p = 0.1 and R = 20 for 1000 simu-
lations. RMSE is the root mean-squared error for λ. The upper bound K for the MLE
was automatically selected such that the tail proportion was 10−10. EPD is the proportion
of simulations discarded when the covariance diagnostic was negative or either estimate of
λ̂ > 100. EPN is the proportion of simulations when both diagnostics were negative.

a) λ = 2

T Method Mean Median RMSE EPD EPN

2
MLE 1.1 0.77 1.51

0.61 0.52
MOM 0.71 0.61 1.36

3
MLE 1.87 1.12 2.41

0.506 0.377
MOM 1.25 0.94 1.22

4
MLE 2.43 1.4 3.4

0.444 0.283
MOM 1.58 0.98 1.51

5
MLE 2.65 1.58 3.97

0.356 0.214
MOM 1.94 1.21 2.27

b) λ = 5

T Method Mean Median RMSE EPD EPN

2
MLE 3.19 1.97 5.62

0.52 0.424
MOM 2.25 1.67 3.31

3
MLE 4.6 2.84 5.79

0.467 0.331
MOM 3.53 2.18 4.09

4
MLE 6.33 3.63 9.04

0.387 0.235
MOM 5.42 2.7 7.45

5
MLE 6.71 4.08 8.64

0.364 0.203
MOM 5.39 3.09 7.92

c) λ = 10

T Method Mean Median RMSE EPD EPN

2
MLE 6.72 4.01 8.8

0.527 0.451
MOM 4.73 3.17 6.82

3
MLE 10.16 6 12.5

0.433 0.299
MOM 8.21 4.55 11

4
MLE 12.5 7.96 13.99

0.387 0.223
MOM 9.72 5.85 11.73

5
MLE 11.59 7.69 11.78

0.384 0.174
MOM 10.53 6.76 12.59
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Web Table 3: Comparison of estimation via method-of-moments (MOM) and the N-mixture
model (MLE) for the negative-binomial case with λ = 2, 5, 10, p = 0.25, α = 1.25, and
R = 20 for 1000 simulations. RMSE is the root mean-squared error for λ. The upper bound
K for the MLE was automatically selected such that the tail proportion was 10−10. EPD
is the proportion of simulations discarded when either covariance diagnostic was negative
or either estimate of λ̂ > 100. EPN is the proportion of simulations when both diagnostics
were negative.

a) λ = 2

T Method Mean Median RMSE EPD EPN

2
MLE 2.24 1.44 4.22

0.256 0.058
MOM 1.81 1.3 1.67

3
MLE 2.52 1.72 3.52

0.185 0.013
MOM 2.49 1.57 3.33

4
MLE 2.64 1.78 3.6

0.129 0
MOM 2.84 1.71 5.37

5
MLE 2.7 1.84 4.1

0.093 0
MOM 2.89 1.79 5.31

b) λ = 5

T Method Mean Median RMSE EPD EPN

2
MLE 5.42 3.44 8.58

0.258 0.009
MOM 5.2 3.16 7.67

3
MLE 6.43 4.35 8.13

0.192 0
MOM 6.14 3.93 7.8

4
MLE 5.99 4.32 5.82

0.151 0
MOM 6.82 4.34 8.25

5
MLE 5.88 4.56 5.49

0.1 0
MOM 6.63 4.52 7.56

c) λ = 10

T Method Mean Median RMSE EPD EPN

2
MLE 10.66 7.07 11.3

0.287 0.001
MOM 9.32 6.36 9.11

3
MLE 11.49 8.55 9.29

0.207 0
MOM 11.74 7.92 12.1

4
MLE 11.76 8.79 10.52

0.135 0
MOM 11.45 8.38 10.24

5
MLE 11.68 9.12 9.08

0.106 0
MOM 11.44 8.4 10.2
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Web Table 4: Comparison of estimation via method-of-moments (MOM) and the N-mixture
model (MLE) for the negative-binomial case with λ = 2, 5, 10, p = 0.1, α = 1.25, and R = 20
for 1000 simulations. RMSE is the root mean-squared error for λ. The upper bound K for
the MLE was automatically selected such that the tail proportion was 10−10. EPD is the
proportion of simulations discarded when either covariance diagnostic was negative or either
estimate of λ̂ > 100. EPN is the proportion of simulations when both diagnostics were
negative.

a) λ = 2

T Method Mean Median RMSE EPD EPN

2
MLE 1.02 0.64 1.92

0.565 0.401
MOM 0.67 0.51 1.4

3
MLE 1.48 0.91 2.38

0.45 0.187
MOM 1.1 0.8 1.35

4
MLE 1.7 1.06 2.48

0.425 0.097
MOM 1.36 0.9 1.55

5
MLE 2.58 1.38 6.25

0.349 0.044
MOM 1.7 1.08 1.92

b) λ = 5

T Method Mean Median RMSE EPD EPN

2
MLE 2.69 1.68 5.13

0.455 0.161
MOM 1.96 1.41 3.51

3
MLE 3.74 2.29 5.51

0.405 0.048
MOM 3.32 2 4.51

4
MLE 5.19 2.73 8.69

0.364 0.012
MOM 4.47 2.36 6.91

5
MLE 5.46 2.95 8.93

0.348 0.002
MOM 4.53 2.67 7.88

c) λ = 10

T Method Mean Median RMSE EPD EPN

2
MLE 5.79 3.36 9.68

0.439 0.037
MOM 4.28 2.89 7.02

3
MLE 7.63 4.24 11.08

0.373 0.002
MOM 6.13 3.94 7.75

4
MLE 8.84 5.47 10.57

0.373 0
MOM 8.64 5.1 11.67

5
MLE 8.73 5.7 10.27

0.35 0
MOM 8.3 5.14 9.72
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Web Table 5: Comparison of estimation via method-of-moments (MOM) and the N-mixture
model (MLE) for the negative-binomial case with λ = 2, 5, 10, p = 0.25, α = 5, and R = 20
for 1000 simulations. RMSE is the root mean-squared error for λ. The upper bound K
for the MLE was automatically selected such that the tail proportion was 10−10. EPD is
the proportion of simulations discarded when either covariance diagnostic was negative or
either estimate of λ̂ > 100. EPN is the proportion of simulations when both diagnostics
were negative.

a) λ = 2

T Method Mean Median RMSE EPD EPN

2
MLE 2.38 1.6 2.88

0.301 0.151
MOM 1.79 1.32 1.57

3
MLE 2.62 1.88 3.1

0.195 0.052
MOM 2.33 1.67 2.36

4
MLE 2.91 1.95 4.74

0.098 0.011
MOM 2.9 1.91 4.05

5
MLE 2.5 1.98 2.49

0.052 0.003
MOM 2.85 1.86 4.28

b) λ = 5

T Method Mean Median RMSE EPD EPN

2
MLE 6.25 3.89 7.86

0.243 0.065
MOM 5.6 3.6 7.07

3
MLE 6.51 4.47 7.77

0.129 0.01
MOM 6.41 4.13 8.62

4
MLE 6.6 4.86 6.48

0.094 0.001
MOM 6.93 4.67 8.21

5
MLE 6.58 4.88 7.44

0.07 0.001
MOM 6.92 4.64 8.15

c) λ = 10

T Method Mean Median RMSE EPD EPN

2
MLE 11.11 7.55 10.41

0.235 0.02
MOM 10.45 7 10.94

3
MLE 12.08 8.8 11.23

0.153 0
MOM 12.52 8.57 12.35

4
MLE 12.34 9.45 10.68

0.091 0
MOM 12.29 9.01 10.74

5
MLE 11.84 9.51 8.03

0.053 0
MOM 12.44 9.33 10.08
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Web Table 6: Comparison of estimation via method-of-moments (MOM) and the N-mixture
model (MLE) for the negative-binomial case with λ = 2, 5, 10, p = 0.1, α = 5, and R = 20
for 1000 simulations. RMSE is the root mean-squared error for λ. The upper bound K
for the MLE was automatically selected such that the tail proportion was 10−10. EPD is
the proportion of simulations discarded when either covariance diagnostic was negative or
either estimate of λ̂ > 100. EPN is the proportion of simulations when both diagnostics
were negative.

a) λ = 2

T Method Mean Median RMSE EPD EPN

2
MLE 1 0.65 1.44

0.605 0.497
MOM 0.7 0.6 1.4

3
MLE 1.56 1.04 2.15

0.482 0.291
MOM 1.18 0.82 1.28

4
MLE 2.25 1.31 3.45

0.454 0.187
MOM 1.6 1.06 1.62

5
MLE 2.75 1.56 5.47

0.393 0.139
MOM 1.81 1.17 2.05

b) λ = 5

T Method Mean Median RMSE EPD EPN

2
MLE 3.39 1.86 6.29

0.517 0.301
MOM 2.19 1.56 3.32

3
MLE 4.73 2.61 7.9

0.449 0.174
MOM 3.45 2.18 4.17

4
MLE 5.4 3.34 8.1

0.384 0.092
MOM 4.36 2.73 5.7

5
MLE 5.82 3.64 7.9

0.342 0.063
MOM 5.66 2.99 10.01

c) λ = 10

T Method Mean Median RMSE EPD EPN

2
MLE 7.09 4.13 9.52

0.466 0.171
MOM 5.51 3.61 6.99

3
MLE 8.42 5.19 10

0.393 0.075
MOM 7.34 4.55 9.28

4
MLE 9.72 5.96 10.9

0.36 0.045
MOM 9.13 5.55 10.7

5
MLE 9.76 6.65 10.56

0.343 0.015
MOM 9.94 5.85 11.41
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Web Appendix 370

Supplementary tables and figures71
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Web Figure 4: Log(λ̂) from the multivariate Poisson model with T = 3 plotted against the
covariance diagnostic, cov∗(n1, n2, n3) ≤ 0 from (6), based upon 1000 simulated datasets for
R = 20, λ = 2, 5, 10 and p = 0.25. Values at which the covariance diagnostic is negative are
shown by crosses.
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Web Figure 5: Kernel density estimates of λ̂ from the Poisson N-mixture model for R = 50
sites, λ = 5 and p = 0.25 based upon 1000 simulated datasets for T = 2, 3, 4 and K = 100
(red), 500 (blue) and 1000 (black).
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Web Figure 6: Diagnostic 1 (13) versus diagnostic 2 (14) from the multivariate negative
binomial model when T = 3, based upon 1000 simulated datasets for R = 20, λ = 2, 5, 10,
α = 5 and p = 0.25. Values where λ̂ > 500 and λ̂ ≤ 500 are shown by circles and crosses,
respectively.
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Web Figure 7: Diagnostic 1 (13) versus diagnostic 2 (14) from the bivariate negative binomial
model, based upon 1000 simulated datasets for R = 20, λ = 2, 5, 10, α = 1.25 and p = 0.25.
Values where λ̂ > 500 and λ̂ ≤ 500 are shown by circles and crosses, respectively.
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Web Figure 8: Diagnostic 1 (13) versus diagnostic 2 (14) from the multivariate negative
binomial model when T = 3, based upon 1000 simulated datasets for R = 20, λ = 2, 5, 10,
α = 1.25 and p = 0.25. Values where λ̂ > 500 and λ̂ ≤ 500 are shown by circles and crosses,
respectively.
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