
Supplemental Information.

Supplemental Figure 1: *Predicted downstream targets of miR-184.* Based on bioinformatics analyses, 11 candidate binding sites in Wnt ligands (A) and Wnt-related receptors (B) were selected for the miRNA target verification assays.

Supplemental Figure 2: *Verification of downstream target of miR-184.* Predicted binding site of the potential downstream targets of miR-184 was cloned into a miRNA target assay vector (pmirGLO, Promega, Madison, WI). The miRNA assay vector either containing scrambled sequence of miR-184 (scrambled, negative control), reverse-complementary sequence of miR-184 (**MIR-184**, positive control) or predicted target sequence of miR-184 (indicated target genes, Suppl. Fig. 1A and 1B) were co-transfected with 25 nM of either negative control miRNA (Nc) or miR-184 mimic (miR-184) into 293A cells and dual-luciferase assay was conducted at 48 hr post-transfection. Luciferase-based assay indicated the results on Wnt ligands (A) and Wnt-related receptors (B), respectively. These results showed that the expression of luciferase with the target site of *Fzd7* was significantly decreased by miR-184, while others showed insignificant changes or just minor reductions of firefly luciferase (mean \pm SEM, n=3, * p<0.05, ** p<0.01, *** p<0.001 by student t-test).

(A)	(B)
Wnt9a-1 5' U ACAU C 3' ACC UUAG UCUCUGUCC UGG AGUC AGAGGCAGG	Fzdl 5'G U G 3' GCCC AUCA UUUUCC GUCCG UGGG UAGU AAGAGG CAGGU
miR184 3' GAAU A U 5'	miR184 3' AA C 5'
Wnt9a-2 5' G C GC 3' CUUU UCAGUU CUCUGUCC	Fzd4-1 5' A AU A 3' GCCCUUA GUUU UGUCCA UGGGAAU CAAG GCAGGU
GGAA AGUCAA GAGGCAGG miR184 3'UG U U 5'	miR184 3' AGU AG 5'
Wnt10b-1 5' A UGC A G 3' GCCCUU UCGG UUUCUGUCUA UGGGAA AGUC AGAGGCAGGU	Fzd7-1 5' G G UUUCCCC G C 3' GCC CUUGUC UUCUC UGUCCG UGG GAAUAG AAGAG GCAGGU
miR184 3' U A 5'	miR184 3' UC 5'
Wnt10b-2 5' G GGA C U U 3' GCUCUUG GG UUCUCC UCCG UGGGAAU UC AAGAGG AGGU	Fzd7-2 5'U CCU C A 3' GCCC UC UUCCGUCCA UGGG AG GAGGCAGGU
miR184 3' AG C 5'	miR184 3' AAU UCAA 5'
Whtl6 5' G UUGCCU GGGACUGCUGAUAG U 3' 5'end CCUUAUC AG UCUCUGUCC GGAAUAG UC AGAGGCAGG	GCCCU UC UUUCUGUUC
GGAAUAG UC AGAGGCAGG miR184 3'UG A U 5'	miR184 3' AU UCA U 5'
	Notch2 5' U GA G 3' GCCC CGG CUCUGUCCA UGGG GUC GAGGCAGGU
	miR184 3' AAUA AA 5'

Suppl. Fig. 1 Y Takahashi et al

Suppl. Fig. 2 Y Takahashi et al