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S1. Cluster Analysis

Overview: Dissimilarity

Common measures of dissimilarity for data include Euclidean distance [12], ‖x− y‖ =
√∑p

i=1(xi − yi)2

where x and y are p-vectors of measurements on the objects to be clustered. Also, Manhattan distance
dxy =

∑p
i=1 |xi − yi| is used, and the “1-correlation” distance is defined as follows

dxy = 1− ρxy = 1−
∑p
i=1(xi − x̄)(yi − ȳ)

[
∑p
i=1(xi − x̄)2]1/2[

∑p
i=1(yi − ȳ)2]1/2

(S1)

The 1-correlation distance is bounded in [0, 2]. This dissimilarity is invariant to changes in location or scale
of either x or y. The 1-correlation dissimilarity can be related to the more familiar Euclidean distance:
if x̃ = x−x̄√∑

i(xi−x̄)2/p
and ỹ = y−ȳ√∑

i(yi−ȳ)2/p
, then ‖x̃− ỹ‖2 = 2p(1 − ρxy). That is, squared Euclidean

distance for standardized objects is proportional to the correlation of the original objects. For microarray
data, the choice of a dissimilarity measure makes it a popular choice for biological applications. Changes
in the average measurement level or range of measurement from one sample to the next are effectively
removed by this dissimilarity.

Missing data and corruption

Suppose we have large corruptions or outliers in data. If we use existing clustering method based on
Euclidean distance, these corruptions or outliers can distort measure of dissimilarity and thus may lead
to improper clustering. We propose the method to handle these outliers before calculating the correlation
and thus, we can provide more appealing clusters.

For example, we consider highly-correlated signal xL = sin(t)+n1 and yL = sin(t)+n2 where t is time
step and n1, n2 are Gaussian noise N (0, σ). Now, we add a sparse corruption (xS) to the original signal
(xL) as shown in S4 Fig. (a) and calculate the dissimilarity between xcorr(= xL+xS) and ycorr(= yL+0).
Even though we choose the d-sparse corruption of xS where d(� p) is the number of nonzero component
in xS , the correlation is degraded as shown in S4 Fig. (b)(left). Assuming that we know the corruption
signal xS and yS , we can decompose xcorr, ycorr as φ =

[
xL;xS

]
∈ R2p and ψ =

[
yL; yS

]
∈ R2p

respectively. In S4 Fig. (b)(middle), the red square represents the corruption signal where yS = 0. Since
corruption signal changes the mean and the variance, the correlation is still degraded in (b)(middle). We
introduce γ as a turning parameter so that we allow different weighting factors for (xL, yL) and (xS , yS)
respectively. For example, we choose small γ for the corruption signal (xS , yS).

Therefore, in order to deal with corrupted signals or abnormal responses and cluster them, we should
separate the original signal from these corrupted or abnormal signals first and then calculate the dissim-
ilarity with adjusting weighting factor γ. Without considering dynamics (static data), these corrupted
data may simply represent outliers. However, when we include dynamics, they may represent meaningful
or condition-specific responses.

Our approach: a new 1-correlation distance

We rewrite the “1-correlation” distance (S1) as dxy = 1 − x̃ · ỹ
‖x̃‖ ‖ỹ‖

where x, y ∈ Rp, x̃ , x − x̄ · 1p,

ỹ , y − ȳ · 1p and 1p =
[
1 ... 1

]︸ ︷︷ ︸
p

and consider the separation as follows: φ =

[
xL
xS

]
∈ R2p and ψ =



[
yL
yS

]
∈ R2p where x = xL + xS, y = yL + yS and the subscript L,S represent low-rank component and

sparse component. We define “1-correlation” distance for φ, ψ as follows:

dφψ = 1− ρφψ = 1−
∑2p
i=1(φi − φ̄)(ψi − ψ̄)

[
∑2p
i=1(φi − φ̄)2]1/2[

∑2p
i=1(ψi − ψ̄)2]1/2

(S2)

where φ̄ = 1
2p

∑2p
i=1 φi = 1

2 x̄ and ψ̄ = 1
2p

∑2p
i=1 ψi = 1

2 ȳ. The relation between dxy(= 1 − ρxy) and

dφψ(= 1− ρφψ) is as follows:

dxy = 1− φ̂ · ψ̂∥∥∥φ̂∥∥∥∥∥∥ψ̂∥∥∥ and dφψ = 1− φ̃ · ψ̃∥∥∥φ̃∥∥∥∥∥∥ψ̃∥∥∥
where x̃ , x− x̄ · 1p =

[
Ip Ip

] [xL − x̄
2 · 1p

xS − x̄
2 · 1p

]
=
[
Ip Ip

]
(φ− φ̄ · 12p) ,

[
Ip Ip

]
φ̃, ỹ ,

[
Ip Ip

]
ψ̃, Ip is

p-dimensional identity matrix, φ̂ = 1√
2

[
Ip Ip
Ip Ip

]
φ̃ , Pxyφ̃, ψ̂ = Pxyψ̃, P>xyPxy =

[
Ip Ip
Ip Ip

]
=
√

2Pxy � 0

and P>φψPφψ = 1 · Pφψ =

[
Ip 0p
0p Ip

]
� 0.

Therefore, dxy uses the mixture of low-rank component and sparse component but dφψ calculates the
correlation based on the separation. Also, in order to adjust the weighting factor as shown in S4 Fig.

(b)(right), we simply denote Pφψ =

[
Ip 0p
0p γIp

]
where γ is a weighting factor.

In fact, when the sparse component is zero, i.e., there is no corruption or outliers in the input data,
xL = x and yL = y. Then, the proposed method is identical to use 1-correlation, i.e., dxy = dφψ. In other
words, since we propose a modification of existing clustering method by separating the input data into the
low-rank component and the sparse component, the proposed method is more general than 1-correlation
metric.

Thus, even though a data set is partially corrupted or includes aberrant responses across different
perturbations or cell lines (i.e., sparse component is nonzero), the proposed method (dφψ) still be able
to calculate correct measures of dissimilarity by adjusting meaningful or condition-specific responses as
shown in S4 Fig. (b). Also, in the missing value problem, since the sparse component represents the
corruption which is not important, we can use only the low-rank component for clustering.




