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Germany; 4Experimental and Clinical Research Center, Max-Delbrück Center for Molecular Medicine and Charité Universitätsmedizin Berlin,
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ABSTRACT Oscillatory behavior of mitochondrial inner membrane potential (DJm) is commonly observed in cells subjected to
oxidative or metabolic stress. In cardiacmyocytes, the activation of inner membrane pores by reactive oxygen species (ROS) is a
major factor mediating intermitochondrial coupling, and ROS-induced ROS release has been shown to underlie propagated
waves of DJm depolarization as well as synchronized limit cycle oscillations of DJm in the network. The functional impact of
DJm instability on cardiac electrophysiology, Ca2þ handling, and even cell survival, is strongly affected by the extent of such in-
termitochondrial coupling. Here, we employ a recently developed wavelet-based analytical approach to examine how different
substrates affectmitochondrial coupling in cardiac cells, andwe also determine the oscillatory coupling properties ofmitochondria
in ventricular cells in intact perfusedhearts. The results show that the frequencyofDJmoscillations varies inverselywith the sizeof
the oscillatingmitochondrial cluster, and depends on the strength of local intermitochondrial coupling. Time-varying coupling con-
stants could be quantitatively determined by applying a stochastic phase model based on extension of the well-known Kuramoto
model for networks of coupled oscillators. Cluster size-frequency relationships varied with different substrates, as did mitochon-
drial coupling constants, whichwere significantly larger for glucose (7.78� 10�25 0.98� 10�2 s�1) and pyruvate (7.49� 10�25
1.65�10�2 s�1) than lactate (4.83�10�251.25�10�2 s�1) orb-hydroxybutyrate (4.11�10�250.62�10�2 s�1). The findings
indicate that mitochondrial spatiotemporal coupling and oscillatory behavior is influenced by substrate selection, perhaps through
differing effects on ROS/redox balance. In particular, glucose-perfusion generates strong intermitochondrial coupling and tempo-
ral oscillatory stability. Pathological changes in specific catabolic pathways, which are known to occur during the progression of
cardiovascular disease, could therefore contribute to altered sensitivity of themitochondrial network to oxidative stress and emer-
gent DJm instability, ultimately scaling to produce organ level dysfunction.
INTRODUCTION
Oscillatory behavior in mitochondria was reported more
than 40 years ago and DJm instability, ranging from local-
ized flickers to synchronized mitochondrial network oscil-
lations, has been observed in intact cells subjected to
oxidative, ischemic, or metabolic stress by numerous inves-
tigators (for review, see Aon et al. (1)). In cardiac myocytes,
the latticelike morphological organization of the mito-
chondrial network lends itself to complex spatiotemporal
phenomena, including DJm oscillations and waves (2), os-
cillations of individual (3,4) or clusters of mitochondria (5),
and network-wide limit-cycle oscillations in cells (6–8) and
tissues (9). Reactive oxygen species (ROS)-induced ROS
release (10) among neighboring mitochondria, leading to
self-organized synchronization of oscillators, is the leading
mechanistic explanation for this type of intermitochondrial
communication (5,11), although Ca2þ-dependent coupling
might also occur during cellular Ca2þ overload (12).
Pathophysiological conditions can render the mitochondrial
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network hypersensitive to widespread DJm collapse or self-
organized oscillation, a state referred to as ‘‘mitochondrial
criticality’’ (13,14). When such a threshold is crossed, mito-
chondrial oscillators organize into clusters that can span a
subregion of the cell or the whole volume of the myocyte
(15,16). Understanding how DJm oscillations are organized
in time and space is important because the magnitude of the
effects of DJm loss on cardiac electrophysiology (17,18),
excitation-contraction coupling (16), and cell survival (19)
increases as more and more of the network becomes depo-
larized, potentially scaling to whole organ dysfunction, for
example, causing lethal arrhythmias or myocardial injury
during ischemia reperfusion (17).

Mitochondrial synchronization phenomena (i.e., DJm

waves or oscillations) have been demonstrated previously
for mitochondria in myocytes of intact perfused hearts
(20), where the cells are physically and electrically con-
nected through gap junctions; however, it is not known
whether the same spatiotemporal mitochondrial network
properties apply. Additionally, little is known about the ef-
fects of different metabolic substrates on mitochondrial
cluster frequency dynamics. The latter might be relevant
http://dx.doi.org/10.1016/j.bpj.2015.01.040
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to the known changes in energy substrate utilization in heart
failure (21) and diabetic cardiomyopathy (22).

To address these questions, we have developed wavelet-
based analyses of DJm (TMRE fluorescence) oscillations
of individual mitochondria in cardiac myocytes under patho-
physiological conditions, which can provide a dynamic
frequency for each oscillating mitochondrion (23). This
allows for detailed classification and analysis of the cluster
organization of mitochondria with similar frequencies (7).
For mitochondria belonging to the major frequency cluster,
the overall cluster size was found to be inversely correlated
with the cluster’s mean frequency, suggesting that cluster
synchronization to a common oscillatory mode takes longer
for larger clusters due to diffusion-mediated processeswithin
the coupling medium (7,24).

To quantify how coupling strength contributes to synchro-
nization among mitochondrial oscillators, we take the
analysis further by applying an extended Kuramoto-type
model for weakly coupled oscillators to determine coupling
constants of the network under different metabolic condi-
tions. Recent studies have used this approach to explain
how circadian networks are synchronized through intrinsic
frequencies that drift in time (25,26). Most of these models
describe phase dynamics through a sinusoidal phase
coupling term with a time-independent coupling constant;
however, for cardiac myocytes, the observed dynamic tran-
sitions in the organization of mitochondrial oscillations
suggest that there is time-varying mitochondrial coupling
as well, which we take into consideration in this study.

Thesemethods are applied to determinewhethermitochon-
drial oscillations in the intact heart are similar to those in iso-
lated myocytes, and whether substrate selection differentially
modulates the dynamics of mitochondrial oscillations.
MATERIALS AND METHODS

Experimental methods

All experiments have been conducted on intact guinea pig hearts or freshly

isolated adult guinea pig ventricular myocytes according to previously

described protocols (15,16,27) and in accordance with the Guide for the

Care and Use of Laboratory Animals (No. 85-23, 1996, National Institutes

of Health, Bethesda, MD) and The Johns Hopkins Animal Care and Use

Committee (for more information, we refer to the Supporting Material).

Intact heart experiments

DJm imaging data (Fig. 1 A) corresponds to a retrogradely-perfused heart

imaged using a laser scanning two-photon microscope, as described in detail

in Slodzinski et al. (20). In brief, the cationic potentiometric fluorescent dye

TMRE (tetramethylrhodamine ethyl ester)was used tomonitorDJm and im-

ages were recorded with a two-photon laser-scanning microscope (MRC-

1024MP; Bio-Rad, Hercules, CA) with an excitation at 740 nm (Tsunami

Ti:Sa laser; Spectra-Physics, Santa Clara, CA) and an emission band at

605 5 45 nm. Contractile motion was arrested by perfusion with Tyrode

solution containing 20 mM BDM (butanedione monoxime) to suppress

contraction (see Whole Heart Preparation in the Supporting Material), and

single laser flashes were applied to the region marked by the yellow boxes

in Figs. 1 A and S1 A in the Supporting Material.
Isolated cardiomyocyte experiments

Freshly isolated myocytes (Fig. 1 B) were loaded with 100 nM TMRE at

37�C in a thermostatically controlled flow chamber mounted on the stage

of an upright epifluorescence microscope (BX61WI; Olympus, Waltham,

MA). Their oscillatory behavior was assayed in the presence of different

metabolic substrates. Myocytes were visualized with an objective 25�/

1.05 W MP and images were acquired using a multiphoton-excited fluores-

cence Fluoview FV1000 MPE (Olympus) and a Deep Sea ultrafast system

scanning laser (Mai Tai, Waltham, MA). Images were recorded with exci-

tation at 740 nm and the red emission of TMRE collected at 605 nm using a

578–630 nm band-pass filter.

For imaging, myocytes were perfused with Tyrode solution (pH 7.5) con-

taining 1 mMCa2þ in the presence of 10 mM: glucose or pyruvate or lactate

or b-hydroxybutyrate, as indicated. Oscillations were triggered with a local-

ized (5 � 5 mm) laser flash, as previously described in Aon et al. (15).
Selection and processing of individual
mitochondrial TMRE signals

Epicardial images of the perfused heart were examined and cells showing

mitochondrial DJm oscillations, defined by a decrease of >10% in the

whole cell TMRE fluorescence, were analyzed (Fig. 1 A). Myocyte borders

along sarcolemma and intercalated disks were manually applied on a pixel-

by-pixel basis and grid templates representing the minimal mitochondrial

cluster size (typical 1–2 mitochondria per sarcomere), excluding the nu-

clear region, were constructed for each selected myocyte (Fig. 1 A).

Individual mitochondrial TMRE signals were extracted from stacks of re-

corded frames of an isolated myocyte by manually applying a grid template

to heart myocytes on time-averaged stack images. Further spatiotemporal

processing was done using wavelet analysis (7,23) (Fig. 1 C), as previously

described in Kurz et al. (7,23). Selection of wavelet parameters, cutoff fre-

quencies, normalization of mitochondrial TMRE signals, and determination

of maximal wavelet power frequencies were carried out as described previ-

ously in Kurz et al. (7,23). (A more detailed description can be found

in Selection and Processing of TMRE Fluorescence from Individual Mito-

chondria in Isolated Cardiac Myocytes in the Supporting Material.)
Computational model

To study mitochondrion-to-mitochondrion coupling within clustered and

nonclustered mitochondria, we sought to develop a minimum-order model

that employs two parameters to characterize coupling: a mitochondrion-to-

mitochondrion coupling constant, and the intrinsic oscillatory frequency.

Identification of mitochondrial nearest neighbors was used as in Kurz

et al. (7) to determine the mitochondrial network’s structural morphology.

To examine the network’s connectivity properties, intermitochondrial

coupling was only considered for local nearest-neighbor environments.

Wavelet phases were extracted from each individual mitochondrial

TMRE (for more details, see Selection and Processing of TMRE Fluores-

cence from Individual Mitochondria in Isolated Cardiac Myocytes in the

Supporting Material.) Wavelet frequencies are nondifferentiable in time

at points of frequency change (phase singularity), therefore, wavelet fre-

quencies were taken as dynamical wavelet phase updates with the value

of the actual wavelet frequency as the starting point. The resulting updated

wavelet frequency was median-filtered to correct for frequency changes at

phase singularities.

Within the stochastic coupling model of the mitochondrial network,

mitochondrial intrinsic frequencies are modeled as Ornstein-Uhlenbeck fre-

quencies that drift in time towards the respective measured mitochondrial

frequency (26,28),

dum

dt
¼ �gðum � mmÞ þ hmðtÞ; (1)
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FIGURE 1 Oscillating mitochondria in two-photon images of

TMRE-fluorescent intact guinea-pig heart tissue and isolated car-

diomyocytes. (A) Within the optical slice of the perfused heart,

cardiac myocytes were selected according to observed depolariza-

tions. Myocyte borders along the sarcolemma and intercalated

disks as well as mitochondrial grids were manually applied on a

pixel-by-pixel basis. (Yellow boxes) Laser-flashed regions of the

myocytes. (B) Isolated cardiac myocyte (left side of panel) and

the same myocyte with an overlaid grid to consider single mito-

chondria (right side of panel), e.g., mitochondrion 112 (mito-

chondrion 112 denotes the numerical identifier of the selected

mitochondrion). (C) TMRE intensity time plot of mitochondrion

112 from (B) and the corresponding absolute squared wavelet

transform (lower panel). Visibly, the mitochondrion oscillates be-

tween 20 and 40 mHz during the recording. (D) Frequency distri-

bution maps obtained from a different cardiac myocyte. (Upper

panel) Time evolution of the averaged frequency of all mitochon-

dria. For two time-points (red dots), the mitochondrial frequency

distribution is shown (lower panels): mitochondrial frequency

values are put in the respective mitochondrial position and missing

pixels are interpolated (see main text for details). The majority of

mitochondria oscillate between 14 and 16 mHz. Some of them

also have a highly correlated signal at the same time t, thus consti-

tuting the major mitochondrial cluster at time t as used in the text.
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where mm represents the mean frequency towards which the intrinsic mito-

chondrial frequency is drifting, hm is a Gaussian white noise source with

variance s2h ¼ 2gs2m, g represents the decay rate, and s2m is the amplitude
Biophysical Journal 108(8) 1922–1933
of mitochondrial frequency fluctuations (25,26). The mean frequency mm
was chosen as the time-dependent wavelet frequency of the m-th mitochon-

drion, whereas the free constant g was assumed to be identical for each
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FIGURE 2 Schematic of local intermitochondrial coupling. In the sto-

chastic phase model, intermitochondrial coupling was only considered for

the local nearest-neighbor environment, thus providing an average coupling
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mitochondrion in the network. The frequency fluctuation amplitude mea-

sure, sm, for each mitochondrion, was taken as the standard deviation of

the measured mitochondrial wavelet frequency. Discrete dynamical updates

were performed to calculate the mitochondrial intrinsic frequencies (29).

Local mitochondrial coupling was considered to be of local mean field

type, and local mean field parameters Rm(t) and jm(t), corresponding to

mitochondrion m, are defined as

RmðtÞe2ipjmðtÞ ¼ 1

jLmj
X

j˛Lm

e2ip4jðtÞ; (2)

where Lm is the set of nearest neighbors of a mitochondrion (compare to

Rougemont and Naef (25,26)) and jLmj is the number of nearest neighbors.

This corresponds to phase differential equations of the form

v4mðtÞ
vt

¼ umðtÞ þ KmðtÞRmðtÞsinð2pðjmðtÞ � 4mðtÞÞÞ (3)

for each mitochondrion m.

Maximum likelihood estimation was applied to optimize the model

parameter g within the interval [0,1]. With the optimal decay rate param-

eter, the coupling constants Km(t) were evaluated for 10 different starting

points um(0) and 100 different dynamically evolving Ornstein-Uhlenbeck

frequencies um, respectively, as above.

constant K for each mitochondrion (symbolized by the light-colored cloud).

To see this figure in color, go online.
Stochastic phase model

Because mitochondrial DJm oscillations exhibit dynamically changing fre-

quencies, we extended the Kuramoto model to include frequencies that can

drift in time. This can be done by introducing a second timescale 1/g, g

being a measure of the stability of the phase oscillator (26), to model fre-

quency dynamics as Ornstein-Uhlenbeck processes (25,26).

InOrnstein-Uhlenbeck processes, the frequency dispersion sm is ameasure

of frequency noisewhereasg is a measure of the intrinsic frequency to adhere

to a fixed frequency mm, thus revealing the stability of the oscillator (compare

to Lemons (29)). Variation ofg follows exponential dynamics: large g-values

yield intrinsic frequencies that are more dependent on the Gaussian white-

noise term, and thus show a stronger drift than those with small g (26,30).

In addition to dynamically changing intrinsic frequencies, phase coupling

was assumed to underlie dynamical changes as well, to be unique for each

mitochondrion and, for each mitochondrion and its nearest neighbors, to be

of local mean field type (Fig. 2). Each mitochondrion’s wavelet frequency

wasdetermined according toprotocols established in2010 (7,23) and eachmi-

tochondrion’s frequency fluctuation amplitude sm was taken as the standard

deviation of the measured mitochondrial wavelet frequency. Moreover, the

mean frequency towardwhich the intrinsic frequencies drift in timewas taken

as the time-dependentmitochondrial wavelet frequency, thus leaving only the

decay rate parameter g fixed for all mitochondria in a cardiac myocyte.
Statistics

The wavelet analysis fitting routines were obtained using the software

MATLAB (Ver. 7.1.0.246, R14, The MathWorks, Natick, MA). Further sta-

tistics were performed using the software ORIGINPRO 8 (SR0 Ver. 8.0724,

B724, OriginLab, Northampton, MA).
RESULTS

Frequency and cluster-size relationship in whole
heart

To examine whether the individual mitochondrial TMRE
signals in the intact heart exhibit dynamic properties similar
to those of isolated cardiac myocyte, the time course of
mitochondrial fluorescence was extracted from a hand-
drawn grid of recorded stack images averaged over time.
Because the mitochondrial signal is nonstationary in time,
wavelet transforms are an adequate time-frequency repre-
sentation for temporal processing (31). This approach al-
lowed us to filter all mitochondria with similar dynamical
frequency behavior in order to identify mitochondrial fre-
quency clusters and examine their spatial correlates (7). In
brief, frequency histograms were obtained for each myocyte
at every time-point t and the maximum peak of mitochon-
dria with similar frequencies, i.e., mitochondria belonging
to a (major) frequency cluster, was determined as the major
cluster peak.

Subsequently, mitochondria belonging to peaks neigh-
boring the major cluster peak were incorporated into the
cluster if their signal at t was highly correlated to the cluster
signal. More details can be found in Kurz et al. (7) and in
Selection and Processing of TMRE Fluorescence from Indi-
vidual Mitochondria in Isolated Cardiac Myocytes in the
Supporting Material. In Fig. 1 D, the distribution of fre-
quencies for a glucose-perfused isolated myocyte is exem-
plarily shown in a two-dimensional image at two specific
time-points (lower panel; the lower cutoff frequency is
8.2 mHz). To achieve this, the values of mitochondrial fre-
quencies were placed at the pixel-positions of the respective
mitochondrion and missing intermitochondrial pixels were
interpolated using the GRIDDATA function in the software
MATLAB (Ver. 7.6.0.324, R2008a). For the first time-point,
it can be seen that many mitochondria that are distributed
all over the cell show similar frequencies between 14 and
16 mHz. They belong to the major cluster. Yet, the second
Biophysical Journal 108(8) 1922–1933
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image at a later time-point shows a slightly different fre-
quency distribution with most frequencies being located at
~14 mHz. There is also a newly formed smaller pocket or
cluster of mitochondria with frequencies >16 mHz on the
right-hand side of the myocyte, that does not necessarily
belong to the major frequency cluster.

As in the case of isolated cardiac myocytes, major cluster
mitochondria were found for each cardiac myocyte
with signs of depolarization during TMRE recording of
glucose-perfused hearts (N ¼ 2), close to the left anterior
descending coronary artery. We observed that the inverse
relationship between relative cluster area and number, as
observed in isolated cardiac myocytes, could be confirmed
(Fig. 3). Therefore, this indicates that large clusters have a
longer oscillation period than small clusters, not only in
the case of isolated myocytes, but also for connected cardiac
myocytes in the intact heart. However, an inverse relation-
ship between mean cluster radius and frequency could
only be verified for one of the two whole heart preparations.
The mean cluster radius is found to be in a range approxi-
mately one-half the size of that of isolated glucose-treated
cardiac myocytes.

The rate of change of mean cluster radius with respect
to the cluster frequency for glucose-treated myocytes in
the intact heart preparation was �0.14 5 0.01 mm/mHz
(Fig. 3 A, and see also Fig. S1 B). Summary statistics
of mitochondrial frequency distributions of major cluster
mitochondria for all cardiac myocytes of the respective
whole heart yields frequency ranges of 10.30–58.1 mHz
(Fig. 3 C). Evidently, the range of mitochondrial frequencies
in intact heart myocytes is significantly broader than in
isolated myocytes, i.e., mitochondria generally oscillate at
A B

C D
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higher frequencies in the intact heart (see also Fig. S1 B).
In Fig. 3 A, this leads to a mean cluster radius of ~11–17
mm for this preparation.

The rate of change of % area versus frequency for
cardiac myocytes was determined as �2.44 5 0.10 %/mHz
(Fig. 3 B). Likewise, the % number of cluster mitochondria
versus frequency gave a rate of change of �2.37 5 0.10
%/mHz (Fig. 3 D). Therefore, for recordings with glucose-
perfusion, the respective rate of change of% area and number
versus frequency in intact heart cardiacmyocytes is ~18–19%
smaller than in isolated cardiac myocytes. Also, the results
point out that clusters at whole myocyte level in whole heart
preparations have higher frequencies than those in isolated
cardiac myocytes. Similar results have been achieved
with another optical slice of the intact perfused heart (see
Fig. S1, A and B).
Frequency and cluster-size relationship in
isolated myocytes

Having demonstrated that mitochondria in the isolated my-
ocyte exhibit properties similar to those in the intact heart,
we sought to examine the mitochondrial properties in cardi-
omyocytes challenged with different substrates.

Major cluster mitochondria were determined for myo-
cytes treated with pyruvate, b-hydroxybutyrate, lactate, or
glucose, respectively. Subsequently, the relative area of
cluster mitochondria (quotient of total cluster pixel-count
and myocyte pixel-count) was plotted against the mean fre-
quency of the cluster (Fig. 4). Similarly, the relative number
of cluster mitochondria (quotient of the number of cluster
mitochondria versus the total number of mitochondria)
FIGURE 3 Mitochondrial major cluster proper-

ties of cardiac tissue of a guinea pig heart. Depicted

are the results obtained from the analysis of seven

myocytes for (A) mean cluster radius versus fre-

quency; (B) cluster area normalized by the full my-

ocyte area versus frequency; (C) distribution of

mitochondrial frequencies for all cluster mitochon-

dria across all myocytes; and (D) cluster mitochon-

dria count normalized by the total number of

mitochondria for the major cluster versus fre-

quency. In the plots, we have (black) mean curve;

(red) standard error bars. The apparent discrepancy

between the frequency range in (A) and in (B)–(D)

is due to interpolation errors in (A). A similar figure

for another optical slice of perfused heart tissue can

be found in Fig. S1. To see this figure in color,

go online.
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FIGURE 4 Mitochondrial cluster area normal-

ized by the full myocyte area as a function of fre-

quency. Results obtained for isolated cardiac

myocytes perfused with Tyrode solution pH 7.5

containing 1 mM Ca2þ and 10 mM of pyruvate

(A, n ¼ 10), b-hydroxybutyrate (B, n ¼ 14), lactate

(C, n ¼ 7), or glucose (D, n ¼ 9). To see this figure

in color, go online.
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was plotted against the mean frequency (see Fig. S3). Also,
measures for cluster size were compared with the mean fre-
quency of the cluster mitochondria by relating the mean
cluster radius (the distance of the geometrical center of
the cluster to each single cluster mitochondrion’s geomet-
rical center averaged over all cluster mitochondria) and
the mean frequency of the cluster (see Fig. S2). The inverse
relationship among mean mitochondrial mean cluster
radius, relative cluster area, and number is obvious and
has already been shown for glucose-treated cardiac myo-
cytes (7). This suggests that, throughout all sets of myocytes
that are treated with respective substrates, large clusters
have a longer oscillation period than small clusters.

Frequency distributions of mitochondria for each specific
substrate group were determined as previously described in
Kurz et al. (7) (see also Fig. S4). For glucose-treated myo-
cytes, this gives a frequency bandwidth of 8.73–22.3 mHz.
In comparison, pyruvate-treated myocytes show a more
dispersed frequency distribution that ranges from 3.7 to
54.83 mHz, whereas myocytes from the lactate group are
more narrowly distributed with frequencies in the range
3.9–15.0 mHz. Finally, myocytes that were treated with
b-hydroxybutyrate mostly displayed major cluster oscilla-
tions in the low frequency range of 4.0–10.1 mHz.

The cluster size can be estimated more precisely by the %
area of the cluster (quotient of the area of cluster mitochon-
dria and whole myocyte area, Fig. 4). The rate of change
of % area versus frequency for glucose-, pyruvate-, lactate-,
and b-hydroxybutyrate-treated cardiac myocytes was
given as �2.96 5 1.11 %/mHz, �4.01 5 0.07 %/mHz,
�2.90 5 0.07 %/mHz, and �4.86 5 0.07 %/mHz, respec-
tively. Similar results were obtained for the % number of
cluster mitochondria (see Frequency and Cluster-Size Rela-
tionship in Isolated Myocytes in the Supporting Material).
It appears that cardiac myocytes from the b-hydroxybutyrate
group show the strongest change of % area versus frequency,
i.e., ~64% more than glucose-treated myocytes. Pyruvate-
treated myocytes show a rate of change of % area versus fre-
quency that is ~35% higher than myocytes from the glucose
group. Cardiac myocytes from either the lactate or the
glucose group exhibit similar rates of change of%area versus
frequency. In addition, myocytes from the b-hydroxybuty-
rate group show % area versus frequency changes at moder-
ately low frequencies of<20mHz unlike the other substrates
that exhibit % area changes at slightly higher frequencies,
especially in glucose-treated cardiomyocytes. Interestingly,
the two substrates leading to the most reduced redox poten-
tial, pyruvate and b-hydroxybutyrate, have a higher % area
of the cluster. Generally, a more rapid drop in % cluster
area in nonglucose substrates indicates smaller clusters and
lower frequencies as compared with glucose. This is the pic-
ture of amore fragmented population of oscillators in smaller
clusters, a conclusion reinforced by the higher frequency
dispersion exhibited by the oscillators (Fig. S4).
Cluster oscillation coherence

There is no significant change in the coherence of the cluster
mitochondria during the recording across substrate groups,
thus indicating high temporal stability of the respective
oscillating cluster mitochondria (see Fig. S5). However,
coherence of cluster mitochondria averaged in time were
Biophysical Journal 108(8) 1922–1933
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highest in glucose-treated cardiac myocytes at 0.665 0.04,
whereas coherence values in the pyruvate-, lactate-, and
b-hydroxybutyrate-treated substrate groups were 0.40 5
0.03, 0.49 5 0.04, and 0.49 5 0.03, respectively. The
coherence values between mitochondria that do not belong
to the major cluster were determined to be 0.44 5 0.04,
0.39 5 0.04, 0.46 5 0.04, and 0.39 5 0.03 for glucose-,
pyruvate-, lactate-, and b-hydroxybutyrate-treated cardiac
myocytes, respectively. Thus, noncluster mitochondria
coherence properties were similar for different substrates,
exhibiting a relatively high degree of coherence. As sug-
gested in Kurz et al. (7), this may be due to stable oscilla-
tions of noncluster mitochondria at frequencies that are
different from the frequencies at which major cluster mito-
chondria oscillate.

The difference in coherence between cluster and nonclus-
ter mitochondria for glucose-treated myocytes (7) remains
valid for all substrate groups, although it is less pronounced
in lactate and pyruvate. This might be due to a decreased
level of mitochondrial nearest-neighbor coupling during
each depolarization/repolarization. Specifically, in pyru-
vate-treated cardiomyocytes, smaller and more topologi-
cally dispersed ensembles of major cluster mitochondria
were observed. This increases the number of mitochondria
within the major cluster that have at least one noncluster
nearest-neighbor mitochondrion. Also, the number of
noncluster nearest neighbors for the majority of individual
cluster mitochondria is increased, thus, taken together,
providing a lower averaged temporal coherence between a
cluster mitochondrion and its nearest neighbors.
Forward model and model validation

To study mitochondrion-to-mitochondrion coupling be-
tween cluster and noncluster mitochondria, we sought
to develop a minimum-order model that employs two
parameters to characterize the coupling: a mitochondrion-
to-mitochondrion coupling constant and the intrinsic
mitochondrial oscillatory frequency. Such a quantification
of intermitochondrial coupling may serve to identify hubs
of highly connected mitochondria within ventricular myo-
cytes and thus may contribute to further examine synchroni-
zation properties of the mitochondrial network. In addition,
individual mitochondrial coupling constants can be used to
stochastically simulate large mitochondrial networks and
identify possible threshold parameters that may characterize
the cell’s descent towards death.

Forward modeling for whole-cell intensity signals with
myocyte-specific optimal decay parameter g and mitochon-
drial coupling constants was performed by cross-correlating
the cosine of the whole-cell TMRE signal wavelet phase
with the sum of cosines of the forward-modeled phases of
the stochastic model (Figs. S8 and S9).

High correlation coefficients indicate the similarity of
predicted signals and the recorded signals, providing valid-
Biophysical Journal 108(8) 1922–1933
ity for the acquired coupling constants. Correlation coeffi-
cients for each cardiac myocyte were determined to be
0.88 5 0.02, 0.64 5 0.05, 0.85 5 0.03, and 0.75 5 0.03
for glucose-, pyruvate-, lactate-, and b-hydroxybutyrate-
treated myocytes, respectively (Fig. S9).
Spatiotemporal properties of local coupling in
mitochondrial frequency clusters

Time-dependent coupling constants for each mitochondrion
in all cardiac myocytes across different substrate groups
were determined using the respective optimal decay rate pa-
rameters. For each of the substrate-treated myocyte groups,
mean decay rate parameters were determined to be 7.13 �
10�2 5 1.55 � 10�2 s�1 and 6.46 � 10�2 5 1.14 �
10�2 s�1 for glucose and b-hydroxybutyrate, respectively,
whereas pyruvate and lactate showed slightly smaller decay
rate parameters (6.10� 10�25 1.26� 10�2 s�1 and 6.29�
10�2 5 1.17 � 10�2 s�1, respectively (Fig. S7)).

Cluster and noncluster mitochondria for each myocyte
were determined as detailed above and, for each recorded
point in time, coupling constants were averaged for cluster
and noncluster mitochondria, to evaluate the time evolution
of their respective coupling constants (Fig. 5).

To compare myocytes with unequal recording time, we
set each myocyte’s duration of oscillations to 1. One ob-
serves higher coupling strengths for cluster mitochondria
in cardiac myocytes perfused with glucose or b-hydroxybu-
tyrate, whereas differences in averaged coupling constants
for cluster and noncluster mitochondria in pyruvate or
lactate are less pronounced. One can also notice a distinct
decrease of cluster coupling constants at the beginning of
the recordings for pyruvate- and glucose-perfused myo-
cytes. This might be due to a strong drift from cluster fre-
quencies towards the common cluster frequency for those
cluster mitochondria whose frequencies are the farthest
away from the common cluster frequency according to
Eq. 3 (or Eq. S3 in the Supporting Material).

Averaging in time yields a mean coupling constant
of 7.78 � 10�2 5 0.98 � 10�2 s�1 for cluster and 4.40 �
10�2 5 0.64 � 10�2 s�1 for noncluster mitochondria,
respectively, in glucose-perfused isolated cardiac myocytes.
Pyruvate perfusion gave a similar time-averaged mean
coupling constant for cluster mitochondria (7.49 � 10�2 5
1.65 � 10�2 s�1) whereas lactate and b-hydroxybutyrate
were found to have lower time-averaged cluster coupling
constants (4.83 � 10�2 5 1.25 � 10�2 s�1 and 4.11 �
10�2 5 0.62 � 10�2 s�1, respectively). However, averaged
coupling constants for noncluster mitochondria gave
6.56 � 10�2 5 1.60 � 10�2 s�1, 4.24 � 10�2 5 1.10 �
10�2 s�1, and 2.49 � 10�2 5 0.34 � 10�2 s�1 for pyruvate,
lactate, andb-hydroxybutyrate, respectively. Distributions of
coupling constants were compared across substrates for clus-
ter and noncluster mitochondria, respectively, and found to
be significantly different from each other (p < 0.006). In



FIGURE 5 Mean mitochondrial cluster coupling

constants (in units [s�1]) versus mean noncluster

coupling constants for each point in time for car-

diac myocytes perfused with pyruvate, b-hydroxy-

butyrate, lactate, or glucose. To allow statistical

comparison among myocytes with unequal

recording time, the duration of the oscillations of

each recording was normalized. For pyruvate and

lactate, lower ratios of averaged coupling constants

for cluster to noncluster mitochondria suggest

similar spatiotemporal contiguity properties of

the mitochondrial clusters. This contiguity might

underlie different metabolic control mechanisms

as compared to glucose or b-hydroxybutyrate

(compare to Fig. S5). Also, the higher values of

cluster coupling constants obtained with pyruvate

or glucose might be attributed to larger cluster

areas as suggested by Fig. 4.

FIGURE 6 Mean mitochondrial cluster coupling constant K versus mean

cluster coherence. For pyruvate-, b-hydroxybutyrate-, and glucose-perfused

myocytes, higher cluster coupling values increase with higher cluster coher-

ence values. However, the rate of increase lessens with the size of cluster

area (see Fig. 4). For small cluster areas as in the case of lactate-perfused

myocytes, cluster coupling does not increase with cluster coherence. Linear

fit curves are displayed in their corresponding substrate colors. To see this

figure in color, go online.

Mitochondrial Coupling 1929
accordancewith Fig. 4, lower mitochondrial cluster coupling
can be attributed to smaller cluster areas for cell perfusion
withb-hydroxybutyrate and lactate. For pyruvate and lactate,
lower coupling constants for cluster compared to noncluster
mitochondria suggest similar spatiotemporal contiguity
properties of the mitochondrial clusters. This contiguity
might underlie other metabolic control mechanisms, as in
glucose or b-hydroxybutyrate.

However, cluster coherence in b-hydroxybutyrate-
perfused cells is higher than for pyruvate (see Fig. S5).
In Fig. 6, the mean cluster coupling constant for each myo-
cyte was plotted against its corresponding mean cluster
coherence value, across all substrates. One observes that
glucose-perfused clusters exhibit an increase in cluster
coupling for higher cluster coherence, the rate of change be-
ing 0.32 5 0.03 s�1. The same relation, but to a lesser de-
gree and in line with decreasing cluster size (see Fig. 4), can
be observed for b-hydroxybutyrate and pyruvate perfusion.
Here, rates of change of cluster coupling versus cluster
coherence are 0.09 5 0.01 s�1 and 0.08 5 0.03 s�1 for
b-hydroxybutyrate and pyruvate, respectively. However,
for pyruvate-perfused myocytes, some outliers are notice-
able that can be attributed to the early decrease of coupling
strength (Fig. 5). For pyruvate perfusion, coherence levels at
this point are low, i.e., mitochondria might rapidly drop in
and out of the cluster whereas glucose perfusion features
the same distinct decrease of early coupling strength for
high coherence levels. Generally, larger cluster areas show
stronger cluster coupling constants, resulting in more
coherent cluster oscillations. Yet for small cluster areas, as
in the case of lactate-perfusion, cluster coupling does not in-
crease with cluster coherence: the rate of change is in this
case �0.01 5 0.01 s�1. Therefore, even though a smaller
amount of cluster mitochondria might be more coherent,
cluster coupling does not necessarily increase as well, indi-
cating a greater influence of spatial than temporal coupling
on mitochondrial networks.
DISCUSSION

Toour knowledge, this study is the first to quantitatively char-
acterize the effects of different substrates on spatiotemporal
Biophysical Journal 108(8) 1922–1933
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organization of stress-induced mitochondrial oscillations in
the pathophysiological regime. To our knowledge, we have
made several novel advances by this study. First, the
wavelet-based method demonstrates that mitochondria in
the intact heart exhibit properties similar to those in isolated
myocytes, thus establishing the isolatedmyocyte as a reliable
model for studying time-dependent frequency modulation of
oscillating mitochondria, as well as mitochondrion-to-mito-
chondrion coupling. Second, different cluster organization
properties in response to metabolic status are uncovered,
therefore indicating different spatiotemporal properties of
the mitochondrial network. Third, a stochastic phase model
was introduced that provides a measure of the stability of
mitochondrial phase oscillators by quantifying intermito-
chondrial coupling through a locally defined coupling
constant for each individual mitochondrion. Fourth, the
phase model reveals significant correlations among intermi-
tochondrial coupling, mitochondrial cluster area, and cluster
coherence.

Stress-induced mitochondrial DJm oscillations have pre-
viously been shown to occur not only in isolated cardiac my-
ocytes but also for intact hearts (20). These findings extend
prior results obtained in single cardiac myocytes (13,15) and
computational models (5,32) to the whole heart. Here, we
show that mitochondrial collective behavior for clusters of
mitochondria with similar frequencies seems to be analo-
gous to that in isolated cardiomyocytes. This could be an
indication that metabolic, molecular, and electrical commu-
nication via gap junctions between cardiac myocytes does
not significantly modify mitochondrial network dynamics
under stress. Interestingly, we observed depolarizations
within myocytes of the intact heart to be partly spontaneous
in some cardiac myocytes after laser-flashing of neighboring
myocytes, thus indicating relay properties for mitochondrial
coupling agents at intercellular junctions, similar to earlier
findings in isolated myocyte pairs (2).
Substrate dependence of mitochondrial network
dynamics

Animal models of heart failure show increased myocardial
glucose dependence and utilization, compared to fatty acids
in the normal heart (21,33). However, the role of glucose in
either aiding the myocyte to adapt to increased ATP demand
or as a metabolic maladaptive response (while flexibility
in substrate utilization remains limited), is still unclear
(34,35). Furthermore, the data concerning the energetic sub-
strate switch in human heart failure remain inconsistent
(21). The main question behind possible substrate depen-
dence of the mitochondrial network is whether glucose
keeps higher synchronicity across the network as compared
with other substrates. As shown, glucose-perfused cardiac
myocytes demonstrate larger percentiles of cluster area
versus myocyte area than other energy suppliers (compare
to Fig. 4) whereas cardiac myocytes perfused with b-hy-
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droxybutyrate demonstrated the strongest change in % clus-
ter size versus mean cluster frequency. Also, mitochondrial
frequencies were found to be within a narrower low-fre-
quency range in glucose than in the other substrates
(Fig. S4). Dispersion in cluster size and frequencies may
indicate heterogeneity and less synchrony. Dynamic mito-
chondrial clusters would form more rapidly during ROS-
induced ROS release by recruiting other mitochondrial
oscillators, which in turn would leave fewer clusters with
different frequencies, thus narrowing the mitochondrial fre-
quency distribution. This finding relates to the problem of
synchronization: higher slope and larger frequency distribu-
tion represent a signature of desynchronization due to
dynamic heterogeneity.

The model presented herein attributes this fundamental
feature to time-dependent drifting frequencies of the oscilla-
tors. Mechanistically, time-dependent drifting frequencies
can be explained by local dynamics of ROS production
and ROS scavenging systems involving mitochondrial ma-
trix and the extramitochondrial compartment (36). Interest-
ingly, the two substrates leading to the most reduced redox
potential, pyruvate and b-hydroxybutyrate, have higher %
area of the cluster than lactate. b-hydroxybutyrate-perfused
cardiac myocytes still show lower cluster coupling than
cells with pyruvate or glucose perfusion. Metabolically,
the major difference between pyruvate and lactate is that
cytosolic redox status is bestowed with less (pyruvate) or
more (lactate) reducing equivalents available, although
both would likely lead to more reduced matrix NADH
than in glucose, feeding NADH oxidase. This would concur
with an increase in ROS levels and hence higher intermito-
chondrial coupling rates. Mean coupling for lactate and
pyruvate is lower than for glucose, thus indicating more
complex redox relations or spatiotemporal coupling proper-
ties, as discussed below. However, additional studies will be
required to determine the exact role of ROS in substrate-
dependent redox processes.
Modeling of large-scale synchronization in
mitochondrial dynamics

The concept of scale-free mitochondrial networks has been
introduced over the last decade to describe intermitochon-
drial coupling across different spatiotemporal domains in
cardiac myocytes (6,27,37). Recent work extends these find-
ings to mitochondrial networks from other organs such as
salivary glands in live animals (9). Using intravital two-
photon microscopy, these authors showed ROS-dependent
cell- and tissue-wide synchronized mitochondrial oscilla-
tions under basal conditions. Weak temporal organization
under physiological conditions is strengthened in the patho-
physiological regime where the mitochondrial oscillators
mostly lock-in low frequency and large amplitude oscilla-
tions (17,27). In this regard, cardiac mitochondria,
like yeast, have been proposed to possess inherent
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characteristics of a biological clock (37,38). Mathematical
descriptions of the transition of such multiple oscillator
networks to synchrony have been addressed by several au-
thors (39,40). These studies show that coupling starts in a
synchronized nucleus of excited oscillators that can then
recruit new oscillators until a critical mass of oscillators in-
duces spontaneous self-synchronization across the network
(27,40).

The introduction of time-drifting frequencies to model
circadian network behavior as an extended Kuramoto
model with intrinsic Ornstein-Uhlenbeck frequencies
(25,26) closely applies to mitochondrial frequency dy-
namics. This is because, in cardiac myocytes, mitochondrial
phase dynamics are subject to time-dependent diffusion-
mediated intermitochondrial coupling processes involving
ROS production and consumption of antioxidant reserves
(6,27). Because ROS scavenging in the cytoplasm restricts
the long-range diffusion of the primary coupling agent,
signaling of the oscillatory behavior is locally restricted,
hence, there is an inherent frequency stiffness towards the
actual mitochondrial frequency for each individual mito-
chondrial oscillator. The proposed model, however, does
not consider randomly excitable mitochondria that might
suddenly start oscillating or flickering during the course of
recording (see, for example, Nivala et al. (11)). This will
have an effect on myocytes where the major cluster only
constitutes a minority of the network mitochondria as in
the case of cardiac myocytes perfused with pyruvate
or lactate (see below). However, we show that varying
coupling strength has a similar effect on the cluster
frequency behavior for all considered myocytes (see
Fig. S11), an effect that is in agreement with Chiang et al.
(41), where it is shown that a control of the common
frequency of a network can be achieved by changing the
strength of coupling between its constituents.

Frequency drifts are governed by the value of the decay
rate parameter g at a fixed frequency dispersion of the mito-
chondrial network; the collective response groups are
locked into distinct and incoherent clusters whose formation
depends on the proximity of individual frequencies to each
other (25). On the other hand, large decay rate parameters
decrease the frequency distribution and contribute to equal-
ization of dynamic cluster properties (25,26). Therefore, our
results for the decay rate parameter g indicate that cardiac
myocytes perfused with substrates like pyruvate and lactate,
which possess slightly smaller g than glucose or b-hydrox-
ybutyrate, show a greater variety of frequency-locked
clusters to some extent. Even though the differences
are not significant, this would be consistent with the
notion of similar temporal coherence properties of the
major frequency cluster and noncluster mitochondria for
pyruvate and lactate, and also with spatiotemporal cluster
properties that are derived from the relation of % cluster
area and mean cluster frequency (see also the Supporting
Material).
Mitochondrial ROS-induced ROS release adds to basal
ROS concentrations and significantly increases local ROS
density for small areas of highly contiguous phase-locked
mitochondrial oscillators (42). Because growing clusters
lose contiguity and their mean frequency decreases (Figs. 3
and 4), the frequency of local ROS release declines along
with ROS levels in nearest-neighbor environments, thus
decreasing intermitochondrial coupling (Fig. S10). However,
formation of cell-wide spanning clusters (13,27) slightly
increases the overall basal ROS concentration, therefore
increasing local intermitochondrial coupling as well.

Our results suggest that the correlation between local
mitochondrial coupling and mitochondrial cluster frequency
is mainly driven by early cluster formation where the aver-
aged coupling constant is mildly (b-hydroxybutyrate and
lactate) to strongly (glucose and pyruvate) higher (compare
to Fig. 5) than for the rest of the recording. On the other
hand, local coupling and % cluster area are mostly deter-
mined through low coupling constants at the end of the
recordings where most mitochondria have been integrated
into the spanning cluster, and cytoplasmic ROS levels in-
crease with % cluster area. Generally, larger cluster areas
show stronger intermitochondrial coupling, even though
cluster coherence might be low (as in the case of pyruvate).
The cluster area is largest when myocytes are perfused with
glucose and therefore shows the largest averaged cluster
coupling and largest increase in coupling strength for
increasing cluster coherence. In addition, because an in-
crease in mitochondrial cluster frequency leads to stronger
cluster coupling for all substrates (see Fig. S11), and cluster
areas in lactate-perfused cells are smaller than for all other
examined substrates, these findings indicate that spatial
coupling has a greater effect on synchronized mitochondrial
networks than temporal coupling.

Coupling agent ROS in the normal heart is involved in
the regulation of homoeostatic and stress response pathways
(43) and it has been shown that ROS levels and activity are
increased under pathological conditions such as ischemia-
reperfusion injury (44) and diabetic cardiomyopathy
(22,45). The above results suggest that there is a decrease
in intermitochondrial coupling under certain metabolic con-
ditions such as preferred supply of substrates like lactate as
opposed to glucose. Such reduced redox-based coupling in
mitochondrial networks might impair cardiac energy utiliza-
tion and may therefore exacerbate heart failure (compare to
Ventura-Clapier et al. (46)).
CONCLUSIONS

In conclusion, for ventricular cardiac myocytes within the
pathophysiological regime of stress-induced synchronized
DJm oscillations, this study shows that % cluster area is
inversely correlated with cluster mean frequency not only
for isolated myocytes perfused with different energy sup-
pliers but also for connected myocytes in the intact heart.
Biophysical Journal 108(8) 1922–1933
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The results therefore underline the universality of this
correlation that reflects the importance of spatial and tempo-
ral organization on network functionality. Also, the study
quantifies intermitochondrial coupling by introducing a
stochastic phase model that accurately describes mitochon-
drial network dynamics, and provides insights into changes
in mitochondrial network functional topology under
different metabolic conditions. Specifically, it is shown
that glucose perfusion, in particular, has strong effects on
the mitochondrial oscillatory network, generating high
intermitochondrial coupling and coherence, and that spatial
intermitochondrial coupling is preferred over temporal
coupling.
SUPPORTING MATERIAL
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Experimental Methods 

Isolated Myocyte Preparation 

All experiments have been conducted on freshly isolated adult guinea pig ventricular 

myocytes according to previously described protocols (1-3) and in accordance with Guide for 

the Care and Use of Laboratory Animals (NIH, No. 85-23, 1996) and the Johns Hopkins Animal 

Care and Use Committee. Adult guinea pigs (300 g) were anesthetized with 260 mg 

pentobarbital and 1000 U heparin sodium (i.p.).  

Hearts were excised and ventricular myocytes were enzymatic isolated as previously 

described (3). After isolation, myocytes were stored briefly in a high K+ solution (in mM: 120 

potassium glutamate, 25 KCl, 1 MgCl2, 10 HEPES, 1 EGTA, pH 7.2 (with KOH) and either used 

immediately or transferred to Dulbecco’s Modification of Eagle’s Medium (10-013 DMEM, 

Mediatech, Inc. Virginia, Manassas, VA, USA) in laminin-coated petri dishes in a 95% O2, 5% 

CO2 incubator at 37C for 1-2 h before imaging. Experimental recordings started after exchange 

of the DMEM with Tyrode’s solution containing (in mM): 140 NaCl, 5 KCl, 1 MgCl2, 10 HEPES, 1 

CaCl2, pH 7.4 (adjusted with NaOH), supplemented with 10 mM of glucose, or -

hydroxybutyrate, or lactate or pyruvate.  
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Whole Heart Preparation 

Excised hearts were retrogradely perfused with an oxygenated (100% O2) modified 

Tyrode's solution (138 mM NaCl, 4 mM KCl, 0.5 mM CaCl2, 1 mM MgCl2, 0.33 mM NaH2PO4, 10 

mM glucose, 10 mM HEPES pH 7.4 containing 20mM butanedione monoxime (BDM) to 

suppress contraction (4). A custom-built chamber was used to minimize pulsatile motion 

artifacts and imaging focused on epicardial regions located near (within 5 mm) the left anterior 

descending coronary artery (5).   

 

Imaging Studies 

The cationic potentiometric fluorescent dye tetramethylrhodamine ethyl ester (TMRE) 

was used to monitor the mitochondrial inner membrane potential ΔΨm and images were 

recorded with a two-photon laser-scanning microscope (Bio-Rad MRC-1024MP, Hercules, CA, 

USA) using excitation at 740 nm (Tsunami Ti:Sa laser, Spectra-Physics, Santa Clara, CA, USA) 

and emission at 605±45nm.  

 

Selection and processing of TMRE fluorescence from individual mitochondria in isolated 

cardiac myocytes 

TMRE signals from individual mitochondria  were analyzed in stacks of recorded frames 

of isolated myocytes by manually applying a grid template to the myocytes. Stack images were 

time-averaged using Adobe Photoshop v7.0 according to previously described methods (6) 

(Figure 1B in main text). Briefly, time-dependent mesh identifiers appplied to each myocyte 

allowed the identification of individual mitochondria, while correction for myocyte movement was 

accomplished with ImageJ (v.1.40g).  

Selection of wavelet parameters, cut-off frequencies, normalization of mitochondrial 

TMRE signals and determination of maximal wavelet power frequencies were carried out 

according to the modus operandi in (6, 7). Morlet wavelets were used for each mitochondrion’s 

TMRE signal with spacing between scales set to  0.1dj .The smallest wavelet scale was set to 

0 4s dt  since this scale size represents the smallest possible scale that could be detected 

during one oscillatory cycle. With the total number, N, of recorded images per myocyte, the 

number of scales was taken as  1 2 0log ( / ) / 1j N s dj . Therefore, scales range from 0s  to 

1( 1)
02 j djs  and each scale has dj  suboctaves. Cut-off frequencies were chosen for each 

myocyte according to the longest observed oscillation period,T , and therefore the minimum cut-

off frequency was defined as  min 1/1.1T .  The maximum cut-off frequency was fixed at 
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 max 01/ s , the highest possibly observable period. Between min  and max , for each myocyte, 

power line plots with segments of 0.1 mHz were interpolated and, finally, the maximum power 

for each interpolated plot was used to determine the respective maximal scale frequency at 

each time point.  

Determination of frequency cluster mitochondria as well as their size, frequency, 

amplitude and coherence properties was completed according to the algorithm for the selection 

of mitochondria belonging to a major frequency cluster as detailed in Kurz et al. (7). Frequency 

histograms were obtained for each myocyte at every time-point t and the largest peak of 

mitochondria with similar frequencies, i.e. mitochondria belonging to a (major) frequency cluster, 

was determined as the major cluster peak. Subsequently, mitochondria belonging to 

neighboring peaks, i.e. peaks whose amplitude was beyond 10% of the maximum peak and 

directly neighboring the major cluster peak, were incorporated into the cluster if their TMRE 

signal at t was correlated with at least 95% with the cluster signal (see also Figure 2A in (7)). 

Cross correlation was computed over a running window of size 1.1wT T . The procedure was 

repeated with the ensuing neighboring significant peaks until signal correlation dropped below 

95%. The resulting mitochondria therefore form a group of oscillators at time t who have similar 

frequencies and whose signals are highly correlated, as previously described (7).  

 

Selection and processing of individual mitochondrial TMRE fluorescent signal in the 

whole heart  

Whole heart samples were scanned for de- and repolarizing mitochondria. Only 

myocytes showing at least one depolarization, i.e. a drop of more than 10% in TMRE 

fluorescence in some of their mitochondria were taken into account. Myocyte borders along 

sarcolemma and intercalated discs were manually applied on a pixel-by-pixel basis in Adobe 

Photoshop v7.0 (Figure 1A in the main text and Figure S1A). Grid  templates were constructed 

for each selected myocyte and further spatio-temporal processing was done using wavelet 

analysis and major frequency cluster selection as in the case of the isolated myocyte (see 

above and (6, 7)).  

 

 
Computational Methods 

Mitochondrial Network Architecture 

Identification of mitochondrial nearest neighbors was used as in (7) to determine the 

mitochondrial network’s structural topology. To examine the network’s connectivity properties, 
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inter-mitochondrial coupling was only considered for local nearest-neighbors (Figure 2 in main 

text).  

 

Figure S1 Two-photon image of TMRE fluorescence from intact guinea pig heart tissue (different to the one shown in 

Figure 3 of the main text). (A) Within the intact heart tissue, cardiac myocytes were selected according to observed 

depolarizations. Myocyte borders along the sarcolemma and intercalated discs, as well as the mitochondrial grids were 

manually applied on a pixel-by-pixel basis. Yellow boxes mark the laser flashed region of the myocytes (see main text). 

Mitochondrial major cluster properties of the optical slice of perfused heart tissue shown in part A (n = 9 cardiac myocytes). 

Displayed are the mean cluster radius versus frequency (B); the cluster area normalized by the full myocyte area versus 

frequency (C); the distribution of mitochondrial frequencies for all cluster mitochondria across all myocytes (D), and the 

cluster mitochondria count normalized by the total number of mitochondria for the major cluster versus frequency (E). A 

similar figure for another optical slice of the intact heart tissue can be found in the main text (Figure 1A and Figure 3).  
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Mitochondrial Wavelet Phase and Wavelet Frequency 

Wavelet phases were extracted from the TMRE fluorescent signal corresponding to each 

mitochondrion. The wavelet transform coefficients phase at maximal wavelet power as in the 

frequency case. Wavelet frequencies are non-differentiable in time at points of frequency 

change, therefore wavelet frequencies were monitored as dynamical wavelet phase updates 

with the value of the actual wavelet frequency as starting point. The resulting updated wavelet 

Table S1 Stochastic phase model with drifting frequencies and time-dependent local mitochondrial coupling. 

(A) An extended Kuramoto model for the oscillator phases  ( )m t  and frequencies  ( )m t  describes coupled 

circadian phase oscillators. Nm is the total number of nearest neighbors of mitochondrion m. The sum of the 

coupling term runs over all nearest neighbors jm of mitochondrion m. The total luminescence signal ( )s t  is 

the sum of a population of all oscillators contributing an amplitude-normalized cosine signal. M is the total 

number of mitochondrial oscillators and the sum of cosines runs over all mitochondrial oscillators. (B) 

Parameter listing. ( )mK t  represents the time-dependent local mitochondrial phase coupling constant.  
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frequency was median filtered to correct for frequency changes at the turning point of phase 

cycles.  

 

Ornstein-Uhlenbeck Processes 

Within the stochastic coupling model of the mitochondrial network, mitochondrial intrinsic 

frequencies are modeled as frequencies that drift in time towards the respective measured 

mitochondrial frequency, i.e. the mitochondrial wavelet frequency. This accounts for dynamical 

changes in mitochondrial frequency and can be accomplished via Ornstein-Uhlenbeck 

processes that are described by the stochastic differential equation (8-10) of the form:  

 

 


      ( ) ( )m
m m m

d
t

dt
  

 

where m represents the mean frequency towards which the intrinsic mitochondrial frequency is 

drifting, m is a Gaussian white noise source with variance  2 22 m ,   represents the decay 

rate, and  2
m  the amplitude of mitochondrial frequency fluctuations (9, 11). The mean 

frequencym was chosen as the time-dependent wavelet frequency of the m-th mitochondrion 

whereas the free constant was assumed to be identical for each mitochondrion in the network. 

The frequency fluctuation amplitude measure, m , for each mitochondrion was taken as the 

standard variation of the measured mitochondrial wavelet frequency (see Table S1).  

Discrete dynamical updates were performed to calculate the mitochondrial intrinsic 

frequencies (12):  

              2( ) ( ) ( )(1 ) 1dt dt dt
m m mt dt t e t e e      (1) 

 

where  is a random number drawn from a Gaussian distribution with zero mean and variance 

    2
m . In this step-by-step update process, dt represents the sampling period of the 

measurements of the respective myocytes. Initially,  (0)m  was taken from a Gaussian with 

mean  ( )m dt and variance  2
m .  

 

Local Order Parameter Selection 

Local mitochondrial coupling was considered to be of local mean field type, and local 

mean field parameters ( )mR t  and  ( )m t  corresponding to mitochondrion m  are defined as  
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



 
2 ( )2 ( ) 1

( )
| |

jm

m

i ti t
m

m j L

R t e e
L

,  

 

where mL  is the set of nearest neighbors of mitochondrion m (c.f. (9, 11)), and | |mL  the number 

of nearest neighbors. This corresponds to phase differential equations of the form: 

 

   


   


  


( )
( ) ( ) ( )sin 2 ( ( ) ( ))m

m m m m m

t
t K t R t t t

t
       (2)  

 

for each mitochondrion m .  

 

Update Equations and Tikhonov Regularization 

Within local mean field coupling, the left hand side of Eq.  2 corresponds to the updated 

wavelet frequency WT
m of mitochondrion m  that provides  

 

        ( ) ( ) ( ) ( )sin 2 ( ( ) ( ))WT
m m m m m mt t K t R t t t   (3) 

 

It is evident, that mK can become negative for some time points pt  (if 

    ( )sin 2 ( ( ) ( )) 0m p m p m pR t t t ). In this model, we assume the mitochondrial coupling 

constants to be positive. This corresponds to the interpretation of an attractive coupling 

interaction between the oscillators, as was also originally assumed by Kuramoto (13, 14). 

Therefore,  update equations for m  were subjected to the constraint:  

 

 
 

 

  






( ) ( )
0

( )sin 2 ( ( ) ( ))

WT
m m

m m m

t t

R t t t
  

 

for all time points.  

 In addition, solving for ( )mK t  proves difficult at points 0t  with 

 

    


 
0

lim ( )sin 2 ( ( ) ( )) 0m m m
t t

R t t t  
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If one or more of such points existed for mitochondrion m , then the Tikhonov regularization was 

applied (15, 16). Setting 

 

       ( ) ( )sin 2 ( ( ) ( ))m m m mt R t t t  

 

gives the explicit solution   

 

    2 -1 WT
m m m

ˆ =( + 1 ) (  - )T
m T mK   (4) 

 

with 1T as the unity matrix of size T (T being the recording time) and Tikhonov parameter   

(16). Optimization for   was obtained using the Hanke-Reus algorithm (15) on the interval 

 [(1/100) ,100 ]M M , where  P P2 /mM T  is the time-averaged value of  ( )m t . The Tikhonov 

parameter   was set to   P P2

100
m

T
when the optimization did not converge. Each curve 

( )mK t  was padded for 0t  and t T  with the mirror values of ( )mK t  for the respective vertical 

mirror axes at 0t  and t T and the resulting curves were subsequently median filtered.  

 

Optimization of Decay Rate Parameter   

Maximum likelihood estimation was applied to optimize the model parameter   within 

the interval [0,1]  s-1. This interval was chosen empirically, based on the observation that 

normalized errors of   in a forward model reach a global minimum plateau for values > 0.2 s-1 

for all myocytes (see Figures S6- S7). Basically,   was taken along the interval in steps of 0.01 

to calculate  - dependent mitochondrial coupling constants ( , )mK t . All coupling constants 

( , )mK t  were consequently averaged over Ornstein-Uhlenbeck frequencies with two different 

starting points  (0)m  and two differently dynamically evolving m  respectively.  

 In the next step, the ( , )mK t  was introduced in equation (2) together with the local mean 

field parameters mR  and m  and random Ornstein-Uhlenbeck frequencies m  to model 

(forward) the mitochondrial phases  ( , )FM
m t . The corresponding signal 

 

    
1

cos ( , )FM
m

m

t
M

 ,  
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(where M is the total number of mitochondria) was compared for each   against the cosine of 

the phase of the overall TMRE signal of the myocyte by determining the least square error. -

dependent error values were plotted versus  and, if they were asymptotically approaching a 

fixed error value, they were exponentially fitted using an exponential function 

(    ( ) exp( )f x a bx c ).  Starting from time 0 and using steps of 0.01 s-1, the optimal decay rate 

parameter for each myocyte was chosen as the first value of  whose error value was within 1% 

range of the value of the asymptotic error value. If  did not asymptotically approach a fixed 

error value but displayed instead a global minimum in the error values, the optimal  was taken 

at this minimum. 

 

Coupling Constants  

With optimal decay rate parameter  the coupling constants ( )mK t  were evaluated for 10 

different starting points  (0)m  and 100 differently dynamically evolving Ornstein-Uhlenbeck 

frequencies m  as described above.  

 
Frequency and Cluster-Size Relationship in the Intact Perfused Heart 

The rate of change of mean cluster radius with respect to the frequency for glucose-

treated myocytes, in addition to the one presented in the main text (Figures 1A and 3), was also 

calculated for another optical slice of perfused heart tissue (Figure S1A), to be 0.03 ± 0.01 

m/mHz. The apparent discrepancy between the negative slope shown in Figure 3A of the main 

text and Figure S1A, is due to the determination of the geometrical center of all cluster 

mitochondria for a specific time point that is computed using the average R  of all distances iR  

of all N  cluster mitochondria to the geometrical center as 



1

/
N

i

i

R R N . Naturally, for 

mitochondria that are distributed closely together, the average radius is smaller than in 

myocytes where cluster mitochondria are far apart from each other, e.g. at opposing ends of the 

myocyte. This explains why a cluster with more mitochondria does not necessarily have a 

greater radius than one with less mitochondria. This spread of mitochondria is much 

pronounced in the intact perfused heart in Figure S1A than for Figure 3A in the main text. This 

effect also explains the different frequency ranges that are due to interpolation error (see Figure 

3A in the main text).  
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Summary statistics of mitochondrial frequency distributions of major cluster mitochondria 

for all cardiac myocytes of the respective whole heart yields frequency ranges of 10.30 - 100 

mHz.  It is evident that the range of mitochondrial frequencies in myocytes from whole heart 

preparations are significantly broader than in isolated myocytes, i.e., mitochondria generally 

oscillate at higher frequencies in the intact perfused heart. Using Figure 3A and Figure S1B we 

calculated a mean cluster radius of ~11 - 17 m.  

The rate of change of % area versus frequency for cardiac myocytes was determined as 

-2.40 ± 0.10 % / mHz.  Likewise, the % number of cluster mitochondria versus frequency gave a 

rate of change of -2.27 ± 0.10 % / mHz. These values are in close agreement with the ones 

reported in the main text.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Frequency and Cluster-Size Relationship in Isolated Myocytes 

Major cluster mitochondria were determined for each myocyte treated with glucose, 

lactate, -hydroxybutyrate or pyruvate. The relative number of cluster mitochondria (quotient of 

the number of cluster mitochondria versus the total number of mitochondria) was plotted against 

Figure S2  Mitochondrial mean cluster radius as a function of frequency.  Isolated cardiac myocytes were 

imaged as described in Methods and perfused as described in the legend of Figure 4 with 10mM of 

pyruvate(A; n=10), -hydroxybutyrate (B; n=14), lactate (C; n=7), or glucose (D; n=9).  
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the mean frequency (Figure S2). Also, measures for cluster size were compared with the mean 

frequency of the cluster mitochondria. Therefore, the mean cluster radius (the distance of the 

geometrical center of the cluster to each single cluster mitochondrion’s geometrical center 

averaged over all cluster mitochondria) was plotted against the mean frequency of the cluster 

(Figure S3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From Figure S2 we obtain that the mean radius of the oscillating clusters of mitochondria 

for glucose-, pyruvate-, lactate- and -hydroxybutyrate-treated myocytes is ~27 - 30 m, ~27 - 

35 m, ~37 - 40 m and ~29 - 30 m, respectively. High standard errors in Figure S2 are due to 

topological non-contingencies of the mitochondrial major clusters, indicating a distribution of 

major cluster mitochondria similar to spanning clusters (7, 17, 18). In some myocytes, we have 

observed that with the onset of synchronized depolarizations, major frequency cluster 

mitochondria appear dispersed throughout the myocyte but grow more and more to be 

Figure S3  Mitochondrial cluster count normalized by the total number of mitochondria for the major cluster 

versus frequency for isolated cardiac myocytes perfused with 10mM of pyruvate (A; n=10), -

hydroxybutyrate (B; n=14), lactate (C; n=7), or glucose (D; n=9) .  
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topologically contiguous during the course of the recording. However, non-contiguous cluster 

mitochondria with a high degree of separately oscillating mitochondrial clusters have been 

observed in particular for pyruvate- or glucose-treated myocytes. The rate of change of mean 

radius with respect to the frequency for myocytes from the glucose-, pyruvate-, lactate- or -

hydroxybutyrate-group have been calculated to be: -0.0973 ± 0.129 m/mHz, -0.141 ± 0.017 

m/mHz, -0.139 ± 0.018 m/mHz and -0.060 ± 0.016 m/mHz, respectively.  

 The rate of change of % number of cluster mitochondria versus frequency for glucose-, 

pyruvate-, lactate- or -hydroxybutyrate-treated cardiac myocytes was determined to be -2.67 ± 

1.12 % / mHz,  -4.01 ± 0.07 % / mHz , -2.83 ± 0.07 % / mHz and  -4.79 ± 0.07 % / mHz, 

respectively. This is similar to the results for % area of cluster mitochondria versus frequency as 

detailed in the main text.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S4  Distribution of mitochondrial frequencies for all cluster mitochondria across all myocytes perfused 

with 10mM of pyruvate (A; n=10), -hydroxybutyrate (B; n=14), lactate (C; n=7), or glucose (D; n=9).     
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Distribution of mitochondrial frequencies 

Frequency distributions of mitochondria belonging to the major cluster were constructed 

with frequency histograms across all frames (Figure S4) for each cardiac myocyte in each 

substrate group. Mitochondrial frequencies were counted in bins of width 0.1 mHz in the range 

[0-100] mHz.  

To compare between myocytes within one substrate group, cluster mitochondria frequency 

counts in each frame were divided by the number of cluster mitochondria in that frame and 

amplitudes at each frequency were divided by the total number of frames.  Gaussian functions 

were then fitted to visible peaks in the resulting histogram for each substrate group. Their 

position and the corresponding frequency bandwidth within the full width at half maximum  

(FWHM) around the mean frequency can be found in Table S2. For glucose-treated mycoytes, 

the overall mean frequency was found as 17.11  11.88 mHz whereas, in comparison, pyruvate-

treated myocytes show a more dispersed frequency distribution with a mean frequency 18.29  

32.20 mHz (with the lowest detectable frequency being 3.7 mHz).  Myocytes from the lactate 

group were found to be more narrowly distributed with a mean frequency 10.14  12.72 mHz 

(with the lowest detectable frequency being 1.3 mHz). Finally, myocytes that were perfused with 

-hydroxybutyrate mostly displayed major cluster oscillations in the low frequency range 8.36  

8.50 mHz (with the lowest detectable frequency being 3.7 mHz).  

 

 

Table S2 Multi-Peak Gaussian fit analysis for peaks in the frequency distributions of cardiac 

myocytes perfused with different substrates. For each peak, the mean frequency  the FWHM are 

given in mHz.  
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Cluster Oscillation Coherence 

The temporal properties of cluster mitochondria can be analyzed by investigating the 

average temporal coherence of the TMRE signal of a cluster mitochondrion with those of its 

nearest neighbors for all major cluster mitochondria. Coherence values range between 0 and 1 

at each frequency representing oscillation in synchrony (“1”) or asynchrony (“0”). The frequency 

range for each myocyte was chosen from zero to 100 mHz and coherences of each cluster 

mitochondrion were estimated using a running window of fixed size wT  and a fixed Fast-Fourier-

Transform (FFT) of length 112 dt  (7).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S5 Coherence of mitochondria belonging to the major oscillating cluster, estimated at the mean 

cluster frequency, for 10mM of pyruvate (A; n=10), -hydroxybutyrate (B; n=14), lactate (C; n=7), or glucose 

(D; n=9).    To allow the statistical comparison between myocytes with unequal time recordings, the duration 

of the oscillations for each recording was normalized.  
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For each cluster mitochondrion, at each frequency, the average coherence in the 

running window was obtained from the average coherence over all nearest neighbors belonging 

to the cluster, followed by another averaging of the coherence over all cluster mitochondria. The 

fixed running window was subsequently shifted by one frame at a time until reaching the last 

frame of the recorded signal with its own last frame. A mean coherence for the mean major 

cluster frequency and for each running window was determined and plotted as a function of 

time. The length of recording for each myocytes was normalized to range from zero to one for a 

better comparison.  

There was no significant change in the coherence of the cluster mitochondria during 

recording across the different substrate groups, indicating high temporal stability of the 

respective oscillating cluster mitochondria (Figure S5). However, the coherence of cluster 

mitochondria averaged in time seem to be highest in the glucose-treated cardiac myocytes 

being 0.66 ± 0.04, whereas the coherence in the pyruvate-, lactate- and -hydroxybutyrate 

substrate groups were 0.40 ± 0.03, 0.49 ± 0.04 and 0.49 ± 0.03, respectively.  

 

The coherence values for  mitochondria that do not belong to the major cluster were 

estimated to be 0.44 ± 0.04, 0.39 ± 0.04, 0.46 ± 0.04 and 0.39 ± 0.03 for glucose-, pyruvate-, 

lactate- and -hydroxybutyrate-treated cardiac myocytes, respectively. Thus, non-cluster 

mitochondria coherence appears to be high and similar across the different substrate groups. 

As suggested in (7) this may be due to stable oscillations of non-cluster mitochondria at 

frequencies that are different to the frequencies at which major cluster mitochondria oscillate. 

The coherence values observed for cluster and non-cluster mitochondria in glucose-treated 

myocytes (7) are consistent with those obtained in this work across all substrates, although less 

pronounced with lactate or pyruvate. This might be due to a decreased level of mitochondrial 

nearest-neighbor coupling during de- and repolarizations. Specifically, in the case of pyruvate-

treated cardiomyocytes, smaller and more topologically dispersed ensembles of major cluster 

mitochondria have been observed. This increases the number of mitochondria within the major 

cluster that have at least one non-cluster nearest neighbor mitochondrion. Also, the number of 

non-cluster nearest neighbors for the majority of individual cluster mitochondria is increased. 

The alignment of temporal properties of a cluster mitochondrion with its neighboring 

mitochondria might therefore be less prominent, thus providing a lower averaged coherence.  

 

Decay Rate Parameter  
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The  value for each myocyte was optimized in the forward modeled whole myocyte 

TMRE signal to fit the experimental, amplitude-normalized TMRE fluorescent signal 

corresponding to the whole myocyte (Figures S6-S7). For each substrate, the mean decay rate 

parameter  was quantified (in s-1): 7.13∙10-2 ± 1.55∙10-2 and 6.46∙10-2 ± 1.14∙10-2 for glucose 

and -hydroxybutyrate, respectively whereas pyruvate and lactate showed slightly smaller 

values: 6.10∙10-2 ± 1.26∙10-2 and 6.29∙10-2 ± 1.17∙10-2, respectively (Figure S7).  

 

Forward Model and Model Validation 

Forward modeling for whole-cell intensity signals with myocyte-specific  and 

mitochondrial coupling constants was performed by cross-correlating the cosine of the whole-

myocyte TMRE signal wavelet phase and the sum of cosines of the forward modeled phases of  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S6 Minimum error estimation of decay rate parameter  in the interval [0,1] s-1 for glucose, pyruvate, 

lactate and -hydroxybutyrate respectively. (A) Normalized error of forward modeled -dependent stochastic 

phase model versus  for a glucose-perfused cardiac myocyte. Exponential fit curve of 

type    ( ) exp( )f x a bx c  (green line). Step increase of 0.01 s-1 starting from 0, the optimal decay rate 

parameter was chosen as the first  whose error value was within 1% range of the value of the asymptotic error 

value (here,  = 0.12 s-1). (B) Values of the optimal decay rate parameters for glucose-, pyruvate-, -

hydroxybutyrate- and lactate-perfused cardiac myocytes. The  distributions were not significantly different to 

each other (one-way ANOVA: F-value = 0.14, p-value = 0.9366). 
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the stochastic model (Figure S8). High correlation coefficients indicate the similarity of predicted 

and experimental signals, validating the determined coupling constants. Calculated correlation 

coefficients for each cardiac myocyte were 0.88 ± 0.02, 0.64 ± 0.05, 0.85 ± 0.03 and 0.75 ± 0.03 

for glucose-, pyruvate-, lactate- and -hydroxybutyrate-treated myocytes respectively (Figure 

S9).  

The rather insignificant results for cardiac myocytes treated with pyruvate imply that the 

stochastic mitochondrial phase modeling may not be applicable when cardiac myocytes exhibit 

both a high degree of frequency dispersion and a low degree of cluster proximity. This problem 

could be partly avoided by only focusing on for example, ten cluster mitochondria that exhibit 

the highest averaged signal cross-correlation to their nearest neighbors thus ensuring cluster  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S7 Normalized error versus decay rate parameter  for all myocytes with perfusion in glucose (A; 

n=9), lactate (B; n=7), pyruvate (C; n=10), or  -hydroxybutyrate (D; n=14). Standard errors are 

displayed in red.  
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proximity. Subsequent cross-correlation of the cluster ensemble’s individual cosine of the 

forward modeled phase signals with that of the cosine of the ensemble’s wavelet phase, 

rendered high correlation coefficients 0.95 ± 0.02, 0.81 ± 0.04, 0.88  ± 0.05 and 0.86 ± 0.02 for 

glucose-, pyruvate-, lactate- and -hydroxybutyrate-perfused myocytes, respectively (Figure 

S9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Spatio-temporal Properties of Local Coupling in Mitochondrial Frequency Clusters  

To further explore effects of inter-mitochondrial coupling on network organization, 

mitochondrial mean cluster coupling constants were plotted versus % cluster area and mean 

cluster frequency for each point in time (Figures S10 and S11). As detailed above, time-

dependent cluster affiliation for mitochondria had been determined according to dynamic 

mitochondrial frequency behavior and not morphological proximity. Therefore, a quantification of 

inter-mitochondrial coupling for local environments with nearest-neighbor-coupling was not 

considered to necessarily imply a link with temporal cluster organization. In this work, coupling 

is considered to be mediated by ROS via a diffusion-based process  (1, 19, 20).   

 

 

Figure OS7 Normalized error versus decay rate parameter  for all myocytes with perfusion in glucose (A; n=9), lactate (B; 

n=7), pyruvate (C; n=10), or  -hydroxybutyrate (D; n=14). Standard errors are displayed in red.  

 

   

 

  

 

Figure S8 Forward modeling with optimal decay rate parameter and model validity.  Normalized 

fluorescence intensity from experimental data for a lactate-perfused myocyte (black). The TMRE signal was 

subtracted the median value of the distribution, and the corresponding signal was normalized respect to its 

maximum value. Forward modeled cosine phase signals from all mitochondria (red line).  
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Linear polynomial fitting yielded a slightly ascending linear function for cluster coupling 

(in s-1) versus % cluster area with a slope of 2.04∙10-2 ± 0.53∙10-2 s-1/% for glucose-perfused 

myocytes (Figure S10). This tendency could be confirmed in myocytes perfused with lactate 

(4.98∙10-2 ± 0.30∙10-2 s-1/%) or pyruvate (4.63∙10-2 ± 0.54∙10-2 s-1/%). In these cases, inter-

mitochondrial coupling grows with % cluster size indicating an overall increase in coupling 

strength for nearest-neighbor coupling leading to synchronization of the whole network. In 

contrast, -hydroxybutyrate-perfused cardiac myocytes rendered a descending slope (-4.70∙10-2 

Figure S9 Cross-correlation coefficients for forward modeled signal to the cosine of the wavelet-determined 

phase of the whole myocyte signal (right hand side bar in each panel) in glucose (GLUC), -hydroxy 

butyrate (BHB), lactate (LAC) or pyruvate (PYR). Smaller correlation coefficients in pyruvate-perfused 

cardiac myocytes reveal limitations of the stochastic mitochondrial phase model for cardiac myocytes with 

both a high degree of frequency dispersion and a low degree of cluster contiguity. Only considering the 10 

cluster mitochondria with the highest averaged signal cross-correlation to their nearest neighbors (left hand 

side bar in each panel) yields satisfying correlation coefficients since cluster contiguity is most likely 

ensured. 
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± 0.20∙10-2 s-1/%). This difference as compared to the other substrates indicates altered 

organizational principles of the mitochondrial network that may be governed by metabolic 

effects of hydroxybutyrate on the ROS-induced ROS release mechanism.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In contrast, linear regression on mitochondrial mean cluster coupling constants (in s-1) 

versus mean mitochondrial cluster frequency (in mHz) gave a linear fit across the different 

substrates (Figure S11) with similar slopes of 3.31∙10-3 ± 0.1∙10-3 s-1mHz-1, 3.14∙10-3 ± 0.03∙10-3 

s-1mHz-1, 4.01∙10-3 ± 0.09∙10-3 s-1mHz-1  and 3.07∙10-3 ± 0.04∙10-3 s-1mHz-1  for myocytes 

perfused with glucose, pyruvate, lactate and -hydroxybutyrate, respectively. The results 

Figure S10 Linear fit with standard errors (red) of mean mitochondrial cluster constant (in s-1) versus % 

cluster area for each point in time across all substrates, pyruvate (A), -hydroxy-butyrate (B), lactate (C) 

or glucose (D). For glucose, pyruvate and lactate, inter-mitochondrial coupling grows with % cluster size, 

indicating an overall increase in coupling strength for nearest-neighbor coupling associated with 

synchronization of the whole network. However, -hydroxybutyrate-perfused cardiac myocytes do not 

exhibit the same behavior indicating that cluster formation is influenced by additional redox or metabolic 

processes.  
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indicate that the strength of local nearest-neighbor coupling is highest for cluster mitochondria 

oscillating at high frequency.  

 

 

 

 

 

Figure S11 Linear fit with standard errors of mean mitochondrial cluster coupling constant (in s-1) versus 

mean mitochondrial cluster frequency (in mHz) for each point in time and substrate pyruvate (A), -hydroxy-

butyrate (B), lactate (C) or glucose (D). In all substrates, higher frequencies are positively correlated with 

strong local nearest-neighbor coupling.  
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Figures Legends 
 

Figure S1 Two-photon image of TMRE fluorescence from intact guinea pig heart tissue 

(different to the one shown in Figure 3 of the main text). (A) Within the intact heart tissue, 

cardiac myocytes were selected according to observed depolarizations. Myocyte borders along 

the sarcolemma and intercalated discs, as well as the mitochondrial grids were manually 

applied on a pixel-by-pixel basis. Yellow boxes mark the laser flashed region of the myocytes 

(see main text). Mitochondrial major cluster properties of the optical slice of perfused heart 

tissue shown in part A (n = 9 cardiac myocytes). Displayed are the mean cluster radius versus 

frequency (B); the cluster area normalized by the full myocyte area versus frequency (C); the 

distribution of mitochondrial frequencies for all cluster mitochondria across all myocytes (D), and 

the cluster mitochondria count normalized by the total number of mitochondria for the major 

cluster versus frequency (E). A similar figure for another optical slice of the intact heart tissue 

can be foud in the main text (Figure 1A and Figure 3).  

 

Figure S2  Mitochondrial mean cluster radius as a function of frequency.  Isolated cardiac 

myocytes were imaged as described in Methods and perfused as described in the legend of 

Figure 4 with 10mM of pyruvate(A; n=10), -hydroxybutyrate (B; n=14), lactate (C; n=7), or 

glucose (D; n=9) .   

 

Figure S3  Mitochondrial cluster count normalized by the total number of mitochondria for the 

major cluster versus frequency for isolated cardiac myocytes perfused with 10mM of pyruvate 

(A; n=10), -hydroxybutyrate (B; n=14), lactate (C; n=7), or glucose (D; n=9) .  

 

Figure S4  Distribution of mitochondrial frequencies for all cluster mitochondria across all 

myocytes perfused with 10mM of pyruvate (A; n=10), -hydroxybutyrate (B; n=14), lactate (C; 

n=7), or glucose (D; n=9).     

 

Figure S5 Coherence of mitochondria belonging to the major oscillating cluster, estimated at 

the mean cluster frequency, for 10mM of pyruvate (A; n=10), -hydroxybutyrate (B; n=14), 

lactate (C; n=7), or glucose (D; n=9).    To allow the statistical comparison between myocytes 

with unequal time recordings, the duration of the oscillations for each recording was normalized.  
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Figure S6 Minimum error estimation of decay rate parameter  in the interval [0,1] s-1 for 

glucose, pyruvate, lactate and -hydroxybutyrate respectively. (A) Normalized error of forward 

modeled -dependent stochastic phase model versus  for a glucose-perfused cardiac myocyte. 

Exponential fit curve of type    ( ) exp( )f x a bx c  (green line). Step increase of 0.01 s-1 starting 

from 0, the optimal decay rate parameter was chosen as the first  whose error value was within 

1% range of the value of the asymptotic error value (here,  = 0.12 s-1). (B) Values of the optimal 

decay rate parameters for glucose-, pyruvate-, -hydroxybutyrate- and lactate-perfused cardiac 

myocytes. The  distributions were not significantly different to each other (one-way ANOVA: F-

value = 0.14, p-value = 0.9366). 

 

Figure S7 Normalized error versus decay rate parameter  for all myocytes with perfusion in 

glucose (A; n=9), lactate (B; n=7), pyruvate (C; n=10), or  -hydroxybutyrate (D; n=14). 

Standard errors are displayed in red.  

 
 

Figure S8 Forward modeling with optimal decay rate parameter and model validity.  

Normalized fluorescence intensity from experimental data for a lactate-perfused myocyte 

(black). The TMRE signal was subtracted the median value of the distribution, and the 

corresponding signal was normalized respect to its maximum value. Forward modeled cosine 

phase signals from all mitochondria (red line).  

 

Figure S9 Cross-correlation coefficients for forward modeled signal to the cosine of the wavelet-

determined phase of the whole myocyte signal (right hand side bar in each panel) in glucose 

(GLUC), -hydroxy butyrate (BHB), lactate (LAC) or pyruvate (PYR). Smaller correlation 

coefficients in pyruvate-perfused cardiac myocytes reveal limitations of the stochastic 

mitochondrial phase model for cardiac myocytes with both a high degree of frequency 

dispersion and a low degree of cluster contiguity. Only considering the 10 cluster mitochondria 

with the highest averaged signal cross-correlation to their nearest neighbors (left hand side bar 

in each panel) yields satisfying correlation coefficients since cluster contiguity is most likely 

ensured. 

 

Figure S10 Linear fit with standard errors (red) of mean mitochondrial cluster constant (in s-1) 

versus % cluster area for each point in time across all substrates, pyruvate (A), -hydroxy-
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butyrate (B), lactate (C) or glucose (D). For glucose, pyruvate and lactate, inter-mitochondrial 

coupling grows with % cluster size, indicating an overall increase in coupling strength for 

nearest-neighbor coupling associated with synchronization of the whole network. However, -

hydroxybutyrate-perfused cardiac myocytes do not exhibit the same behavior indicating that 

cluster formation is influenced by additional redox or metabolic processes.  

 

Figure S11 Linear fit with standard errors of mean mitochondrial cluster coupling constant (in s-

1) versus mean mitochondrial cluster frequency (in mHz) for each point in time and substrate 

pyruvate (A), -hydroxy-butyrate (B), lactate (C) or glucose (D). In all substrates, higher 

frequencies are positively correlated with strong local nearest-neighbor coupling.  

 
 
 

Table Captions 
 

Table S1 Stochastic phase model with drifting frequencies and time-dependent local 

mitochondrial coupling. (A) An extended Kuramoto model for the oscillator phases  ( )m t  and 

frequencies  ( )m t  describes coupled circadian phase oscillators. Nm is the total number of 

nearest neighbors of mitochondrion m. The sum of the coupling term runs over all nearest 

neighbors jm of mitochondrion m. The total luminescence signal ( )s t  is the sum of a population 

of all oscillators contributing an amplitude-normalized cosine signal. M is the total number of 

mitochondrial oscillators and the sum of cosines runs over all mitochondrial oscillators. (B) 

Parameter listing. ( )mK t  represents the time-dependent local mitochondrial phase coupling 

constant.  

 

Table S2 Multi-Peak Gaussian fit analysis for peaks in the frequency distributions of cardiac 

myocytes perfused with different substrates. For each peak, the mean frequency  the FWHM 

are given in mHz.  
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