Biophysical Journal

Supporting Material

Optogenetic versus Electrical Stimulation of Human Cardiomyocytes: Modeling Insights

John C. Williams^{1,2} and Emilia Entcheva^{1,3,*}

¹Department of Biomedical Engineering, ²Department of Electrical and Computer Engineering, and ³Institute for Molecular Cardiology, Stony Brook University, Stony Brook, New York

Supporting Figures

Figure S1. Electrical (left) and optical (right) stimulation produce similar action potential morphology in human atrial cardiomyocytes (the Courtemanche model). A-B. Triggered action potentials by injection of electrical current (5 ms, 8 pA/pF) and an optical pulse (10 ms, 0.5 mW/mm², 470nm), respectively. Inset in B shows the time course of the resultant ChR2 current. C-D. Underlying major inward currents and I_{NaCa} during electrical and optical stimulation, respectively. E-F. Underlying outward currents during electrical (E) and optical stimulation (F). Insets are zoomed-in versions of the area of interest in C-F.

Figure S2. Electrical (left) and optical (right) stimulation produce similar action potential morphology in human Purkinje cardiomyocytes (the Sampson model). A-B. Triggered action potentials by injection of electrical current (5 ms, 8 pA/pF) and by an optical pulse (10 ms, 0.5 mW/mm², 470 nm), respectively. Inset in **B** shows the time course of the resultant ChR2 current. **C-H.** Underlying major inward and outward currents during electrical and optical stimulation, respectively. Insets are zoomed-in versions of the area of interest in **C**.

Figure S3. Differential transmural cell response to electrical (left) and optical (right) stimulation and related strength-duration and charge curves in the O'Hara epicardial (Epi), endocardial (Endo), and mid-myocardial (M) ventricular cell. A. Electrically-triggered action potentials in by direct current injection (5 ms, 8 pA/pF). B. Optically-triggered action potentials by a light pulse (10 ms, 0.5 mW/mm², 470 nm). Dashed vertical line denotes approximate rheobase (200 ms). C-D. Strength-duration curves. E-F. Minimum stimulus charge needed to excite.

Figure S4. Optogenetic stimulation produces a correctable change in strength-duration curve shape in human atrial cardiomyocytes. A. Electrical SD curves in human atrial cardiomyocytes fit well a theoretical mono-exponential relationship assuming simple equivalent RC-circuit behavior. B. Optical SD curves (using irradiance) deviate from the theoretical mono-exponential curve. C. Empirical mapping of irradiance to the average inward stimulating current, using a power series model. D. Corrected optical SD curve according to Eq. 14 (correction using the mapping in C) fits the theoretical mono-exponential relationship for irradiance vs. pulse duration.

Figure S5. Neuronal response differs from cardiac: optical and electrical strength-duration and charge curves in a modified Hodgkin-Huxley giant squid axon model. A. SD curves for electrical stimulation by direct current injection and for optical stimulation by a light pulse (470 nm). B. Minimum charge needed to excite ($nC/\mu F$).

Figure S6. Transmembrane voltage (left) and ChR2 current (right) during an action potential in a modified Hodgkin-Huxley squid axon model. Blue bars show period of electrical (A) and optical (B-C) stimulus. A. Action potential from 2 ms, 5 pA/pF rectangular electrical pulse. B-C. Action potential and corresponding ChR2 current from 2 ms 2 mW/mm² and 10 ms 0.5 mW/mm² 470nm light pulse, respectively. Simulations were done at 6 °C.