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1 Flow dissipation in membrane displacements

In this section, the energy dissipation associated to the flows involved in the displace-
ment of the membrane is estimated. This quantity is given by the fluid mechanics
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of a viscous flow (1)

Ė = 2ηf

∫
V

~~e : ~~e dV ; eij =
1

2

(
∂vi
∂rj

+
∂vj
∂ri

)
, (1)

where ηf is the viscosity of the fluid flowing with a velocity field ~v, and ~~e is the

symmetric part of the strain rate tensor ~∇~v.

Figure 1: Sketch of membrane (green) and cytosol (black) flows involved in mem-
brane displacements. For instance, during the initial stages of membrane-cortex
detachment, i.e. bleb nucleation, the membrane is dragged over the cortex (red)
and the cytosol flows through it.

There are two main sources of dissipation associated to membrane displacement,
namely the lateral flow of the membrane, and the flow of cytosol through the cortex
(Fig. 1). These two contributions are addressed in the two following subsections,
respectively. Finally, the cytosol flow is identified as the main source of dissipation
in this process. This allows to define an effective viscosity per unit length, η,
characterizing the dissipative normal motion of the membrane as in Eq. 1 in the
Main Text.

1.1 Membrane flow dissipation

We start by considering the lateral flow of the membrane respect to the underlying
cortex. Suppose that the membrane is flowing towards a membrane patch that is
inflating. This patch can be thought of as a nucleating bleb of circular projected
area of radius a. The increase of the membrane area of this incipient bleb per unit
time, Ṡb, is given by membrane mass conservation: Ṡb = 2πrṙ, where r is the
distance from any point along the membrane to the center of the bleb (cylindrical
coordinates), and ṙ is the radial flow speed (Fig. 2).

However, the flowing speed of the membrane must vanish at the points at which
it is connected to the cortex through linker molecules. This gives rise to a local
velocity gradient of order ṙ/ξ0 = Ṡb/ (2πrξ0) between any two linkers, with ρ0 ≡
ξ−20 the density of linkers. In turn, the global radial velocity gradient of membrane
flow is of order ṙ/r = Ṡb/

(
2πr2

)
. Therefore, the total membrane flow dissipation

Ėm will include the contributions of these two gradients: Ėm = Ė links
m + Ėglobal

m .
Then, based on Eq. 1, these are estimated by

Ė links
m ∼ 4πηmg

∫ R

a

rdr

(
Ṡb

2πrξ0

)2

=
ηmgṠ

2
b

πξ20
ln

(
R

a

)
≈ ηmgṠ

2
b

2πξ20
ln

(
S

4Ab

)
,

(2)
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Figure 2: Membrane flow dissipation. (a) Sketch of the membrane flow towards a
given patch (dotted line). (b) This flow vanishes at the position of the membrane-
cortex linkers (black dots), which results in a gradient of the flow velocity.

Ėglobal
m ∼ 4πηmg

∫ R

a

rdr

(
Ṡb

2πr2

)2

≈ ηmgṠ
2
b

2πa2
=
ηmgṠ

2
b

2Ab
. (3)

Here, ηm is the viscosity of the membrane, g its thickness, and R is the cell ra-
dius. Accordingly, S = 4πR2 is the total visible area of the cell membrane, and
Ab = πa2 is the projected circular area of the incipient bleb. Our continuum
approach describes membrane displacements at length scales larger than ξ20 . As a
consequence, Ab > πξ20 and the local dissipation between linkers, Ė links

m , is expected
to dominate membrane flow dissipation.

1.2 Cytosol flow dissipation

Next we compute the energy dissipation rate due to the flow of the cytosol dur-
ing membrane displacements. In the incompressible regime of cytosol flow, mass
conservation reads V̇b = 4π%2v%, where Vb is the volume of the incipient bleb,
% is now the distance from any point in the cytoplasm to the tip of the bleb
(spherical coordinates), and v% is the fluid velocity at this point. As for the mem-
brane flow, there are two velocity gradients contributing to dissipation; in this case:
Ėc = Ėcortex

c + Ėglobal
c . The first one corresponds to the flow of the cytosol through

the cortex, which generates velocity gradients of order v%/ξ = V̇b/
(
4π%2ξ

)
only

inside the cortex. The second one corresponds to the global radial velocity gradient
of order v%/% = V̇b/

(
4π%3

)
spanning throughout the cytoplasm.

The computation of the cortex term can be done by considering the cortex as
a porous material. In this sense, the cortex is viewed as an array of thin capillary
tubes of typical radius ξ, so that cylindrical coordinates are the most appropriate
in this case. We also consider that the flow of the cytosol through the cortex is
along the axial coordinate z and is restricted to the cortical area where the bleb
is nucleating (Fig. 1), i.e. a circular area of radius a. Therefore, the number of
capillary tubes involved in the cytosol flow through the cortex is ∼ a2/ξ2, so that
the total dissipation is this number times the dissipation along one tube. In turn,
the cortex is considered to be separated a distance ∼ a from the tip of the incipient
bleb, so that it is located at a < z < a + h, where h is its thickness. Then, using
Eq. 1 as before:

Ėcortex
c ∼ a2

ξ2
4πηc

∫ a+h

a

dz

∫ ξ

0

rdr

(
V̇b

4πz2ξ

)2

≈ ηchV̇
2
b

4πξ2a2
=
ηchV̇

2
b

4ξ2Ab
, (4)
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where we have used h < a to obtain an approximate expression valid for the large
length-scale motion that our model describes.

Finally, the global term is dealt with using spherical coordinates in Eq. 1:

Ėglobal
c ∼ 8πηc

∫ R

a

%2d%

(
V̇b

4π%3

)2

≈ ηcV̇
2
b

6πa3
=

√
π ηcV̇

2
b

6A
3/2
b

. (5)

Similar to the case of the membrane dissipation, since Ab > πξ2, the contribution of
the permeation through the cortex is expected to dominate the dissipation associated
to cytosol flow.

1.3 Effective viscosity of membrane displacements

In conclusion, an estimate for the rate of energy dissipation due to the flows involved
in sufficiently extended membrane displacements is given by

Ė ∼ Ė links
m + Ėcortex

c ∼ ηmgṠ
2
b

2πξ20
ln

(
S

4Ab

)
+
ηchV̇

2
b

4ξ2Ab
, (6)

where only the relevant contributions of the membrane and cytosol flows have been
included. Next, Ṡb and V̇b need to be estimated in terms of membrane displacement
u and speed u̇. This can be done by considering the shape of the incipient bleb as
a spherical cap of radius Rb, polar radius a, and height u. Then,

Sb ∼ 2πRbu, Vb ∼ πRbu2; Rb =
1

2

(
a2

u
+ u

)
. (7)

The polar radius a is assumed to remain constant during the inflation of the bleb,
while both u and Rb change. Then, the previous expressions need to be rewritten
in terms of a single dynamical variable, namely u:

Sb ∼ π
(
a2 + u2

)
, Vb ∼

πa2

2
u (8)

to the lowest order in the height u. Now, if the bleb is inflating at a speed u̇,

Ṡb ∼ 2πuu̇, V̇b ∼
πa2

2
u̇. (9)

According to Eq. 6, this means that the main contribution to dissipation is the
flow of cytosol through the cortex for small enough membrane displacements u, to
which our linear model is restricted:

Ė ∼ ηchAb
4ξ2

u̇2. (10)

This allows to define µeff ∼ ηchAb/ξ
2 as the effective drag coefficient for the

overdamped motion of the membrane: F = µeffu̇. Then, when the dynamics of
uniform membrane displacements is specified per unit area, Eq. 1 in the Main Text
is retrieved together with the mentioned definition of the effective viscosity per unit
length η, given by:

η ≡ µeff

Ab
∼ ηc

h

ξ2
. (11)

It is worth remarking that the overdamped limit for membrane dynamics has been
argued to be valid in (2).
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2 Membrane undulations

2.1 Adhesion-induced correlations

Under the adiabatic approximation, and at length scales larger than ρ
−1/2
0 , mem-

brane dynamics is fully described in terms of the dispersion relation

ω (q) = −κq
4 + γq2 + ρb,eqk

4ηcq
, (12)

as given by Eq. 15 in the Main Text. Because of membrane-cortex adhesion, the
dispersion relation features a maximum at a finite wavelength. Fig. 3 shows that
the nonmonotonic behaviour of the dispersion relation is associated to adhesion,
disappearing in its absence (ρb,eq = 0). Indeed, membrane-cortex adhesion is also
responsible for the divergence of the dispersion relation at large wavelengths, which
disappears if the hydrodynamic effects of the cortex are accounted for (see section
4).
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Figure 3: Growth rate of a membrane undulation of wave-vector q for different
values of the fraction of bound linkers ρb,eq = ρb,eq/ρ0. The rescaling wave-vector is
defined as q∗ = 2π/λ∗ with λ∗ ≡ λc (ρ0). The range of wave-vectors experimentally
explored in (3) is shaded in grey. This indicates that the non-monotonicity of the
dispersion relation due to membrane-cortex adhesion could be probed in fluctuation
spectroscopy experiments

The finite wavelength λc (ρb,eq) at which the growth rate ω (q) is maximum,
gives the length scale of membrane deformations that feature the slowest relaxation.
Consequently, this wavelength acts as a correlation length of membrane undulations.
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2.2 Membrane structure factor

Under the adiabatic approximation, and at length scales larger than ρ
−1/2
0 , the

structure factor of membrane fluctuations reads

S (q) =
kBT

κq4 + γq2 + ρb,eqk
, (13)

as given in Eq. 17 of the Main Text. Fig. 4 plots the dependence of the structure
factor on the wave-vector q, showing that long-wavelength undulations are the most
prominent in terms of amplitude. This fact reinforces the picture of the adhered
membrane as a rigid-like object at short scales, with no relevant contribution of
undulations. In particular, Fig. 4b shows that fluctuations of length scale smaller
than λ∗ are not associated to an increase of stress of the linkers, and this should not
contribute to setting the location of the unbinding transition. Hence, this explains
the role of λ∗ as a correlation length separating the rigid-like and undulated regimes
of the membrane.
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Figure 4: Membrane structure factor as a function of the wave-vector for different
values of the fraction of bound linkers ρb,eq = ρb,eq/ρ0. The rescaling lengths are
u0 ≡ kBT/ (kδ) and uξ ≡ kBT/ (kξ). (a) In linear scale. (b) In logarithmic
scale, which evidences the crossover between the regime where adhesion dominates
(λ∗q < 1), and the regime where membrane mechanics dominates (λ∗q > 1).

2.3 Amplitude of membrane undulations

The mean-square amplitude of membrane undulations can be obtained by Fourier-
transforming the membrane structure factor Eq. 13 back to real space:

〈
δu2 (~x)

〉
=
kBT

2π

1√
4κρb,eqk − γ2

[
arctan

(
2π2κρ0 + γ√
4κρb,eqk − γ2

)
−

arctan

(
2κ (π/L)

2
+ γ√

4κρb,eqk − γ2

)]
. (14)

This is the result for the case γ2 < 4κρb,eqk, which is the actual situation for our
choice of k ∼ 10−4 N/m. Next, some limits of Eq. 14 are studied:
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• Strong adhesion:

lim
ρb,eqk→∞

〈
δu2 (~x)

〉
≈ kBTπρ0

4ρb,eqk
, (15)

which does not diverge for large membranes due to adhesion. It corresponds
to a rigid and unstretchable membrane fluctuating under the harmonic con-
finement of the average adhesion potential ρb,eqk acting down to the cutoff

length ρ
−1/2
0 .

• Low tension:

lim
γ→0

〈
δu2 (~x)

〉
≈ kBT

8
√
κρb,eqk

, (16)

which does not diverge either. This situation corresponds, for instance, to
the case of a somehow constrained vesicle, where membrane surface tension
is negligible as compared to bending rigidity. A constraining harmonic con-
finement, which can stem from other membranes in a stack (4), the presence
of a nearby wall (5), or sparse harmonic attachments (6), produces the same
effect as the adhesion term within the adiabatic approximation framework of
our model.

• High bending rigidity:

lim
κ→∞

〈
δu2 (~x)

〉
≈ kBTL

2

4π3κ
. (17)

In this case, the root mean-square amplitude diverges linearly with the mem-
brane linear size. This limit corresponds to a free vesicle in the absence of
any adhesion or confinement, so that undulations are driven solely by bending
rigidity (7).

It is worth exploring the other possible case, namely γ2 > 4κρb,eqk, since it could
be relevant for some cell types, for instance, presenting a more diluted cortex or
softer linkers. In this case, the mean-square amplitude of membrane undulations
reads

〈
δu2 (~x)

〉
=
kBT

4π

1√
γ2 − 4κρb,eqk

[
ln

(
2π2κρ0 + γ −

√
γ2 − 4κρb,eqk

2π2κρ0 + γ +
√
γ2 − 4κρb,eqk

)
−

ln

(
2κ (π/L)

2
+ γ −

√
γ2 − 4κρb,eqk

2κ (π/L)
2
+ γ +

√
γ2 − 4κρb,eqk

)]
. (18)

The limits for this situation are discussed below:

• Weak adhesion:

lim
ρb,eqk→0

〈
δu2 (~x)

〉
≈ kBT

2πγ
ln

(
L

π

√
γ

κ

)
, (19)

which diverges logarithmically for large membranes. This corresponds to the
case of a free membrane with contributions both of bending and surface
tension to undulations.
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• High tension:

lim
γ→∞

〈
δu2 (~x)

〉
≈ kBT

2πγ
ln
(
ρ
1/2
0 L

)
, (20)

which also diverges logarithmically for large membranes. This is the result
obtained in the absece of adhesion for tension-dominated membrane dynamics
(8). This situation might correspond to a strongly stretched membrane due
to cortical pulling.

• Low bending rigidity:

lim
κ→0

〈
δu2 (~x)

〉
≈ kBT

4πγ
ln

(
1 +

π2γρ0
ρb,eqk

)
, (21)

which does not diverge for large membranes due to adhesion. This situation
corresponds to a very flexible membrane yet under tension, and adherent.

γ2 < 4κρb,eqk

no limit ∼ 3 nm
ρb,eqk →∞ ∼ 6 nm
γ → 0 ∼ 4 nm
κ→∞ ∼ 1 µm

γ2 > 4κρb,eqk

no limit —
ρb,eqk → 0 ∼ 9 nm
γ →∞ ∼ 9 nm
κ→ 0 ∼ 3 nm

Table 1: Numerical estimates for the root mean-square amplitude of membrane

undulations
〈
δu2 (~x)

〉1/2
in different situations and limits. In all cases, the same

numerical values of the parameters have been used.

Table 1 summarizes the numerical values of the root mean-square amplitude
of membrane undulations for all the cases and limits discussed above. The value〈
δu2 (~x)

〉1/2 ∼ 3 nm corresponding to our case justifies the approximation of con-
sidering the membrane-cortex linker molecules as hookean springs, i.e. in their linear
elasticity regime.

2.4 Membrane power spectrum

Within the adiabatic approximation, the power spectrum reads

S (ω) =
4ηckBT

π

∫ qmax

qmin

dq

(4ηcω)
2
+ (κq3 + γq + ρb,eqk/q)

2 , (22)

as given by Eq. 19 in the Main Text. This expression can not be analytically inte-
grated in general. Next we consider some asymptotic behaviours of this expression.
Integration limits are extended to qmin → 0 and qmax →∞ whenever possible:

• No adhesion. Tension-dominated regime, low frequencies: Low-frequency
responses of a non-adhered membrane are found at long wavelengths, and
are thus dominated by surface tension: limq→0 ω (q) = γq/ (4ηc). Therefore,
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the low-frequency limit of the power spectrum of a free membrane can be
retrieved by imposing a vanishing bending rigidity κ→ 0:

lim
κ→0

S (ω) =
kBT

2γω
. (23)

• No adhesion. Bending-dominated regime, high frequencies: High relaxation
rates of the free membrane occur at q →∞, implying that they are dominated
by the bending rigidity: limq→∞ ω (q) = κq3/ (4ηc). Consequently, the high-
frequency limit of the power spectrum of a non-adhered membrane is retrieved
by neglecting surface tension γ → 0:

lim
γ→0

S (ω) =
kBT

6 (2κη2c )
1/3

ω5/3
. (24)

• Adhesion-dominated regime, intermediate-high frequencies: As opposed to
the behaviour of free membranes, the dispersion relation of a membrane ad-
hered to the cortex in the adiabatic approximation is non-monotonic. There-
fore, the relationship between frequencies and wave-vectors is not straight-
forward. For the range of wave-vectors experimentally explored in (3), with
df = 0.5 µm, we have ω (qmin) � ω (qmax), as shown in Fig. 3. Conse-
quently, the adhesion-dominated regime at long wavelengths corresponds to
high frequencies. Using smaller focal light spots could shift the adhesion-
dominated regime towards lower frequencies. An analytical expression for the
power spectrum in this limit is worked out by setting κ, γ → 0:

lim
κ,γ→0

S (ω) =
kBT

4πηcω2

[
qmax − qmin +

+
ρb,eqk

4ηcω

[
arctan

(
4ηcqminω

ρb,eqk

)
− arctan

(
4ηcqmaxω

ρb,eqk

)]]
. (25)

• Brownian motion regime, highest frequencies: Finally, at sufficiently high
frequencies the power spectrum is only revealing the Brownian motion of the
membrane within the cytosol, which only depends on the viscosity of the
latter. This limit is thus insensitive to any membrane properties:

lim
ω→∞

S (ω) =
kBT (qmax − qmin)

4πηcω2
. (26)

On the one hand, the first two limits correspond to a non-adhered membrane, for
which our model retrieves the predicted (9) and observed (3, 9, 10) scalings ∼ ω−1
and ∼ ω−5/3 of the power spectrum. These studies also predicted and observed
the high-frequency ∼ ω−2 behaviour corresponding to the Brownian motion of the
membrane within the surrounding fluid. Finally, if the effect of the hydrodynamic
confinement due to the presence of the cortex is important, which turns out to be
the case for red blood cells, one should expect an intermediate regime scaling as
∼ ω−4/3 (11).
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3 Validity of the flat-membrane model

Here we analyze the validity of the flat-membrane model as a function of membrane-
cortex adhesion. On the one hand, Fig. 5a plots the dependence of the correlation
length λc on the density of bonds (Eq. 16 of the Main Text), evindencing the
increased membrane correlations near the unbinding transition. As a consequence,
the simple flat-membrane model becomes more accurate near detachment. On the
other hand, Fig. 5b shows the increase in the amplitud of membrane fluctuations
(Eq. 14) when membrane-cortex adhesion is weakened, specially at long-wavelength
(see also Fig. 4). The magnification of membrane undulations near the unbinding
transition implies that a stochastic version of the adhesion models presented in this
article may be needed for an accurate study of membrane-cortex detachment.
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Figure 5: Membrane correlations and undulations as a function of adhesion. (a)
Correlation length of membrane undulations as a function of the equilibrium density
of bonds. (b) Root mean-square amplitude of membrane undulations as a function
of the equilibrium density of bonds.

4 Influence of a nearby porous cortex on membrane
dynamics

Here we comment on the effects of the cortex over the hydrodynamics of the mem-
brane. Under the adiabatic approximation, membrane-cortex adhesion acts as an
effective harmonic confining potential of stiffness ρb,eqk. For a harmonically con-
fined membrane, the presence of a nearby porous wall has been shown to modify
the dispersion relation by a mode-dependent factor (5):

ω (q) = ω0 (q) e
−2Dq e

2Dq (1 + 4Lpq)− 1− 2Dq − 2 (Dq)
2
(1 + 2Lpq)

1 + 4Lpq
, (27)

where D is the distance between the membrane and the cortex, and Lp is the

cortical permeation length. The latter is defined as Lp =
√
ηc (1− φv)Kp, where

ηc is the viscosity of the cytosol, φv is the volume fraction of the cortex, and Kp is
its volume permeability (12). Finally, ω0 (q) is the dispersion relation in the absence
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of hydrodynamic effects due to the cortex:

ω0 (q) = −
κq4 + γq2 + ρb,eqk

4ηcq
. (28)

Fig. 6 plots the modified relaxation rates for different values of the membrane-
cortex distance D and the cortical permeation length Lp. The inclusion of the cortex
in the hydrodynamics introduces a cutoff of the relaxation rate at low wave-vectors,
in contrast to the divergence shown in Fig. 3. This is the only qualitative change on
the dispersion relation arising from the influence of the cortex when it is either far
from the membrane or porous enough. In this case, ω (q) still displays a (possibly
local) minimum defining a correlation length. The position of this minimum is
slightly shifted, now appearing at longer wavelengths, so that the correlation length
of membrane undulations increases from λ∗ ∼ 0.6 µm. This would reinforce the
adiabatic approximation as well as widen the range of validity of the simple flat-
membrane model.
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Figure 6: Growth rate of a membrane undulation of wave-vector q for ρb,eq = 1
and for different values of the membrane-cortex distance D and cortical permeation
length Lp. The curve in the absence of cortical influence on membrane hydrody-
namics (Stokes) is always shown for comparison.

In turn, low membrane-cortex distances or less permeable cortices would have a
stronger influence on membrane hydrodynamics and produce deeper modifications
of the dispersion relation. In some cases, the dispersion relation would not even
have a local minimum and, therefore, no finite correlation length could be defined.
However, this would not invalidate the main conclusions drawn from the analysis of
membrane undulations, namely the fact that the flat-membrane model is restricted
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to short length scales for large-amplitude undulations, and the possibility to extract
the density of bound linkers from fluctuation spectroscopy experiments. Concerning
the first one, the lack of a correlation length would simply imply that the crossover
length scale below which the flat-membrane model applies could not be estimated
a priori. For the second conclusion, the density of bound linkers ρb,eq would still be
obtainable from the experimental structure factor S (q) or power spectrum S (ω) but
the theoretical fitting curves would not be given by Eq. 13, and Eq. 25, respectively,
anymore and they would demand knowledge of D and Lp, instead.
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