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Model for Probing Membrane-Cortex Adhesion by Micropipette Aspiration
and Fluctuation Spectroscopy
Ricard Alert,1 Jaume Casademunt,1 Jan Brugués,2,* and Pierre Sens3,*
1Departament d’Estructura i Constituents de la Matèria, Universitat de Barcelona, Barcelona, Spain; 2Max Planck Institute of Molecular Cell
Biology and Genetics, Max Planck Institute for Physics of Complex Systems, Dresden, Germany; and 3Laboratoire Gulliver, Centre National de
la Recherche Scientifique-ESPCI Paris Tech, UMR 7083, Paris, France
ABSTRACT We propose a model for membrane-cortex adhesion that couples membrane deformations, hydrodynamics, and
kinetics of membrane-cortex ligands. In its simplest form, the model gives explicit predictions for the critical pressure for mem-
brane detachment and for the value of adhesion energy. We show that these quantities exhibit a significant dependence on the
active acto-myosin stresses. The model provides a simple framework to access quantitative information on cortical activity by
means of micropipette experiments. We also extend the model to incorporate fluctuations and show that detailed information on
the stability of membrane-cortex coupling can be obtained by a combination of micropipette aspiration and fluctuation spectros-
copy measurements.
INTRODUCTION
Inmany cells, a thin layer of cytoskeleton called ‘‘cortex’’ un-
derlies the plasma membrane. While the cellular membrane
serves as a barrier for the cell and a mechanism to communi-
cate with the extracellular media, the cortex, made mostly of
actin cross-linked filaments and myosin II, provides rigidity
and allows for active remodeling of the cell boundaries,
essential for instance for cell motility. The control of mem-
brane-cortex adhesion is crucial to many cellular processes.
Indeed, membrane-cortex detachment and the formation of
cellular blebs, spherical protrusions of the unbound plasma
membrane, is often a sign of apoptosis (1,2).Membrane bleb-
bing is also used for motility by several cell types, including
amoebae and possibly cancer cells (3–6).

It is acknowledged that membrane-cortex adhesion is ob-
tained via specific interactions between large numbers of
ligand and receptor molecules (7), such as Talin (8) and
ezrin/radixin/moesin proteins (9). Spontaneous membrane
detachment, also known as blebbing, has been associated
with myosin activity within the cortex (10,11). Externally
induced perturbations using micropipette aspiration or os-
motic shocks show that a sufficiently large drop of external
pressure can induce membrane detachment (12). Conse-
quently the links between the membrane and cortex are
constantly under stress, which origin is ultimately related
to acto-myosin cortical tension and osmotic pressure.

In this article, we present a model for adhesion based on
the kinetics of the membrane-cortex ligands (13–16). We
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describe the stability of adhesion by coupling the kinetics
of the ligands to the stress exerted on them and to physical
properties of the membrane. In its simplest form, the model
establishes the mechanical equilibrium of the cell consid-
ering both the pressure drop across the membrane and the
prestressed state of the cortex, and predicts the outcome of
a micropipette aspiration experiment in terms of physical
parameters. These predictions are then compared to experi-
ments from the literature. We also discuss extensions of the
model to include spatial modulations of the membrane and
different scenarios of hydrodynamic interactions, depending
on the porosity of the cortex and its actual distance to the
membrane. In particular, we obtain analytical expressions
for the structure factor and fluctuation spectrum of the mem-
brane in certain limits, and show how these results may be
used to obtain additional information on the density of li-
gands by means of fluctuation spectroscopy experiments
on eukaryotic cells.
MATERIALS AND METHODS

The adhesion of a flexible membrane on a substrate by means of discrete

linkers has been extensively studied in the past (18–23), mostly using com-

puter simulations. It is a highly nontrivial problem due to the multiplicity of

energy scales (membrane rigidity and tension, linker stiffness, and binding

energy) and timescales (membrane and cytosol fluidity, linker’s diffusion,

and binding kinetics). In particular, the role of fluctuations on the unbinding

transition of a membrane possessing metastable bound and unbound states

has been characterized numerically (19), but the unbinding of a membrane

subjected to a constant pressure has, to our knowledge, not been systemat-

ically investigated. Our primary goal here is to assess the role of cortical

prestress on membrane-cortex detachment.

To this aim, we first adopt a highly simplified model, where we assume a

nearly planar membrane subject to a normal external stress s and attached

to the cortex by a density of linkers rb, which is necessarily smaller than a
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maximal value r0 (Fig. 1). The cortex is assumed to be flat and immobile, so

that the model is only valid at length scales below the correlation length for

cortex undulations. For a constant normal stress s, an equilibrium state may

exist with a planar membrane at position u where a uniform density rb of

bound springlike linkers with elastic constant k balances the external force.

To find the conditions for the existence and stability of such an equilibrium

state, we may write dynamical equations assuming spatial uniformity,

where u and rb are only time-dependent,

h
du

dt
¼ s� kurb; (1)

drb ¼ k ½r � r � � k ðuÞr ; (2)

dt

on 0 b off b

where h is an effective viscosity per unit length, and u ¼ 0 corresponds to

the position for which the bound linkers are not stretched. For small mem-
brane displacements, the relevant contribution to dissipation is due to

cytosol flow through the cortex meshwork, and the effective parameter h

can be estimated as h ~ hch/x
2 (see Section S1 in the Supporting Material

for details), where x ~ 30 nm is the scale of the cortex mesh size (24),

h ~ 500 nm is the thickness of the cortex, and h ~ 3 � 10�3 – 2 � 10�1

Pa s is the cytosol viscosity (10).

The linker kinetics is defined by the attachment and detachment rates kon
and koff (Fig. 1), and is assumed to be much faster than the typical timescale

of membrane shape relaxation. The force-dependent kinetics of the linkers

then imposes a strong nonlinear coupling between the kinetics and the po-

sition of the membrane. The detachment rate is assumed to follow a

Kramer’s-like kinetics (25) appropriate to thermally induced processes,

koffðuÞ ¼ k0offe
kud=ðkBTÞ; (3)

where d is a characteristic bond length in the nanometric scale (17). For

simplicity, we assume linker attachment to be an active process occur-
ring at a constant rate kon. Therefore, detailed balance is not obeyed,

as previously considered in membrane adhesion problems (18). This

assumption allows us to disregard membrane fluctuations between
a b

c d

FIGURE 1 Sketch of the system. (a) The ligands are modeled as springs

that link the cortex (red) and the membrane (green). (b) Kinetic rates kon
and koff of the ligands. The value koff depends on the load (17). (c) Forces

involved in the cell at steady state: internal pressure, Pc, and external pres-

sure, P0, exert a normal force on the membrane and cortex, which is

compensated by the membrane and cortex tension. (d) The normal projec-

tion of the acto-myosin tension in the cortex is transmitted to the membrane

through proteins that link the cortex and the membrane. To see this figure in

color, go online.
attachment points, and yields a simple analytical form for the unbinding

transition. However, it does not capture binding cooperativity occurring

due to the smoothing of membrane fluctuations near attachment points

(19–23).

Two relevant dimensionless quantities characterize the mechanics of the

linkers: the kinetic ratio, c, and the ratio of the force on the membrane to an

intrinsic force scale of the linkers, a, with

ch
k0off
kon

and

ah
sd

r0kBT
:

(4)

Equilibrium solutions to Eqs. 1 and 2 exist only for a< a*, where the latter

is defined by
a�e1þa� ¼ c�1: (5)

Taking c ~ 10�3 (26) and d ~ 1 nm, the critical force per link is s*/r0 ~

18 pN, corresponding to ~4.5 times the thermal force per link k T/d.
B

This fixes the condition for the detachment of the membrane from

the cortex, which occurs for stresses that surpass the critical stress

s* ¼ r0a*(c)kBT/d.

The adhesion energy w per unit area may be defined as the work neces-

sary to bring the stress of the linkers from its rest value to the critical value

for detachment in a quasi-static fashion, that is,

w
�
ueq

� ¼
Z u�

ueq

sðuÞdu ¼ r0k

Z u�

ueq

u

1þ cekud=ðkBTÞ
du; (6)

where s(u) is the equilibrium stress for each u. Note that the adhesion
energy depends on the actual state of the cell ueq, which is generically

unknown and incorporates the prestress state of the cell due to cortical

tension.

Within our simplified model, the average density of bound linkers rb,eq,

the critical stress s*, and the adhesion energy w all scale linearly with the

density of available linkers r0. This scaling results from our assumption of

a constant binding rate. A different scaling is expected if the binding rate

depends on the average position and fluctuations of the free membrane be-

tween anchoring points. If the on-rate obeys detailed balance, one expects

rb,eq ~ r0
2 in the absence of a pressure difference (20,21). As discussed in

the following sections, the results of micropipette experiments are consis-

tent with a linear scaling s* ~ r0.
RESULTS AND DISCUSSION

The simplified stochastic model of adhesion outlined in
the previous section is used below to analyze two different
kinds of experiments that can probe membrane-cortex
interaction. First, we analyze micropipette experiments
where the critical suction pressure required to unbind the
cell membrane from the cortex was measured in different
cellular contexts, where the density of adhesion molecules
and of cortical motors have been altered. Second, we
derive the effect of membrane-cortex interaction on the
membrane fluctuation spectrum. There is as of yet no
experimental data that can be directly confronted to the
latter derivation. We hope this article will foster experi-
mental spectroscopy studies that will couple membrane
fluctuation analysis with cell micromanipulation, along
the lines described below.
Biophysical Journal 108(8) 1878–1886
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Mechanical equilibrium of the cell

Force balance at the membrane involves the difference of
pressure across the membrane, DP, and the normal projec-
tion of the cortex and membrane tension, gm and g,
respectively,

DP ¼ ðgm þ gÞ 2
R
;

where R is the radius of the cell, assumed spherical.
a

At equilibrium, the links sustain the stress needed to main-
tain the cortex and the membrane adhered, seq ¼ 2gm/R,
which accounts for the difference between the pressure
and the membrane tension stresses, DP � 2g/R. Whenever
the equilibrium stress exceeds the critical value s*, we
expect the cell membrane to detach spontaneously.

Micropipette aspiration (12,16,27–29), among other tech-
niques (11,30,31), allows us to apply pressure perturbations
of controlled intensity and area. Pressure perturbations can
be supplemented with perturbations on relevant cell param-
eters such as myosin activity and link or cortex density,
by genetics (27–29) or direct drug treatment (10,11,31).
Tether pulling experiments have also been used to probe
membrane-cortex adhesion (32), but their interpretation is
rather nontrivial (33). In the following, we restrict ourselves
to a quantitative interpretation of micropipette aspiration
experiments.
b

Micropipette aspiration

During a micropipette experiment, a pressure drop is
applied on a small region of the membrane defined by the
micropipette radius Rp. A new equilibrium state in the
micropipette requires an increase of the stress exerted on
the links with respect to seq,

s ¼ DPp � 2g

�
1

Rp

� 1

R

�
þ 2

gm

R
; (7)

where DPh P0 – Pp is the difference between the extracel-
FIGURE 2 Theoretical predictions for the critical aspiration pressure and

adhesion energy in a micropipette experiment. (a) Critical pressure as a

function of the density of linkers r0 according to Eq. 8. (Solid black and

red lines) Cells with and without myosin II, respectively. (Horizontal

dashed lines) Experimentally measured value of the critical detachment

pressure (28) for wild-type cells (WT), mutants lacking myosin (M�), mu-

tants lacking talin (T�), and double mutants (M, T�). The slope and height

of the two theoretical curves is entirely determined by these critical pres-

sures (see text). (b) Effective adhesion energy as a function of the equilib-

rium cortical tension in the cell according to Eq. 9. (Solid black and red

lines) Cells with and without talin, respectively. To see this figure in color,

go online.
lular media and the aspiration pressure, and R is the radius
of the cell after deformation. Characteristic bounds for
membrane tension g ( 10�4 N/m and radius of cell R ~
10 mm and pipette Rp ~ 5 mm allow membrane tension to
compensate for a pressure of ~20 Pa, which is small
compared to the range of experimental pressures ~100–
1000 Pa. As a consequence, we will neglect the membrane
tension contribution in the following. The last term in the
right-hand side accounts for the cortical stress, or pre-
stressed state of the cell seq. In general, force balance
does not need to be satisfied and the cell will eventually
be entirely sucked inside the pipette if the suction pressure
DPp is too large (16). Here we focus on the case where
the cortex is able in principle to compensate for the pipette
pressure.
Biophysical Journal 108(8) 1878–1886
Using our previous analysis for the membrane-cortex
adhesion, we can relate the critical stress for the links, s*,
with the critical aspiration pressure needed to unbind the
membrane via Eq. 7:

DP�
p ¼ r0a

�kBT
d

� 2
gm

R
: (8)

The critical aspiration pressure has two contributions: the
pressure needed to detach a certain number of relaxed links,
given by the density of ligands and the critical force per link
(first term); and the contribution from the presence of acto-
myosin tension in the cortex, which sets a nonzero stress
on the links at equilibrium, hence reducing the amount of
pressure needed to reach the critical stress (second term,
Fig. 2 a).

As in determining the critical aspiration pressure, we find
that the adhesion energy per unit area measured when
detaching the membrane (Eq. 6) depends on the level of
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cortical rest tension, seq ¼ 2gm/R, which ultimately deter-
mines the effective number of ligands to be broken:

w ¼ w0r0

Z z�

zeq

z

1þ cez
dz: (9)

Here, w0 h (kBT/d)
2/(kx2) is an upper bound for the adhe-
sion energy, that corresponds to nonprestressed ligands,
and for clarity we have used rescaled quantities for the
stretching, z h u/u0 with u0 h kBT/(kd), and ligand density
r0hr0x

2. The adhesion energy per unit area depends line-
arly on the saturation density of links, w � w0r0, but con-
tains a correction factor that includes the prestressed state
of the cell. In the presence of cortical tension in the cell,
there is both a reduction of the number of effective bound
links, and an increase of stress per link. Consequently, close
to the unbinding transition, the adhesion energy is reduced
in a strongly nonlinear way by increasing the cortex
prestress (Fig. 2 b).
Discussion of micropipette experiments

Our model allows us to directly relate the critical perturba-
tion pressure needed to detach the membrane from the cor-
tex to two physiologically relevant quantities: the density of
membrane-cortex ligands, and the myosin-driven cortical
tension (Eq. 8). This relationship provides not only a
rational explanation for the membrane unbinding for a vari-
ety of cell phenotypes where either the density of ligands or
myosin activity is altered, but also a method to directly
probe cortex activity by measuring the critical pressure
needed to unbind the membrane.

We refer to previous experimental results concerning the
abrupt unbinding induced by micropipette suction to assess
the validity of our model (12,28). To test the relationship
among critical pressure, ligand density, and cortical tension,
we would ideally need to measure the critical pressure for
cells whose phenotype has been quantitatively altered. Mer-
kel et al. (28) considered four phenotypes of the amoebae
Dictyostelium: wild-type, myosin-inhibited, talin-inhibited
(a membrane-cortex linker), and double mutants. These
four phenotypes are sufficient to qualitatively test our model
and obtain values for all the relevant parameters.

Mutations that perturbed ligand density and cortex activity
should be independent within our model. Accordingly, the
difference of unbinding pressure for two values of ligand
density must be the same independently of the value of
cortical activity (Fig. 2 a). In Merkel et al. (28), the decrease
of critical pressure between the wild-type and talin-inhibited
amoebae is comparable to the corresponding decrease be-
tween the myosin-inhibited and double-inhibited mutants
(~150–200 Pa and ~150–500 Pa, respectively), even though
the actual values of the cortical tension with and without
myosin differ by a factor of 5 due to cortical prestress. This
suggests that the critical pressure scales linearly with the
density of available bounds: DPp* ~ r0, as predicted by our
simple model (Eq. 8). Comparing the critical pressures in
both wild-type and myosin-null cells for a fixed link density
(Figs. 3b and 4b in Merkel et al. (28)), we can estimate the
myosin-driven cortical stress in the wild-type amoeba,

gm ¼
�
DP�M�

p � DP�
p

�R

2
� 5 � 10�3N=m:

This is at least two orders-of-magnitude higher than the

typical membrane tension of a vesicle, g, and contributes
to the 60% of the ~1600 Pa needed to unbind the membrane.
This estimate of the cortical tension agrees well with direct
experimental measurements in Dictyostelium (27). Finally,
introducing the obtained value of gm into the rest stress
seq ¼ 2gm/R, and using the stationary state solution of
Eqs. 1 and 2, zeq ¼ aeqð1þ cezeqÞ, the equilibrium stretch-
ing of the linkers can be found, ueq ~ 100 nm, as well as
that roughly all the linkers are connected in equilibrium con-
ditions for the wild-type cells, rb,eq/r0 ¼ aeq/zeq ~ 1.

For myosin-inhibited amoebae, the micropipette pressure
is directly related to the available density of links (Eq. 8).
Using the results from Merkel et al. (28), we can estimate
the relative concentration of talin with respect to the satura-
tion link concentration:

rt

r0
¼ DP�M�

p � DP�M;T�
p

DP�M�
p

� 10� 30%:

Assuming the saturation density to be r0 ~ 100 links/mm2,
2
talin density should be roughly rt ~ 20 links/mm . The asym-

metric distribution of this small density of talin links seems to
be enough to drive directed motion in amoebae (28). Similar
observations are reported for zebrafish cells (31). For
completeness, assuming a ligand length d ~ 1 nm, we find

a� ¼ DP�M�
p d

r0kBT
� 4;

and the critical force per link s*/r0 ~ 16 pN is four times the

thermal force of the link kBT/d, which is close to our initial
estimate (~18 pN). This quantity is independent of the cell
phenotype and only depends on the kinetic rate ratio c. In
fact, from the experimental estimate of a*, we can derive
the kinetic ratio of on- and off-rates of the membrane-cortex
linkers, c ~ 10�3, in agreement with Rognoni et al. (26).
Moreover, using the stationary solution of our model, a crit-
ical stretching u* ~ 200 nm and a critical fraction of bound
linkers rb*/r0 ~ 0.9 are found. Our results show that the rest
stress seq ¼ 2gm/R is ~60% of the critical unbinding value
s* for wild-type cells, while it is ~75% in talin-null cells.
This is consistent with the observation that spontaneous
blebbing of migratory Dictyostelium is more frequent for ta-
lin-null mutants than for wild-type cells (34).

Finally, our model gives a prediction for the adhesion en-
ergy as a function of the ligand density and cortical activity
Biophysical Journal 108(8) 1878–1886
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(Eq. 9). In the case of the four phenotypes discussed above,
the maximum adhesion energy is w0r0x

2 ~ 2 � 10�5 J/m2,
and corresponds to the mutant lacking myosin (a nonpres-
tressed cell, aeq¼ 0). For a mutant lacking Talin and myosin
II, the adhesion energy is reduced by ~10–30% due to the
decrease in r0. For a wild-type cell and a mutant lacking ta-
lin, the adhesion energies are further reduced, by 50% and
65%, respectively, due to cortical prestress (Fig. 2 b). The
dramatic increase in the adhesion energy for a cell lacking
myosin activity, which can be ~200%, illustrates the impor-
tance of cortex activity in the cell in determining the exper-
imental measurements of adhesion energy and detachment
pressures. Table 1 recapitulates the numerical values used
for the parameters of the model. These parameters may
vary significantly depending on cell lines and experimental
conditions, so this choice is somewhat arbitrary. However,
we emphasize that both the cortical tension gm and the frac-
tion of bonds associated with Talin rt/r0 do not depend on
this choice and can be directly determined by confronting
Eq. 8 with the experimental results.
Membrane undulations

The model for membrane-cortex adhesion discussed so far
considers a flat membrane, disregarding possible membrane
undulations. In this section, we address the linear dynamics
of long-wavelength perturbations around the flat membrane
state:

uð~x; tÞ ¼ ueq þ duð~x; tÞ;
rbð~x; tÞ ¼ rb;eq þ drbð~x; tÞ: (10)

The coarse-grained interface Hamiltonian includes the

elastic energy of bound linkers and contributions from the
membrane bending rigidity and tension (35),

H ¼
Z
S

�
k

2

	
V2uð~xÞ
2 þ g

2
½/Vuð~xÞ�2

þ k

2
rbð~xÞu2ð~xÞ � suð~xÞ

�
d2~x;

(11)
TABLE 1 Estimates for model parameters

Symbol Description Estimate (Ref.)

x cortex mesh size 30 nm (24)

h cortex thickness 500 nm (10)

hc cytosol viscosity 10�2 Pa s (10)

kon linker attachment rate 104 s�1 (26)

k0off free linker detachment rate 10 s�1 (26)

d linker bond length 1 nm (17)

k linker stiffness 10�4 N/m (text)

r0 density of available linkers 1014 m�2 (text)

R cell radius 10 mm (28)

g membrane surface tension 5 � 10–5 N/m (11)

k membrane bending ridigity 10�19 J (30)

gm cortical tension 5 � 10–3 N/m (this work)
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where k is the bending modulus and s ¼ rb,eqkueq. As
before, the restoring elastic forces exerted by the linkers
are treated within a continuous approximation, and mem-
brane fluctuations between bound linkers are not accounted
for. This description is appropriate for length scales larger
than the average spacing between linkers r0

�1/2 ~ 100 nm.
Membrane deformations induce Stokes flows in the

surrounding fluid. These flows mediate long-range hydrody-
namic interactions in the membrane, leading to a nonlocal
membrane dynamics that is better treated in Fourier space.
The full dynamical problem requires a proper treatment
of cytosol permeation through the porous cortex and the
(less) porous lipid membrane at all length scales (36,37).
For simplicity, we restrict ourselves to a simplified treat-
ment, where cytosol permeation through the cortex is only
included for the lowest Fourier mode q¼ 0. The other modes
are treated below neglecting the effect of the cortex on
hydrodynamics, as is appropriate for sufficiently large mem-
brane-cortex distances and/or large cortex mesh size. The
effect of finite cortex permeation is studied in Section S4
in the Supporting Material. Using standard results of mem-
brane hydrodynamics (38) together with Eq. 11, the dy-
namics of long-wavelength membrane deformations read

vtd~u~0 ¼ �1

h

�
rb;eqkd~u~0 þ

s

rb;eq
d~rb;~0

�
; (12)

vtd~u~q ¼ � 1 	�
kq4 þ gq2 þ rb;eqk

�
d~u~q þ ueqkd~rb;~q



;

4hcq

(13)

where ~q is the wave-vector. Within our approximation, the
relaxation dynamics of the mode q¼ 0 (Eq. 12) is decoupled

from the other modes (Eq. 13) at the linear level of pertur-
bations. Equation 12 can be seen as a linearized version of
Eq. 2 when transformed back to real space.

In turn, the dynamics of the long-wavelength perturba-
tions of the density of bonds reads

vtdrbð~xÞ ¼ � kd

kBT
k0offe

kueqd=ðkBTÞrb;eqduð~xÞ

�
h
kon þ k0offe

kueqd=ðkBTÞ
i
drbð~xÞ:

(14)

Equations 12–14 completely specify the dynamics of linear

perturbations around the flat membrane state, both for the
membrane displacement u and the density of bonds rb.
However, in the limit of long wavelengths, membrane
deformations proceed much more slowly than linker ki-
netics. In general, membrane dynamics is slower than linker
kinetics at length scales above a cross-over wavelength
lcross, which is determined from an analysis of the eigen-
values and eigenvectors of the dynamical system in Eqs.
13 and 14. With the parameters given in Table 1, this cross-
over occurs in the bending-dominated regime, for which
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lcrossx 2p(k/(4hckon))
1/3 ~ 0.4 mm. For larger length scales,

the kinetics of the linkers shown in Eq. 14 is always essen-
tially equilibrated and an adiabatic approximation may be
used. The system can then be described in terms of only
the slow variable du:

vtd~u~q ¼ �kq4 þ gq2 þ rb;eqk

4hcq
d~u~q: (15)

Under the adiabatic approximation, the dispersion relation
4 2
of membrane dynamics u(q) ¼ �(kq þ gq þ rb,eqk)/

(4hcq) features a maximum due to membrane-cortex adhe-
sion (see Section S2.1 in the Supporting Material for de-
tails). This maximum naturally defines a correlation length
for shape fluctuations, lc, below which the membrane can
be seen as essentially rigid. This correlation length depends
on a combination of both mechanical properties of the mem-
brane and of the linkers:

lc ¼ 2p

"
6k=g�

1þ 12krb;eqk
�
g2
�1=2 � 1

#1=2

: (16)

With the values given in Table 1, we find lc ~ 0.6 mm for

an unperturbed cell (rb,eq x r0). This value is larger than
both the cross-over wavelength of the free membrane un-
dulations, l ¼ 2p

ffiffiffiffiffiffiffiffi
k=g

p � 0:3 mm, and the spacing be-
tween linkers, r0

�1/2 ~ 0.1 mm. The computed correlation
length is slightly smaller than the pipette radius, so the
approximation of a rigid membrane is only marginally
valid in that case. However, it becomes more accurate
near the unbinding transition because the correlation length
lc increases with decreasing density of bonds rb (see Sec-
tion S3 of the Supporting Material for details). In the gen-
eral case, including all hydrodynamic effects of the cortex,
the value of lc may differ from Eq. 16 or, for low cortex
porosity and short membrane-cortex distances, it may not
even be well defined (see Section S4 in the Supporting Ma-
terial for details).

Finally, at the mean-field level, the critical stress s* at
which the membrane detaches from the cortex is not affected
by membrane undulations because the q¼ 0 mode is the first
one to become unstable in the framework of Eqs. 12–14.
Fluctuations of the membrane shape may, however, create
regions of locally low linker density and high linker stress,
thereby widening the unbinding transition boundary.
Fluctuation spectroscopy

The formulation of an adhesion model accounting for
membrane undulations provides an appropriate framework
to extract additional information about membrane-cortex
adhesion from the statistics of membrane fluctuations. For
instance, applying the energy equipartition theorem to Eq.
11 one obtains, under the adiabatic approximation, a mem-
brane structure factor of
SðqÞ ¼ kBT

kq4 þ gq2 þ rb;eqk
; (17)

where rb,eq is the equilibrium value of the density of bound
linkers (see Section S2.2 of the Supporting Material for
details). This result is consistent with the situation of a
membrane confined in a harmonic potential (39–41).
Here, the confinement contribution explicitly arises from
the attachment kinetics of the linkers via the adiabatic
approximation. This fact allows us to experimentally deter-
mine the density of bound linkers, rb,eq, from measure-
ments of the static structure factor of the cell membrane
(42). Specifically, the long-wavelength limit q / 0 needs
to be measured in fluctuation microscopy experiments
in order to determine rb,eq from Eq. 17. Transforming
Eq. 17 to real space, the mean-square amplitude of mem-
brane undulations reads (see Section S2.3 of the Support-
ing Material for details):

ffiffiffiffiffiffiffiffiffiffiffi
hdu2i

p
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT

8
ffiffiffiffiffiffiffiffiffiffiffiffiffi
krb;eqk

p
s

� 4 nm: (18)

Finally, the model in the previous section also provides
dynamical information on membrane undulations. Specif-
ically, the power spectral density of membrane fluctuations
can be shown to take the form (43,44)

SðuÞ ¼ 4hckBT

p

Z qmax

qmin

dq

ð4hcuÞ2 þ
�
kq3 þ gqþ rb;eqk

�
q
�2;
(19)

where qmin and qmax are the cutoff values of the wave-vector

q. In our model, either the perimeter of the cell, the correla-
tion length of cortex undulations, or the radius of the pipette
in the experimental setup proposed in Fig. 3 a sets the large-
wavelength cutoff, qmin ~ 1/R, and the short-wavelength cut-
off is set by the spacing of the linkers: qmax ¼ 2p/r0

�1/2. In
fluctuation spectroscopy experiments, the laser focal diam-
eter sets the limitation for the latter (43,44).

Membrane-cortex detachment induced by micropipette
aspiration is a rather invasive procedure to assess the stabil-
ity of the membrane-cortex cellular interface. An alternative
approach could be to monitor membrane fluctuations
for different aspiration pressures using fluctuation spectros-
copy, as sketched in Fig. 3 a. Fig. 3 b shows the power
spectrum density (Eq. 19) in the limit g / 0 both for
bending-dominated and adhesion-dominated membrane
fluctuations. The high-frequency limits were previously
obtained:

SðuÞz kBT

6
�
2kh2

c

�1=3
u5=3

for lcqmax >> 1, and
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FIGURE 3 Density of membrane-cortex bonds from fluctuation spectros-

copy experiments. (a) Illustration of a combined spectroscopy and micropi-

pette experiment that could probe the density of membrane-cortex bonds.

(b) Power spectral density calculated from Eq. 19 in the limit of vanishing

surface tension (g ¼ 0), both for adhesion-dominated and bending-domi-

nated membrane fluctuations. (Dashed lines) Known high-frequency limits.

The rescaling length u0 is defined as u0 h kBT/(kd). Parameters are taken

from Table 1, with rb,eq ¼ r0, and the power spectrum is integrated from

qmin¼ 1/R to qmax¼ 2p/d, with d¼ 0.5 mm the focal diameter of the optical

trap (44). (c) Low-frequency plateau of the power spectrum for adhesion-

dominated fluctuations (Eq. 21) as a function of the pressure on the mem-

brane. To see this figure in color, go online.
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SðuÞzkBTqmax

4phcu
2

otherwise (43–45) (see more details in Section S2.4 of the
Supporting Material). However, our model gives an analyt-
ical expression for the full power spectrum in the adhesion-
dominated regime (qmax < [rb,eqk/k]

1/4):

lim
k;g/0

SðuÞ ¼ kBT

4phcu
2

�
qmax � qmin þ

rb;eqk

4hcu

�
�
arctan

�
4hcqminu

rb;eqk

�
� arctan

�
4hcqmaxu

rb;eqk

���
:

(20)

The density of membrane-cortex bonds rb,eq can be ex-

tracted by fitting this expression to experimental measure-
ments. In particular, if adhesion dominates membrane
fluctuations, rb,eq can be simply obtained from the plateau
of the power spectrum at low frequencies:

lim
u/0

lim
k;g/0

SðuÞ ¼ 4hckBT

3p
�
rb;eqk

�2 �q3max � q3min

�
: (21)

The value of this plateau is plotted in Fig. 3 c as a function

of the pressure on the membrane, DP, which modifies the
density of bound linkers. Experimentally, the pressure
on the membrane can be varied, either decreasing cortical
tension by inhibiting myosin activity or via micropipette
suction. Hence, we propose combined spectroscopy and
Biophysical Journal 108(8) 1878–1886
micropipette experiments, as illustrated in Fig. 3 a, to
test the predictions in Fig. 3 and estimate the density of
membrane-cortex bonds. Note that the tip of the aspirated
membrane is not flat, but is on average hemispherical
with a radius of curvature matching the pipette radius.
A rigorous analysis of the fluctuation spectrum should
be done using spherical harmonics rather than Fourier
transform. Furthermore, Eq. 19 does not account for the
hard-wall repulsion introduced by the pipette walls. As
discussed in Betz and Sykes (44), this introduces differ-
ences in the low frequency limit of the power spectrum.
However, this should not affect the pressure dependence
of the zero-frequency power spectrum shown in Fig. 3 c.
The correction to Eq. 20 due to a finite average membrane
curvature can be reduced by increasing the radius of the
micropipette, or by tuning myosin activity rather than us-
ing a micropipette to modify the average density of bond
linkers.

The measurement of the density of membrane-cortex
linkers from fluctuation spectroscopy is complementary to
the quantitative determination of the cortical activity and
adhesion energy from micropipette experiments, as dis-
cussed above. Indeed, data on fluctuation spectra of generic
eukaryotic cells other than red blood cells are still lacking.
Peukes and Betz (46) have recently obtained such spectra
in blebs during their growth stage, while the cortex is still
reforming and, thus, weak. However, information about
the full cortex could only be extracted from experiments
probing the fluctuations of strongly adhered membranes
instead of blebs. Peukes and Betz (46) analyze the fluctua-
tion spectra as that of isolated membranes, with the effect
of the cortex only incorporated into an effective tension of
the membrane. In contrast, our model accounts for the effect
of the adhesion to the cortex via the kinetics of the linkers,
thus providing a theoretical framework in which to consis-
tently interpret fluctuation spectroscopy experiments on
strongly adhered cell membranes.

As a final comment, it is worth stressing that, in this
article, we have only addressed passive fluctuations of ther-
mal origin. In general, different active processes could
potentially modify the presented scenario. Typically, active
processes are quantitatively most pronounced at low fre-
quencies. At high enough frequencies it has been shown
that the role of active fluctuations can be incorporated
through an increased effective temperature of the membrane
(39,47,48). A detailed analysis of this point is beyond the
scope of this work and is deferred to future work.
CONCLUSIONS

We have described a model for membrane-cortex adhesion
that relates the unbinding pressure and adhesion energy
measured in micropipette experiments to two cellular
parameters, the membrane-cortex ligand density and the
myosin-driven cortical activity. The validity of the model
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is qualitatively discussed, although a complete set of ex-
periments will be required for a complete validation. The
proposed relationship between unbinding pressure and
cortical activity provides a method to measure the cortical
activity by means of micropipette aspiration experiments.
Accounting for membrane undulations allows us to relate
the fluctuation spectrum of the membrane to the density of
bound membrane-cortex bonds, thus providing a method
for measuring this quantity in fluctuation spectroscopy ex-
periments. Together, these experiments could give access
to quantitative information about membrane-cortex adhe-
sion in the framework of our model.
SUPPORTING MATERIAL
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de Barcelona, Avinguda Diagonal 647, 08028 Barcelona, Spain

2MPI of Molecular Cell Biology and Genetics, MPI for Physics of
Complex Systems, Pfotenhauer Strasse 108, 01307 Dresden, Germany

3Laboratoire Gulliver, CNRS-ESPCI, UMR 7083, 10 rue Vauquelin,
75231 Paris Cedex 05, France. Present address: Physico-Chimie Curie,
CNRS UMR 168, Institut Curie, 11 rue Pierre et Marie Curie, 75231

Paris Cedex 05, France

Contents

1 Flow dissipation in membrane displacements 1
1.1 Membrane flow dissipation . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Cytosol flow dissipation . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Effective viscosity of membrane displacements . . . . . . . . . . . . 4

2 Membrane undulations 5
2.1 Adhesion-induced correlations . . . . . . . . . . . . . . . . . . . . . 5
2.2 Membrane structure factor . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Amplitude of membrane undulations . . . . . . . . . . . . . . . . . 6
2.4 Membrane power spectrum . . . . . . . . . . . . . . . . . . . . . . 8

3 Validity of the flat-membrane model 10

4 Influence of a nearby porous cortex on membrane dynamics 10

1 Flow dissipation in membrane displacements

In this section, the energy dissipation associated to the flows involved in the displace-
ment of the membrane is estimated. This quantity is given by the fluid mechanics
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of a viscous flow (1)

Ė = 2ηf

∫
V

~~e : ~~e dV ; eij =
1

2

(
∂vi
∂rj

+
∂vj
∂ri

)
, (1)

where ηf is the viscosity of the fluid flowing with a velocity field ~v, and ~~e is the

symmetric part of the strain rate tensor ~∇~v.

Figure 1: Sketch of membrane (green) and cytosol (black) flows involved in mem-
brane displacements. For instance, during the initial stages of membrane-cortex
detachment, i.e. bleb nucleation, the membrane is dragged over the cortex (red)
and the cytosol flows through it.

There are two main sources of dissipation associated to membrane displacement,
namely the lateral flow of the membrane, and the flow of cytosol through the cortex
(Fig. 1). These two contributions are addressed in the two following subsections,
respectively. Finally, the cytosol flow is identified as the main source of dissipation
in this process. This allows to define an effective viscosity per unit length, η,
characterizing the dissipative normal motion of the membrane as in Eq. 1 in the
Main Text.

1.1 Membrane flow dissipation

We start by considering the lateral flow of the membrane respect to the underlying
cortex. Suppose that the membrane is flowing towards a membrane patch that is
inflating. This patch can be thought of as a nucleating bleb of circular projected
area of radius a. The increase of the membrane area of this incipient bleb per unit
time, Ṡb, is given by membrane mass conservation: Ṡb = 2πrṙ, where r is the
distance from any point along the membrane to the center of the bleb (cylindrical
coordinates), and ṙ is the radial flow speed (Fig. 2).

However, the flowing speed of the membrane must vanish at the points at which
it is connected to the cortex through linker molecules. This gives rise to a local
velocity gradient of order ṙ/ξ0 = Ṡb/ (2πrξ0) between any two linkers, with ρ0 ≡
ξ−20 the density of linkers. In turn, the global radial velocity gradient of membrane
flow is of order ṙ/r = Ṡb/

(
2πr2

)
. Therefore, the total membrane flow dissipation

Ėm will include the contributions of these two gradients: Ėm = Ė links
m + Ėglobal

m .
Then, based on Eq. 1, these are estimated by

Ė links
m ∼ 4πηmg

∫ R

a

rdr

(
Ṡb

2πrξ0

)2

=
ηmgṠ

2
b

πξ20
ln

(
R

a

)
≈ ηmgṠ

2
b

2πξ20
ln

(
S

4Ab

)
,

(2)

2



Figure 2: Membrane flow dissipation. (a) Sketch of the membrane flow towards a
given patch (dotted line). (b) This flow vanishes at the position of the membrane-
cortex linkers (black dots), which results in a gradient of the flow velocity.

Ėglobal
m ∼ 4πηmg

∫ R

a

rdr

(
Ṡb

2πr2

)2

≈ ηmgṠ
2
b

2πa2
=
ηmgṠ

2
b

2Ab
. (3)

Here, ηm is the viscosity of the membrane, g its thickness, and R is the cell ra-
dius. Accordingly, S = 4πR2 is the total visible area of the cell membrane, and
Ab = πa2 is the projected circular area of the incipient bleb. Our continuum
approach describes membrane displacements at length scales larger than ξ20 . As a
consequence, Ab > πξ20 and the local dissipation between linkers, Ė links

m , is expected
to dominate membrane flow dissipation.

1.2 Cytosol flow dissipation

Next we compute the energy dissipation rate due to the flow of the cytosol dur-
ing membrane displacements. In the incompressible regime of cytosol flow, mass
conservation reads V̇b = 4π%2v%, where Vb is the volume of the incipient bleb,
% is now the distance from any point in the cytoplasm to the tip of the bleb
(spherical coordinates), and v% is the fluid velocity at this point. As for the mem-
brane flow, there are two velocity gradients contributing to dissipation; in this case:
Ėc = Ėcortex

c + Ėglobal
c . The first one corresponds to the flow of the cytosol through

the cortex, which generates velocity gradients of order v%/ξ = V̇b/
(
4π%2ξ

)
only

inside the cortex. The second one corresponds to the global radial velocity gradient
of order v%/% = V̇b/

(
4π%3

)
spanning throughout the cytoplasm.

The computation of the cortex term can be done by considering the cortex as
a porous material. In this sense, the cortex is viewed as an array of thin capillary
tubes of typical radius ξ, so that cylindrical coordinates are the most appropriate
in this case. We also consider that the flow of the cytosol through the cortex is
along the axial coordinate z and is restricted to the cortical area where the bleb
is nucleating (Fig. 1), i.e. a circular area of radius a. Therefore, the number of
capillary tubes involved in the cytosol flow through the cortex is ∼ a2/ξ2, so that
the total dissipation is this number times the dissipation along one tube. In turn,
the cortex is considered to be separated a distance ∼ a from the tip of the incipient
bleb, so that it is located at a < z < a + h, where h is its thickness. Then, using
Eq. 1 as before:

Ėcortex
c ∼ a2

ξ2
4πηc

∫ a+h

a

dz

∫ ξ

0

rdr

(
V̇b

4πz2ξ

)2

≈ ηchV̇
2
b

4πξ2a2
=
ηchV̇

2
b

4ξ2Ab
, (4)
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where we have used h < a to obtain an approximate expression valid for the large
length-scale motion that our model describes.

Finally, the global term is dealt with using spherical coordinates in Eq. 1:

Ėglobal
c ∼ 8πηc

∫ R

a

%2d%

(
V̇b

4π%3

)2

≈ ηcV̇
2
b

6πa3
=

√
π ηcV̇

2
b

6A
3/2
b

. (5)

Similar to the case of the membrane dissipation, since Ab > πξ2, the contribution of
the permeation through the cortex is expected to dominate the dissipation associated
to cytosol flow.

1.3 Effective viscosity of membrane displacements

In conclusion, an estimate for the rate of energy dissipation due to the flows involved
in sufficiently extended membrane displacements is given by

Ė ∼ Ė links
m + Ėcortex

c ∼ ηmgṠ
2
b

2πξ20
ln

(
S

4Ab

)
+
ηchV̇

2
b

4ξ2Ab
, (6)

where only the relevant contributions of the membrane and cytosol flows have been
included. Next, Ṡb and V̇b need to be estimated in terms of membrane displacement
u and speed u̇. This can be done by considering the shape of the incipient bleb as
a spherical cap of radius Rb, polar radius a, and height u. Then,

Sb ∼ 2πRbu, Vb ∼ πRbu2; Rb =
1

2

(
a2

u
+ u

)
. (7)

The polar radius a is assumed to remain constant during the inflation of the bleb,
while both u and Rb change. Then, the previous expressions need to be rewritten
in terms of a single dynamical variable, namely u:

Sb ∼ π
(
a2 + u2

)
, Vb ∼

πa2

2
u (8)

to the lowest order in the height u. Now, if the bleb is inflating at a speed u̇,

Ṡb ∼ 2πuu̇, V̇b ∼
πa2

2
u̇. (9)

According to Eq. 6, this means that the main contribution to dissipation is the
flow of cytosol through the cortex for small enough membrane displacements u, to
which our linear model is restricted:

Ė ∼ ηchAb
4ξ2

u̇2. (10)

This allows to define µeff ∼ ηchAb/ξ
2 as the effective drag coefficient for the

overdamped motion of the membrane: F = µeffu̇. Then, when the dynamics of
uniform membrane displacements is specified per unit area, Eq. 1 in the Main Text
is retrieved together with the mentioned definition of the effective viscosity per unit
length η, given by:

η ≡ µeff

Ab
∼ ηc

h

ξ2
. (11)

It is worth remarking that the overdamped limit for membrane dynamics has been
argued to be valid in (2).
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2 Membrane undulations

2.1 Adhesion-induced correlations

Under the adiabatic approximation, and at length scales larger than ρ
−1/2
0 , mem-

brane dynamics is fully described in terms of the dispersion relation

ω (q) = −κq
4 + γq2 + ρb,eqk

4ηcq
, (12)

as given by Eq. 15 in the Main Text. Because of membrane-cortex adhesion, the
dispersion relation features a maximum at a finite wavelength. Fig. 3 shows that
the nonmonotonic behaviour of the dispersion relation is associated to adhesion,
disappearing in its absence (ρb,eq = 0). Indeed, membrane-cortex adhesion is also
responsible for the divergence of the dispersion relation at large wavelengths, which
disappears if the hydrodynamic effects of the cortex are accounted for (see section
4).
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Figure 3: Growth rate of a membrane undulation of wave-vector q for different
values of the fraction of bound linkers ρb,eq = ρb,eq/ρ0. The rescaling wave-vector is
defined as q∗ = 2π/λ∗ with λ∗ ≡ λc (ρ0). The range of wave-vectors experimentally
explored in (3) is shaded in grey. This indicates that the non-monotonicity of the
dispersion relation due to membrane-cortex adhesion could be probed in fluctuation
spectroscopy experiments

The finite wavelength λc (ρb,eq) at which the growth rate ω (q) is maximum,
gives the length scale of membrane deformations that feature the slowest relaxation.
Consequently, this wavelength acts as a correlation length of membrane undulations.
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2.2 Membrane structure factor

Under the adiabatic approximation, and at length scales larger than ρ
−1/2
0 , the

structure factor of membrane fluctuations reads

S (q) =
kBT

κq4 + γq2 + ρb,eqk
, (13)

as given in Eq. 17 of the Main Text. Fig. 4 plots the dependence of the structure
factor on the wave-vector q, showing that long-wavelength undulations are the most
prominent in terms of amplitude. This fact reinforces the picture of the adhered
membrane as a rigid-like object at short scales, with no relevant contribution of
undulations. In particular, Fig. 4b shows that fluctuations of length scale smaller
than λ∗ are not associated to an increase of stress of the linkers, and this should not
contribute to setting the location of the unbinding transition. Hence, this explains
the role of λ∗ as a correlation length separating the rigid-like and undulated regimes
of the membrane.
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Figure 4: Membrane structure factor as a function of the wave-vector for different
values of the fraction of bound linkers ρb,eq = ρb,eq/ρ0. The rescaling lengths are
u0 ≡ kBT/ (kδ) and uξ ≡ kBT/ (kξ). (a) In linear scale. (b) In logarithmic
scale, which evidences the crossover between the regime where adhesion dominates
(λ∗q < 1), and the regime where membrane mechanics dominates (λ∗q > 1).

2.3 Amplitude of membrane undulations

The mean-square amplitude of membrane undulations can be obtained by Fourier-
transforming the membrane structure factor Eq. 13 back to real space:

〈
δu2 (~x)

〉
=
kBT

2π

1√
4κρb,eqk − γ2

[
arctan

(
2π2κρ0 + γ√
4κρb,eqk − γ2

)
−

arctan

(
2κ (π/L)

2
+ γ√

4κρb,eqk − γ2

)]
. (14)

This is the result for the case γ2 < 4κρb,eqk, which is the actual situation for our
choice of k ∼ 10−4 N/m. Next, some limits of Eq. 14 are studied:
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• Strong adhesion:

lim
ρb,eqk→∞

〈
δu2 (~x)

〉
≈ kBTπρ0

4ρb,eqk
, (15)

which does not diverge for large membranes due to adhesion. It corresponds
to a rigid and unstretchable membrane fluctuating under the harmonic con-
finement of the average adhesion potential ρb,eqk acting down to the cutoff

length ρ
−1/2
0 .

• Low tension:

lim
γ→0

〈
δu2 (~x)

〉
≈ kBT

8
√
κρb,eqk

, (16)

which does not diverge either. This situation corresponds, for instance, to
the case of a somehow constrained vesicle, where membrane surface tension
is negligible as compared to bending rigidity. A constraining harmonic con-
finement, which can stem from other membranes in a stack (4), the presence
of a nearby wall (5), or sparse harmonic attachments (6), produces the same
effect as the adhesion term within the adiabatic approximation framework of
our model.

• High bending rigidity:

lim
κ→∞

〈
δu2 (~x)

〉
≈ kBTL

2

4π3κ
. (17)

In this case, the root mean-square amplitude diverges linearly with the mem-
brane linear size. This limit corresponds to a free vesicle in the absence of
any adhesion or confinement, so that undulations are driven solely by bending
rigidity (7).

It is worth exploring the other possible case, namely γ2 > 4κρb,eqk, since it could
be relevant for some cell types, for instance, presenting a more diluted cortex or
softer linkers. In this case, the mean-square amplitude of membrane undulations
reads

〈
δu2 (~x)

〉
=
kBT

4π

1√
γ2 − 4κρb,eqk

[
ln

(
2π2κρ0 + γ −

√
γ2 − 4κρb,eqk

2π2κρ0 + γ +
√
γ2 − 4κρb,eqk

)
−

ln

(
2κ (π/L)

2
+ γ −

√
γ2 − 4κρb,eqk

2κ (π/L)
2
+ γ +

√
γ2 − 4κρb,eqk

)]
. (18)

The limits for this situation are discussed below:

• Weak adhesion:

lim
ρb,eqk→0

〈
δu2 (~x)

〉
≈ kBT

2πγ
ln

(
L

π

√
γ

κ

)
, (19)

which diverges logarithmically for large membranes. This corresponds to the
case of a free membrane with contributions both of bending and surface
tension to undulations.
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• High tension:

lim
γ→∞

〈
δu2 (~x)

〉
≈ kBT

2πγ
ln
(
ρ
1/2
0 L

)
, (20)

which also diverges logarithmically for large membranes. This is the result
obtained in the absece of adhesion for tension-dominated membrane dynamics
(8). This situation might correspond to a strongly stretched membrane due
to cortical pulling.

• Low bending rigidity:

lim
κ→0

〈
δu2 (~x)

〉
≈ kBT

4πγ
ln

(
1 +

π2γρ0
ρb,eqk

)
, (21)

which does not diverge for large membranes due to adhesion. This situation
corresponds to a very flexible membrane yet under tension, and adherent.

γ2 < 4κρb,eqk

no limit ∼ 3 nm
ρb,eqk →∞ ∼ 6 nm
γ → 0 ∼ 4 nm
κ→∞ ∼ 1 µm

γ2 > 4κρb,eqk

no limit —
ρb,eqk → 0 ∼ 9 nm
γ →∞ ∼ 9 nm
κ→ 0 ∼ 3 nm

Table 1: Numerical estimates for the root mean-square amplitude of membrane

undulations
〈
δu2 (~x)

〉1/2
in different situations and limits. In all cases, the same

numerical values of the parameters have been used.

Table 1 summarizes the numerical values of the root mean-square amplitude
of membrane undulations for all the cases and limits discussed above. The value〈
δu2 (~x)

〉1/2 ∼ 3 nm corresponding to our case justifies the approximation of con-
sidering the membrane-cortex linker molecules as hookean springs, i.e. in their linear
elasticity regime.

2.4 Membrane power spectrum

Within the adiabatic approximation, the power spectrum reads

S (ω) =
4ηckBT

π

∫ qmax

qmin

dq

(4ηcω)
2
+ (κq3 + γq + ρb,eqk/q)

2 , (22)

as given by Eq. 19 in the Main Text. This expression can not be analytically inte-
grated in general. Next we consider some asymptotic behaviours of this expression.
Integration limits are extended to qmin → 0 and qmax →∞ whenever possible:

• No adhesion. Tension-dominated regime, low frequencies: Low-frequency
responses of a non-adhered membrane are found at long wavelengths, and
are thus dominated by surface tension: limq→0 ω (q) = γq/ (4ηc). Therefore,
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the low-frequency limit of the power spectrum of a free membrane can be
retrieved by imposing a vanishing bending rigidity κ→ 0:

lim
κ→0

S (ω) =
kBT

2γω
. (23)

• No adhesion. Bending-dominated regime, high frequencies: High relaxation
rates of the free membrane occur at q →∞, implying that they are dominated
by the bending rigidity: limq→∞ ω (q) = κq3/ (4ηc). Consequently, the high-
frequency limit of the power spectrum of a non-adhered membrane is retrieved
by neglecting surface tension γ → 0:

lim
γ→0

S (ω) =
kBT

6 (2κη2c )
1/3

ω5/3
. (24)

• Adhesion-dominated regime, intermediate-high frequencies: As opposed to
the behaviour of free membranes, the dispersion relation of a membrane ad-
hered to the cortex in the adiabatic approximation is non-monotonic. There-
fore, the relationship between frequencies and wave-vectors is not straight-
forward. For the range of wave-vectors experimentally explored in (3), with
df = 0.5 µm, we have ω (qmin) � ω (qmax), as shown in Fig. 3. Conse-
quently, the adhesion-dominated regime at long wavelengths corresponds to
high frequencies. Using smaller focal light spots could shift the adhesion-
dominated regime towards lower frequencies. An analytical expression for the
power spectrum in this limit is worked out by setting κ, γ → 0:

lim
κ,γ→0

S (ω) =
kBT

4πηcω2

[
qmax − qmin +

+
ρb,eqk

4ηcω

[
arctan

(
4ηcqminω

ρb,eqk

)
− arctan

(
4ηcqmaxω

ρb,eqk

)]]
. (25)

• Brownian motion regime, highest frequencies: Finally, at sufficiently high
frequencies the power spectrum is only revealing the Brownian motion of the
membrane within the cytosol, which only depends on the viscosity of the
latter. This limit is thus insensitive to any membrane properties:

lim
ω→∞

S (ω) =
kBT (qmax − qmin)

4πηcω2
. (26)

On the one hand, the first two limits correspond to a non-adhered membrane, for
which our model retrieves the predicted (9) and observed (3, 9, 10) scalings ∼ ω−1
and ∼ ω−5/3 of the power spectrum. These studies also predicted and observed
the high-frequency ∼ ω−2 behaviour corresponding to the Brownian motion of the
membrane within the surrounding fluid. Finally, if the effect of the hydrodynamic
confinement due to the presence of the cortex is important, which turns out to be
the case for red blood cells, one should expect an intermediate regime scaling as
∼ ω−4/3 (11).
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3 Validity of the flat-membrane model

Here we analyze the validity of the flat-membrane model as a function of membrane-
cortex adhesion. On the one hand, Fig. 5a plots the dependence of the correlation
length λc on the density of bonds (Eq. 16 of the Main Text), evindencing the
increased membrane correlations near the unbinding transition. As a consequence,
the simple flat-membrane model becomes more accurate near detachment. On the
other hand, Fig. 5b shows the increase in the amplitud of membrane fluctuations
(Eq. 14) when membrane-cortex adhesion is weakened, specially at long-wavelength
(see also Fig. 4). The magnification of membrane undulations near the unbinding
transition implies that a stochastic version of the adhesion models presented in this
article may be needed for an accurate study of membrane-cortex detachment.
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Figure 5: Membrane correlations and undulations as a function of adhesion. (a)
Correlation length of membrane undulations as a function of the equilibrium density
of bonds. (b) Root mean-square amplitude of membrane undulations as a function
of the equilibrium density of bonds.

4 Influence of a nearby porous cortex on membrane
dynamics

Here we comment on the effects of the cortex over the hydrodynamics of the mem-
brane. Under the adiabatic approximation, membrane-cortex adhesion acts as an
effective harmonic confining potential of stiffness ρb,eqk. For a harmonically con-
fined membrane, the presence of a nearby porous wall has been shown to modify
the dispersion relation by a mode-dependent factor (5):

ω (q) = ω0 (q) e
−2Dq e

2Dq (1 + 4Lpq)− 1− 2Dq − 2 (Dq)
2
(1 + 2Lpq)

1 + 4Lpq
, (27)

where D is the distance between the membrane and the cortex, and Lp is the

cortical permeation length. The latter is defined as Lp =
√
ηc (1− φv)Kp, where

ηc is the viscosity of the cytosol, φv is the volume fraction of the cortex, and Kp is
its volume permeability (12). Finally, ω0 (q) is the dispersion relation in the absence
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of hydrodynamic effects due to the cortex:

ω0 (q) = −
κq4 + γq2 + ρb,eqk

4ηcq
. (28)

Fig. 6 plots the modified relaxation rates for different values of the membrane-
cortex distance D and the cortical permeation length Lp. The inclusion of the cortex
in the hydrodynamics introduces a cutoff of the relaxation rate at low wave-vectors,
in contrast to the divergence shown in Fig. 3. This is the only qualitative change on
the dispersion relation arising from the influence of the cortex when it is either far
from the membrane or porous enough. In this case, ω (q) still displays a (possibly
local) minimum defining a correlation length. The position of this minimum is
slightly shifted, now appearing at longer wavelengths, so that the correlation length
of membrane undulations increases from λ∗ ∼ 0.6 µm. This would reinforce the
adiabatic approximation as well as widen the range of validity of the simple flat-
membrane model.
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Figure 6: Growth rate of a membrane undulation of wave-vector q for ρb,eq = 1
and for different values of the membrane-cortex distance D and cortical permeation
length Lp. The curve in the absence of cortical influence on membrane hydrody-
namics (Stokes) is always shown for comparison.

In turn, low membrane-cortex distances or less permeable cortices would have a
stronger influence on membrane hydrodynamics and produce deeper modifications
of the dispersion relation. In some cases, the dispersion relation would not even
have a local minimum and, therefore, no finite correlation length could be defined.
However, this would not invalidate the main conclusions drawn from the analysis of
membrane undulations, namely the fact that the flat-membrane model is restricted
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to short length scales for large-amplitude undulations, and the possibility to extract
the density of bound linkers from fluctuation spectroscopy experiments. Concerning
the first one, the lack of a correlation length would simply imply that the crossover
length scale below which the flat-membrane model applies could not be estimated
a priori. For the second conclusion, the density of bound linkers ρb,eq would still be
obtainable from the experimental structure factor S (q) or power spectrum S (ω) but
the theoretical fitting curves would not be given by Eq. 13, and Eq. 25, respectively,
anymore and they would demand knowledge of D and Lp, instead.

References

1. Guyon, E., J.-P. Hulin, L. Petit, and C. D. Mitescu. 2001. Physical hydrody-
namics. Oxford University Press.

2. Lin, L. and F. Brown. 2005. Dynamic simulations of membranes with cytoskele-
tal interactions. Phys. Rev. E. 72:011910.

3. Betz, T. and C. Sykes. 2012. Time resolved membrane fluctuation spectroscopy.
Soft Matter 8:5317.

4. de Gennes, P. G. and C. Taupin. 1982. Microemulsions and the flexibility of
oil/water interfaces. J. Phys. Chem. 86:2294–2304.

5. Gov, N., , A. Zilman, and S. Safran. 2004. Hydrodynamics of confined mem-
branes. Phys. Rev. E. 70:011104.

6. Gov, N. and S. Safran. 2004. Pinning of fluid membranes by periodic harmonic
potentials. Phys. Rev. E. 69:011101.

7. Boal, D. 2002. Mechanics of the cell. Cambridge University Press.

8. Safran, S. A. 1994. Statistical thermodynamics of surfaces, interfaces, and
membranes. Addison-Wesley.

9. Helfer, E., S. Harlepp, L. Bourdieu, J. Robert, F. MacKintosh, and D. Chate-
nay. 2001. Viscoelastic properties of actin-coated membranes. Phys. Rev. E.
63:021904.

10. Betz, T., M. Lenz, J.-F. Joanny, and C. Sykes. 2009. ATP-dependent mechanics
of red blood cells. Proc. Natl. Acad. Sci. USA. 106:15320–5.

11. Gov, N. S., A. G. Zilman, and S. A. Safran. 2003. Cytoskeleton confinement
and tension of red blood cell membranes. Phys. Rev. Lett. 90:228101.
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