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ABSTRACT

An equation is derived from transport theory to relate local growth rate
to local water potential in an expanding tissue. For a noncompartmented
continuum model, the relative elemental growth rate (L) equals the diver-
gence of the tensor product of hydraulic conductivity (X) and the gradient
of water potential, ¥, i.e. L = V+[K-V¥]. This equation is solved numer-
ically using published values of L and K to show the water potential
distribution which can sustain the observed growth pattern in the primary
root of Zea mays L. The water potential required to sustain growth
decreases from the outside to the inside of the root, and the longitudinal
profile shows most negative values near the location of the highest growth
rate. A cell originally located near the apex experiences a loss and then a
gain in water potential as it is displaced through the growth zone.

The approach differs from previous formulations in two respects: the
assumption of spatial heterogeneity in growth rate, and the solution for
spatial (site-specific) rather than material (cell-specific) values of water
potential. The role of air spaces and of components (wall and possibly
cytoplasm) of the water-conducting pathway which do not accumulate
water remains to be clarified; and, as in earlier work, the most uncertain
aspects of the analysis are probably the values for hydraulic conductivity.

Much of the large literature on plant water transport concerns
flow through nongrowing tissues and deals with the often large
¥? gradients in the soil-plant-atmosphere continuum. Recently,
Molz and Boyer (13) made a pioneering study of ¥ distributions
which would characterize a growing tissue. They showed that ¥
would become more negative along a line extending from a xylem
element into the cortex of an elongating soybean hypocotyl.
Below, an inhomogeneous distribution of growth rates is consid-
ered and a two-dimensional pattern of ¥ which can sustain growth
of a corn root is found.

! This research was supported by National Science Foundation Grant
PCM 78-23710.

2 Abbreviations: ¥, water potential; 4, area of plant element in plane
perpendicular to flux; g, growth velocity vector; J, water flux vector; X,
hydraulic conductivity tensor; L, relative elemental growth rate (local
strain rate); /, cell length; Q, volumetric flow rate; S, surface area of plant
element; ¢, time; ¥, volume of plant element; x, distance; r, radial distance
from root center line; z, longitudinal distance from root tip.

DERIVATION OF AN EQUATION RELATING LOCAL
GROWTH RATE TO LOCAL ¥

One can start with the approach of Philip (15) and discuss a cell
which is expanding only in the direction of its long axis and which
is in contact with water at only one end. For this one-dimensional
system (Fig. 1, left) to a first approximation, the rate of volume
increase (dV/dt) equals the rate of volumetric water flow (Q) into
the cell. Furthermore, Q is proportional to the water flux, and,
equivalently, to the growth velocity.

dv

a Q=AJ=Ag )
where A is the cross-sectional area of the cell face perpendicular
to the flow, g is the cell extension rate (growth velocity), and J is
the water flux (volumetric flow rate/unit cross-sectional area).

Now, diverging from the earlier theory, a cell embedded in a
continuum of expanding cells is considered (Fig. 1, right). For this
cell, only water which is moving faster than wall 1 will cross the
wall and enter the cell. In this case, the amount of water which
flows into the cell equals the area of wall 1 times the velocity by
which the water flux exceeds the rate of movement of the wall:

Flow into the cell = Q) = A(J; — g&1) )
where g, is the growth velocity at 1; similarly
Flow out of the cell = Q, = A(J; — g») 3

where J; is the water flux at 2 and g; is the growth velocity at 2.

Since water is highly incompressible, its velocity does not change
along the one-dimensional continuum. Therefore J, = Jz. The net
flow of water into the expanding cell is equal to the difference
between the inflow and the outflow so that the net flow (A Q) into
the cell equals the cross-sectional area times the difference in
growth rates between the apical and basal end of the cell:

AQ=A(g: — &) O]

As in the simpler example above, the rate of volume change
(dV/dt) in the deformable cell is equal to the net volumetric water
flow into the cell:

av

T =00 =A(g ~g). )

In three dimensions, equation 5 becomes

av
G =$d-p-nds (52)
where 7 is the unit normal to the surface.

Equation 5a shows that the rate of volume change of the cell
which is instantaneously occupying the fixed volume V at a
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FiG. 1. Diagrams of water flux into plant cells: single cell (left) and cell
embedded in a continuum of expanding cells (right).
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FiG. 2. Relative elemental growth rate or local strain rate (L) at
different distances (Z) from the root tip (adapted from ref. 6).

particular location in space equals the sum (over the surface) of
the components of (J— g) normal to the surface times the
surface areas (dS) of the elements. Thus, growth velocity, as well
as water velocity, enters into the expression for volumetric water
flow into a cell. Next, the relationship between local growth rate
and local ¥ is derived.

Water moves spontaneously from a region of high ¥ to a region
of lower ¥. Philip (16) reviewed a general model for water
transport based on the ¥ gradient, and Molz (12, 14) developed
the theory to include consideration of symplastic and apoplastic
pathways. To summarize these models, in one dimension,

J=-k2¥ ©)
ax
where K, the hydraulic conductivity coefficient, and d ¥/ax, the
gradient of ¥, are measurable at points, i.e. spatial locations.
In three dimensions, equation 6 becomes

J=—-K- V¥ (6a)

Equation 6a is the most general form of the laminar transport
law for water moving in a noncompartmented medium. A field of
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scalar ¥ values exists in the medium, and V ¥, the gradient of this
field at a point in the medium, is a vector in the direction of, and
having the magnitude of, the maximum rate of change of ¥.K is
a tensor, ie. at the same point it may have different values in
different directions; thus, the medium may be anisotropic in its
resistance to water flow. Water flux is, in this general formulation,
a vector field with local direction and magnitude determined by
the interaction of the local conductivity with the local ¥ gradient.
If hydraulic conductivity happens to be isotropic (equal in all
directions), then the flux vector will have the same direction as
the ¥ gradient; if K is anisotropic, the flux will be twisted relative
to the ¥ gradient.

To apply the ¥ equation 6 or 6a to a growing tissue, one must
study a deformable element of the plant continuum (Fig. 1, right).
This element occupies a given volume at a given time, and it must
be noted once more that only water moving faster than the element
boundary wall at 1 will enter the element. Therefore, to show the

¥ gradient which will cause water flux into the element (and,
hence, element expansion), equation 6 must be modified:

ki
V-g= K(ax). ™

The net flow into the element is the difference between the
inflow and outflow as formalized in equations 5 and 7. Proceeding
as for equation 5, it is seen that

0 h-g)-(h-gy=—K (X ¥
7—(11 g)—(L2—g)= Kl(ax)l+K2<ax)2. 8)

The disadvantage of this local measure of water flow is that its
value depends on the length of the tissue segment we have chosen
to study. One can circumvent the dependence on segment length
by choosing very small segments and dividing by the length of the
segment:

lim
Ax—0

= (- g) G~ g2)
Ax (Ji—g) 2 — &2)
1 v v ®
d a
=lim|—(|-Ki|{— | + Ko |— .
AJITO [Ax( ! (ax )1 2(6x )2)]
Again, (J — J2) is zero because water is incompressible; and
equation 9 can be stated as

ax dx ox
The velocity gradient on the left-hand side is recognizable as
the relative elemental growth rate (5, 18) in one dimension, and
the right-hand side is the spatial derivative of the product of X
and ¥ gradient. Generalizing to three dimensions, it can be seen

that the fundamental relationship between growth and ¥ in a
noncompartmented continuum model is given by

(10

L=V.[K-V¥] (10a)
i.e. the relative elemental growth rate (L) equals the divergence of
the tensor product of K and ¥ gradient. Compared to other
formulations, equation 10a has the advantage that it relates growth
at a point to ¥ at a point. The implication is that if the spatial
distributions of L and K are known, the growth-sustaining distri-
butions of ¥ can, in theory, be calculated.

In practice, equation 10a is often difficult to solve. A special
case which is suitable for many growing plant structures will be
discussed. The following simplifying assumptions can often be
made. (a) The tissue is cylindrical, with radius 7, and growing only
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FiG. 3. Growth sustaining ¥ distributions in the primary corn root. Widths of the figures correspond to the diameter of the root median longisection;
lengths are the length of the longisection extending through the growth zone. (Note difference in scale between z and r coordinates.) a, solution of

equation 11 in terms of K ¥, assuming K is isotropic and homogeneous. Letters represent regions of equal values of K ¥ in cm?s™": A
<-K¥<35x10%D,2%x10"°<
% 107°. b, solution showing ¥ in centibars for a homogeneous K = 4 x 10~

B,4x10<-K¥<45%x10%C,3x10®

A -K¥>5x10"%
<-K<l15x lO“8 and F,-K ¥ <5
. ¢, solution showing ¥ in centibars when K, (cm?s™' bar™')

-K¥<25%107%E, 107

2 —1 1

cm®s™' bar”

decreases from 8 X 107° at the tip to 4 X 107® at the base of the growth zone and K. = 8 X 10~ everywhere.

in the direction of its long axis. (b) The distribution of ¥ is axially
symmetric. (c) The growth pattern does not change in time;
therefore, the region of zero expansion moves in parallel with the
growing tip; and the equation may be treated as a time independ-
ent problem with coordinate origin at the tip. It is recognized that
the frame of reference is moving and that one is solving for spatial
(site-specific) values of ¥.(d) Conductivities in the radial (X,) and
longitudinal (K_) directions are independent so that radial flow is
not modified by longitudinal flow. If assumptions a to d are made,
equation 10a becomes

azxp+K, ] ( a\p) K, av¥

z oz

K, a¥
or or

=L(z) (11

2 —=\r—=
9z r or or
with 9¥/ot = 0
L(z) can be determined experimentally (5, 18). If K can be
evaluated locally, then values of ¥ required to sustain the observed
growth pattern can be computed.

SOLUTIONS OF LOCAL ¥ EQUATION 11

Equation 11 was solved with published values of L and X in
the primary corn root. The relative elemental growth rate distri-
bution in the seedling root has been measured by Erickson and
colleagues (4-6). The tabulated values of L (6) at 0.25-mm incre-
ments in the growth zone were used in the computations shown in
Figure 3. It is helpful to keep in mind the shape of the L versus
position curve (Fig. 2) in interpreting the ¥ distributions. The

relative elemental growth rate (also termed the local stretch rate)
has a maximum value of almost 0.40 h™' at 4 mm from the root
tip and falls to zero at 10 mm behind the root apex. To a first
approximation, the plot of L against distance from the root tip is
steady (independent of time) for more than 1 day, even though
the cells located at a particular spot are continually displaced.

The literature also provides estimates of conductivity in the
primary corn root (9). Ginsburg and Ginzburg (9) measured water
flux across the root cortex in response to osmotic gradients intro-
duced in the stele. They did not measure spatial variation in X
but provided a good base estimate of radial conductivity in the
region just behind the growth zone. Using their data, and assuming
that the ¥ gradient was constant across the cortex, we have
calculated that K, = 4 X 107 cm® s™* bar™".

Equation 11, an elliptic partial differential equation, was solved
numerically with an algorithm by Swartzrauber (19). The bound-
ary conditions were to set ¥ = 0 at all boundaries. This means
that the root was presumed to be growing without transpiring in
pure water or completely saturated air. Thus, results are relative
to zero ¥ in the bathing medium and the nongrowing region (Fig.
3). A general solution assuming isotropic homogeneous conduc-
tivities is given in Figure 3a, where each letter represents a narrow
range of values of K ¥, as indicated in the figure legend. The
values are most negative in an egg-shaped region centered 4 mm
from the tip in the middle of the cross-section. Comparison with
Figure 2, which shows the local strain rate as a function of
position, demonstrates that the most negative K ¥ values coincide
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FiG. 4. Growth-sustaining water fluxes. Lengths of the arrows corre-
spond to magnitudes of the local fluxes, and directions of arrows are in
the local directions of flux calculated for conditions of Figure 3c.

with the region of largest strain rate. Concentric shells of progres-
sively less negative values surround the central region. As a
consequence of the assumption of axial symmetry, these shells are
actually cross-sections of figures of revolution which exist in the
three-dimensional structure; and it can be seen that the left-hand
side of Figure 3a is the mirror image of the right-hand side.
However, there is a decided asymmetry about the horizontal axis;
the B, C, D, and E shells are thicker in the basal than the apical
regions.

Estimates for growth-sustaining ¥ values given particular values
of K are shown in Figure 3, b and c. In both cases, ¥ decreases
from the outside to the center of the root. And in both cases, the
longitudinal distribution of ¥ shows that the point of most nega-
tive ¥ is close to the point of maximum growth rate. Figure 3b
shows ¥ values for the same conditions (isotropic, homogeneous
K) as in Figure 3a where K = 4 x 107® cm® s™" bar™’, as implied
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F1G. 5. Lagrangian (material or cell specific) specifications of ¥ for a
root cortical cell as a function of position (upper graph) or time (lower
graph). At time zero, the cell is located 1.2 mm behind the tip and 0.2 mm
from the root surface. At later times, the cell experiences a more negative
and then a less negative ¥ as it is displaced through the growth zone. ¥s

are shown corresponding to spatially homogeneous K = 107%, K = 2 x
1078 and K = 107" cm®s™' bar™".

by the data of Ginsburg and Ginzburg (9). The most negative ¥
would be about —1.32 bars; and mean ¥ of a 1-mm thick circular
disc in the region of most rapid growth would be 0.94 bars below
the external ¥.

On anatomical grounds, it seems likely that X would vary with
the direction of water movement in regions (distal to 4 mm) where
the cells are not isodiametric. At 10 mm behind the tip, for
instance, water moving in the radial direction would encounter
fewer walls and membranes/unit cross-section than would water
moving in the longitudinal direction. Study of the Molz model
suggests that the anatomical anisotropy (if considered alone)
would cause the root to be at most twice as conductive in the
longitudinal as in the radial direction. The possible effect of
anatomical anisotrolpy is tested in Figure 3c, where K, = K. = 8
% 107® cm® s™' bar " at the root tip, and K, decreases linearly with
distance to 4 X 10™® cm® s™' bar ! in the nongrowing zone. The
computer solution is considerably more difficult in this case, but
in Figure 3, comparison of b and ¢ shows that the effect of the
anisotropy is not very great in this range. The effect of spatial
variation of K, with r has not been tested here.

Figure 4 shows the distribution of water flux vectors in the
growing zone. The arrows point in the direction of flux, and their
lengths are proportional to the magnitude of the local flux. At any
given distance from the tip, the flux is greatest at the root surface
and decreases toward the interior. Flux magnitude at a given
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distance from the root center parallels the local strain rate. The
flux direction is predominantly radial at the surface of the root
cylinder and throughout the root cross-section in the region of
most rapid growth but, toward the ends of the growth zone, the
interior fluxes are more nearly longitudinal. Near the longitudinal
root axis, water moves vertically upward near the tip and vertically
downward near the base of the growing region.

Figure 3 gives the static picture of ¥ at specific distances from
the root tip. Any material (i.e. real) element of root, such as a cell,
experiences changes in ¥ as it is displaced from the root tip.
Figure 5 gives the material or Lagrangian specifications (17, 18)
of ¥ for an element initially located 1.2 mm from the tip and 0.2
mm from the cylindrical surface. Steady growth is assumed, and
displacement trajectories are calculated from Figure 8 of Erickson
and Sax (6). The element experiences a decrease and then an
increase in ¥ as it is displaced through the growth zone. These
changes are shown for three possible values of K within the
suggested range (2). The element has its most negative ¥ at the
location of fastest growth rate, 4 mm behind the tip, as shown in
Figure 5. The time course for the material element is shown in the
lower curves. It takes 16 h to acquire the most negative ¥ and
only 3 h to reach negligible ¥ again. This is because the element
accelerates from the tip to a constant displacement velocity at the
base of the growth zone.

PHYSICAL SIGNIFICANCE OF SOLUTIONS SHOWN IN
FIGURE 3

¥ decreases from the outside to the center of the root. This is
opposite in direction to the gradient shown by Molz and Boyer
(13) because the water source bounds the root tissue externally
rather than being supplied internally from the xylem as in the
soybean hypocotyl. The same principle operates in both the stem
and root example: to cause symplastic growth, ¥ must decrease
with distance from the water supply. A water accumulation rate
must be maintained which is constant throughout the element of
cylinder cross-section. Furthermore, the water accumulation rate
parallels the local stretch rate; hence, K ¥ at a particular radial
distance from the root center has its most negative value near the
point of maximum relative elemental growth rate.

Equation 10a is a continuum version of the familiar equation
which has been used in models of cell growth. Relative to Lock-
hart’s (11) basic model for cell elongation, equation 10a can be
viewed as a generalization to tissues of Lockhart’s equation for
the single cell

1dl
-—=K(AY)
ldt

where [ is cell length, ¢ is time, and K is shown as a product of
permeability and geometry terms. The effects of local pressures
and extensibilities in the continuum of expanding cells which
make up the tissue could be studied in conjunction with equation
10a to obtain a general model for dynamics of tissue expansion.

Our estimates of K were derived from data of Ginsburg and
Ginzburg (9); these estimates lie in the middle of the range which
has been suggested (2) for growing tissue.

The most uncertain aspects of the analysis are these values for
Ks. There is no a priori theoretical reason to assume that X is
spatially homogeneous in a tissue characterized by a spatial gra-
dient in developmental age. In fact, Boyer and Wu (1) have shown
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that auxin stimulation of growth in soybean hypocotyls is caused
at least in part by an increase in K. The recent development of
sensitive experimental methods to measure local conductivities
offers hope of resolving the spatial variation in X (7, 10). To solve
equation 10a precisely, one must know this spatial pattern in the
same growing tissue for which is known the distribution of the
local strain rate.

Equation 10 and the solutions for the corn root should be
considered phenomonological rather than mechanistic in nature.
Cell structure is neglected, and X is a general tissue coefficient as
opposed to ¢L,, the membrane hydraulic conductivity of the more
precise treatments from irreversible thermodynamics (2, 3, 8).
Nevertheless, the utility of this approach is suggested by the
demonstration (12, 14) that coupled flows in apoplasm and sym-
plasm pathways can result in water movement which obeys the
simple transport law. Local equilibrium between walls and cyto-
plasm is possible for many values of permeability, and Molz (12)
has also shown that the diffusivity coefficient in the more complete
and more complex model is numerically not too different from
the diffusivity which would have been computed on Philip’s (15)
assumption of a noncompartmented cylinder. Thus, the treatment
of the corn root as a noncompartmented system reported here can
be expected to lead to reasonable predictions for growth-sustaining
¥ distributions.
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