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Supplementary Figure 1:  Rank abundance plots of peptide (a) precursor intensities, 
(b) precursor S/N ratios, and (c) chromatographic peak areas from triplicate control (red) 
and DigDeAPr (blue) runs.  Standard deviations are represented by error bars.  
Precursor intensities, S/N ratios, and peak areas were considered for the highest 
scoring peptides within a MudPIT run.  



 

Supplementary Figure 2:  Log2 peptide ratio (black) rank abundance plots of peptide 
(a) precursor intensities, (b) precursor S/N ratios, and (c) chromatographic peak areas 
from triplicate control and DigDeAPr runs.  Standard deviations are represented by error 
bars (red).  Precursor intensities, S/N ratios, and peak areas were considered for the 
highest scoring peptide match for the same sequence within a MudPIT run. 



 



 

Supplementary Figure 3:  Log2 peptide peak area ratio (black) rank abundance plots 
of peptide (a) molecular weight, (b) isoelectric point, (c) Bull and Breese score, and (d) 
Kyte-Doolittle Score from triplicate control and DigDeAPr runs.  Standard deviations are 
represented by error bars (red).  Peak areas were considered for the highest scoring 
peptide match with the same sequence within a MudPIT run.  



 

 

 

Supplementary Figure 4:  HEK cell lysate peptide (a) precursor intensity, (b) S/N, and 
(c) peak area histograms comparing triplicate control (red) and DigDeAPr (blue) runs 
with error bars representing standard deviation.  A systematic increase in peptide 
precursor intensity, S/N, and peak area were found for all peptides identified in 
DigDeAPr runs relative to control runs.  



 

 

 

 

 

 

Supplementary Figure 5:  Distributions of early-generated peptides (green, log2 
peptide peak area  -1) and later-generated peptides (purple, log2 peptide peak area  
1) based on (a) yeast protein spectral counts, (b) yeast absolute protein abundances 
from Ghaemmaghami et al,1 and (c) HEK protein spectral counts.  



 

Supplementary Figure 6:  Correlation of HEK peptide to HEK protein spectral count 
changes.  (a) Correlation plot of protein (black) and peptide (orange) spectral counts 
changes from DigDeAPr to control protein spectral counts.   spectral counts are 
DigDeAPr minus control runs.  (b) Correlation plot of highest single peptide spectral 
count changes to the total protein spectral count changes.  The greatest peptide 
spectral count changes, positive or negative, were used with the same directional 
change as the protein spectral count.  The fit line can be described by y = 3.36x - 0.78; 
R2 = 0.57.  



 

 

 

 

Supplementary Figure 7:  (a) Distribution of quantified yeast peptide ratios using label-
free peptide peak area measurements.  (b) Venn diagram of early-generated and later-
generated yeast peptides from analysis herein and proteotypic peptides from Mallick et 
al.2  Tryptic site motif analysis of yeast (c) proteotypic peptides (n = 1,627), (d) early-
generated and depleted peptides based on chromatographic ratios (n = 5,733), (e) 
peptides depleted on average by 5 or more spectral counts (n = 774), and (f) peptides 
depleted on average by 1 or more spectral counts (n =2,299) versus Uniprot S. 
cerevisiae database comparing regional motifs.  



Supplementary Note 1:  Theory of Digestion and Depletion.  Many recent studies 

have begun to re-illustrate the importance, benefits, and challenges of protease 

digestions on protein identification and quantitation.  The use of multiple proteases in 

different combinations have been shown to improve proteomic coverage3-8 and 

digestion efficiency.9  Different proteases generate different populations of peptides to 

improve proteome coverage.  While this improves sequence coverage of proteins, 

sequence biases among proteins digested with different proteases have been shown to 

affect protein quantitation with spectral counting.10  Additionally, not all sites for a single 

protease are equal.  For instance, trypsin cleaves C-terminal to Lys and Arg, but when 

followed by Pro, has proximal positive charges such as successive Lys/Arg, or has 

several proximal Glu/Asp residues, these sites are less likely to be cleaved, as 

described by the Keil rules.11  Large data sets of peptides generated by shotgun 

proteomics experiments have facilitated more comprehensive analyses and prediction 

of missed cleavage events.  An information theory analysis of missed cleavages found a 

modest trypsin inhibition by proximal Met, Ser, and Gly to Lys/Arg in addition to known 

rules.12  A machine learning-based decision tree approach on a more comprehensive 

data set was used to assign probabilities to cleavage events.13  These missed cleavage 

analysis generally rely on peptide data sets that were digested to completion, lacking a 

consideration of the dynamics and kinetics of the proteolytic events.  Time-course 

analyses begin to illustrate the differential cleavage rates of proteolytic sites and the 

differential generation of peptides.  A gel-based time-course analysis of a single protein, 

human albumin, showed early- and later-generated peptides.14  A time-course analysis 

with peptides and mass spectrometry facilitated calculation of KM and Vmax for trypsin.15  



A similar concept was applied globally to the analysis of human apoptotic caspase 

kinetic efficiencies (kcat/KM) by mass spectrometry.16  Surprisingly, very little attention 

has been given to the kinetics of proteolytic digestion to whole cell lysates.  An 

understanding and application of these concepts to proteolytic digestions of whole cell 

lysates should benefit shotgun proteomic analyses.  In this case, recognizing fast and 

slow tryptic sites and how they contribute to the generation and separation of early- and 

later-generated peptides is pertinent. 

In order to describe how digestion and depletion of early-generated peptides 

affect our proteomic analysis, we provide an approximate solution which describes the 

mole fractions of multiple competing substrates based on time (t) and site selectivity 

(kcat/KM).  These parameters are illustrated by the well-known partition equation for two 

competing substrates:17 
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From Fersht, “The important conclusion is that the specificity, in the sense of 

discrimination between two competing substrates, is determined by the ratios of kcat/KM 

and not by KM alone.”  This fact was overlooked in our initial attempt to determine a 

mechanism, as we considered only KM and protein concentration.18  With this new 

insight, we have expanded equation 1 to a more general solution describing three or 

more competing substrates to better understand this phenomenon during digestion and 

depletion where thousands of substrates are competing. 



Defining the total enzyme ([ET]) as the sum of free concentration ([EFree]) and 

substrate complexes concentrations ([EA], [EB], [EC], and [En]) of substrates A, B, C, and 

n (representing more than three substrates), the total enzyme can be expressed as a 

function of steady state concentrations: 
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And the free enzyme as: 
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Inserting the free enzyme concentration equation 3 into the rate equation for substrate 

A: 
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yields an equation in terms of total enzyme (ET) which can be quantified, unlike the free 

enzyme concentration: 
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The same procedure can be repeated to create an equation that represents the total 

substrate [ST] consumption: 
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Comparing the rate of consumption of substrate A to the total substrate consumption: 
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Multiplying through by ET and canceling both denominator terms: 
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And writing in enzymology shorthand, kcat  [ET] is expressed as (V), and the Michaelis 

constant is expressed as (K) for a specificity constant (V/K) yields: 
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This equation begins to illustrate how the rate of consumption of substrate A is 

dependent on the rate of consumption of competing substrates.  The consumption of 



substrates A, B, C, or n, whichever occurs first, is then depleted during the spin-filter 

step in DigDeAPr.  Thus, this is similar to our initial mechanistic proposal where we 

described abundant proteins as inhibitors for digestion of low abundance proteins.  

However, from this derivation we can now conclude that fast tryptic cleavage sites 

compete with slow tryptic cleavage sites based on the abundance of a protein and on 

their relative specificity (V/K) of particular cleavage site (e.g. [A]). 

To derive a more quantitative description of substrate consumption and relative 

depletion at any particular assay time we must integrate the rate equation. For clarity it 

is best to express competing substrates in terms of the mole fraction () of a particular 

substrate relative to the total substrate pool: 
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Expressing the individual substrates as mole fractions of the total gives: 
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The differential equation is solved by separation of variables and then conducting 

integration by parts for the denominator: 
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Obtaining the definite integral: 
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and taking the antilog yields a quantitative expression for the mole fraction of substrate 

A (A) at any time in terms of the mole fraction of other competing substrates (B, C, 

andn) at the start of the digestion (t = 0): 
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Like rate equation (9) where the velocity of substrate A consumption is expressed as a 

relation to the total substrate velocity (vA/vT), equation (14) expresses the mole fraction 

of substrate A in terms of the mole fractions of all other competing substrates.  Inclusion 

of n, extends the equation to be descriptive of a complex proteome mixture with n 

different tryptic motifs: 
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From equation 15 we see that at time zero we have the natural abundance of substrates 

(A).  As time (t) progresses, generation of a particular substrate depends solely on the 

specificity constant of that substrate, in the numerator, relative to all competing 

substrate specificity constants, in the denominator.  With this in mind, equation 15 

illustrates that defined populations of peptides will be generated over time based on 

their specificity constants.  In order to understand the final abundance of a substrate, as 

a mole fraction, after limited digestion and depletion (A,depleted), we must consider 

removal of substrates (A,depletion) at the depletion time (td) in the context of the substrates 

present (A,complete) after the complete digestion time (tc): 
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The depleted mole fraction (A,depleted) is then the difference between the final, complete 

digestion mole fraction (A,complete) and the mole fraction at the depletion step (A,depletion): 

depletionAcompleteAdepletedA ,,,          (18) 

Substituting equations 16 and 17 into equation 18 yields: 
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 (19) 

Equation 19 is an approximate solution describing protein depletion. For simplicity 19 

assumes one cleavage site per protein; alternatively one could say it presents a 

composite (V/K) of all exposed cleavage sites on a particular protein.  If one wishes to 

explicitly account for multiple exposed cleavage sites, each (V/K) term in 19 becomes 

the sum of the individual protein’s cleavage sites specificity constants ( V/K).  Lastly, 

19 is an approximate solution since it does not account for the processive nature of 

protein cleavage i.e., one cleavage event will expose interior cleavage sites to 

proteolysis.  In effect this causes the denominator to grow with time as new substrate 

cleavage sites are being created, adding to the competition for a specific cleavage site.  

As a consequence, the rate of a specific protein’s cleavage is dampened.  

Nevertheless, 19 provides a useful description of DigDeAPr proteolysis kinetics and 

illustrates how specific (V/K) values determine enrichment or depletion over time. 

Supplementary Note 2: Peptide abundances are equalized through depletion.  

Considering a peptide-centric depletion and enrichment mechanism based on cleavage 

site specificities (V/K), peptide abundances would be expected to change as illustrated 

in Figure 1a.  Comparison of peptide abundance metrics from control and DigDeAPr 

runs facilitates empirical validation of this mechanism.  We considered peptide 

precursor intensities, signal-to-noise ratios (S/N), and chromatographic peak areas 



(Supplementary Figure 1) as relative measures of peptide abundance.19-21  Only 

peptides common to both control and DigDeAPr runs were considered in these 

analyses for direct comparison.  Rank abundance plotting of control peptide metrics 

establishes the “natural abundance” of peptides, as measured by the response of the 

mass spectrometer, denoted in Figure 1a.  The “DigDeAPr abundance” of the 

corresponding peptides of the same sequence and charge state from DigDeAPr runs 

are plotted in the same order as the control peptides rank order abundance.  By 

maintaining the same order as control peptides, the DigDeAPr abundance of peptides 

can be directly compared.  Notably in all peptide rank abundance plots, similar trends 

are observed to the theoretical curves in Figure 1a.  Peptides of low abundance are 

dramatically enriched in DigDeAPr runs, equalizing peptide metrics across all peptides.  

The equalization of these peptide metrics normalizes and raises the quality of peptide 

measurements relevant for peptide and protein quantitation.  Correlation plots of these 

trends are shown in Supplementary Figure 2 to further illustrate and quantify these 

changes.  Since the correlation plots are still plotted in rank order of control peptide 

abundance metrics, the log2 ratio correlation plots also clearly illustrate that peptides of 

high abundance are depleted and peptides of low abundance are enriched.  Similar 

rank order plots of peptide physicochemical properties isoelectric point and 

hydrophobicity (Supplementary Figure 3b-d) do not show trends; although, a slight 

enrichment of larger peptides is observed (Supplementary Figure 3a), which might be 

expected from the 10K MWCO spin-filter step.  When abundance metrics from all of the 

peptides identified are compared, and not just those common to control and DigDeAPr 

runs, more can be learned about the distributions of peptides identified.  Histograms of 



all peptide relative abundance metrics are shown in Supplementary Figure 4.  The 

distribution of peptide abundance has been systematically increased by all three 

metrics.  These results clearly illustrate that peptide abundance changes are the critical 

factor in the success of the DigDeAPr method. 

Supplementary Note 3:  Early- and later-generated peptides are separated during 

the depletion step.  As described in the theory of digestion and depletion section, we 

expect the generation and depletion of peptides to be dependent on the specificity 

constant (V/K) of tryptic sites.  In our limited digestion and depletion strategy, an early-

generated peptide would be one that is smaller than 10 kDa prior to the MWCO spin-

filter depletion step.  Assuming an average amino acid mass of 100 Da, this essentially 

requires two fast tryptic sites (i.e. high V/K) to be within 100 amino acids of each other 

for the peptide to be depleted.  Later-generated peptides are those created after the 10 

kDa depletion step.  Shotgun proteomics generally identifies peptides less than 30 

amino acids in length or less than 3 kDa.  Thus, quantitative comparison of peptide 

chromatographic ratios in our control and DigDeAPr runs should allow for identification 

of peptides that are generated early and later.  Early-generated peptides that are less 

than 10 kDa were depleted by the 10K MWCO spin-filter step, and thus should have 

negative log2 ratios in comparison to control runs.  Similarly, peptides that were later-

generated were not depleted by the 10K MWCO spin-filter step and thus should be 

enriched by the use of 10 times as much starting material.  These enriched peptides 

should have positive log2 ratios in comparison to control runs. 

From data in Fonslow et al. with triplicate control and DigDeAPr runs, we were 

able to measure and compare label-free peak area ratios for 13,628 and 13,112 



peptides from HEK (Figure 2a) and yeast (Supplementary Figure 7a) cells, respectively.  

We observed a range of peptide log2 ratio changes from -14 to 10 for HEK peptides and 

-13 to 12 for yeast peptides.  Direct peptide ratio measurements with isotopic labeling 

are no doubt more accurate and reproducible, but tend to underestimate large ratio 

changes.22  Thus, with replicates, calculated error, and high comprehensiveness, our 

label-free peptide ratio measures are appropriate for these analyses.  Notably, both 

showed a remarkable similar range and trend.  In both cases about a third of the 

quantified peptides (~ 4,500) could be considered early-generated (log2 ratio  -1). 

Supplementary Note 4:  Early-generated peptides with fast cleavage motifs are 

depleted and later-generated peptides with slow cleavage motifs are enriched.  

The proximity of fast cleavage sites will define which peptides will be early-generated 

and depleted during the 10K MWCO spin-filter step.  Quantitative analysis of early-

generated peptide tryptic cleavage sites between control and DigDeAPr runs should 

further validate the depletion mechanism of early-generated peptides.  Similarly, 

quantitative analysis of later-generated peptide tryptic cleavage sites should further 

validate the enrichment of later-generated peptides.  We used the unchanged HEK 

tryptic and missed cleaved peptides as a negative background for both tryptic and 

missed cleavage analyses, respectively.  These comparisons allow for extraction of 

motifs that are log2 ratio changed among the peptides that were identified, not just 

present within the human proteome.  Using the depleted, early-generated HEK peptides 

we found a motif that is enriched in small, uncharged residues at P1’ (Figure 2b), known 

to have high tryptic specificities, and depleted in charged residues known to have lower 

specificity.11  In contrast, the later-generated tryptic motifs were enriched in charged, 



low specificity residues at P1’ and P2’ (Figure 2d).  Similarly, when we extract motifs 

from miscleaved lysines and arginines from depleted HEK peptides we found that 

arginine cleavage sites were more enriched in the iceLogo (Figure 2c).  This result 

implies that fast arginine sites were cleaved and depleted in our DigDeAPr strategy, 

while slow lysine sites remained missed cleaved and were not depleted.  These 

conclusions are consistent with previous23 and recent8, 9 studies to improve lysine 

cleavage efficiency with tryptic digestions using Lys-C. 

Supplementary Note 5:  Further mechanistic insights from the analysis of yeast.  

Our yeast data provides an excellent means to further interrogate the DigDeAPr 

mechanism since both protein abundance1 and identified “proteotypic” peptides2 are 

well-characterized in yeast.  Early- and later-generated peptides were correlated to both 

relative protein abundance measurements with spectral counts (Supplementary Figure 

5a) and absolute protein abundance measurements by western blotting (Supplementary 

Figure 5b).  We notably observed abundance-based trends with both spectral counting 

and absolute protein copies per cell.  To further validate abundance-based depletion 

and enrichment trends observed with yeast cells, we also analyzed our HEK data in the 

same fashion.  When early- and later-generated HEK peptides are considered in the 

context of protein abundance (based on spectral counts), we observe a similar 

abundance-based identification trend (Supplementary Figure 5c).  These results would 

indicate that the analysis of a population of later-generated peptides contributes more to 

the identification and quantification of low abundance proteins than the analysis of a 

population of early-generated peptides. 



We initially noticed that fast, tryptic cleavage motifs from HEK peptides (Figure 

2b) also represent peptide motifs that should have a greater electrospray ionization 

(ESI) efficiency, due to their hydrophobicity and basicity.  Thus, the peptides with these 

hydrophobic motifs would also be expected to have a greater mass spectrometer (MS) 

signal response.24  Conversely, slow, missed cleavage sites, represented by acidic HEK 

peptide motifs in our analyses (Figure 2d) would tend to have a lower ESI efficiency and 

MS response.25  A growing area of proteomic research is the characterization of 

“proteotypic” peptides which can be used as robust representations of protein identity 

and abundance.2  We wondered if there may be a correlation to the robustly and 

reproducibly identified peptides, deemed “proteotypic”, and the abundant, early-

generated peptides that we depleted.  We performed a Venn comparison of early- and 

later-generated peptides from our yeast analyses to proteotypic yeast peptides from 

MudPIT experiments analyzed by Mallick et al.2  The Venn diagram (Supplementary 

Figure 7b) illustrates that there is indeed a high overlap of early-generated peptides and 

proteotypic peptides.  We found that 58% of proteotypic peptides were considered 

early-generated, only 27% were later-generated, and about 14% of the proteotypic 

peptides were not found in either our control or DigDeAPr experiments.  When we 

extracted motifs from the tryptic ends of proteotypic peptides (Supplementary Figure 7d) 

for comparison to our depleted, early-generated peptide motif (Supplementary Figure 

7c), we found strikingly similar motifs: the four to five most represented amino acids at 

each position between the motifs are essentially the same.  Furthermore, the extraction 

of motifs from the tryptic ends of yeast peptides that have been depleted based on 

spectral counts again show similar motifs to proteotypic peptides (Supplementary Figure 



7e and f).  These results indicate that, although proteotypic peptides are the most robust 

identifiers of a protein, they may also contribute the most to proteolytic background that 

inhibits the identification and coverage of low abundance proteins.  Through depletion of 

these peptides, improvements to low abundance protein identification and quantification 

are realized. 

Supplementary Note 6:  Correlation of HEK peptide depletion or enrichment to 

estimated HEK protein abundance.  The experimental results and kinetic derivations 

herein suggest the importance of a peptide-centric consideration of the DigDeAPr 

mechanism.  We hypothesize that the tryptic digestion and LC-MS/MS pipeline may 

both contribute to the abundance-based effects observed in our DigDeAPr data set.  

This is partially illustrated by the effects of protease specificity on spectral counting-

based quantitation.10  Although we are using the same protease, trypsin, throughout our 

experiments, since we are sampling peptides with different tryptic specificities (V/K) in 

control and DigDeAPr runs, similar spectral counting-based quantitation effects may be 

observed.  Thus, we performed further analyses using spectral counting methods to 

attempt to uncover any trends.  An overlaid representation of peptide spectral count 

changes with protein spectral count changes from DigDeAPr (Supplementary Figure 6a) 

illustrates that both follow a similar trend.  This is not unexpected since peptide spectral 

counts are summed to quantify proteins with spectral counts.26  Thus, the abundance-

based trend observed at the protein level may be due to the depletion or enrichment of 

just a few peptides.  In fact, when we correlate the single most enriched peptide for 

enriched proteins (both measured by spectral counts) we observe an obvious trend 

(Supplementary Figure 6b, upper right quadrant).  When the same correlation is 



performed for the single most depleted peptide for depleted proteins, a similar trend is 

observed (Supplementary Figure 6b, lower left quadrant).  Fitting this data to a line 

illustrates that changes in a single peptide’s spectral count can account for ~ 30% 

(slope from Supplementary Figure 6b) of protein spectral count changes for 57% (R2 

from Supplementary Figure 6b) of the proteins.  Thus depletion of high spectral count 

peptides can obviously also be interpreted as depletion of high spectral count, abundant 

proteins.  However, since only 30% of the protein spectral count changes can be 

explained by the most changed peptide, other peptides with the protein may also 

contribute or other mechanisms entirely may be at play. 

 

METHODS 

Quantitative characterization of early- and later-generated peptides.  Label-free 

chromatographic peak areas were extracted for both yeast and HEK cell data using 

Census.27  Briefly, MS1 precursor isotope envelopes were extracted for identified 

peptides using a 30 ppm window and integrated over the chromatographic timescale.  

The exact same peptide sequences of different charge states were extracted and 

compared separately.  Since peptides of the same charge state can be sampled 

multiple times during MudPIT, the peptide match with the highest XCorr, and 

presumably the highest signal, was extracted and integrated for comparison between 

separate MudPIT runs.  Peptides with a log2 (DigDeAPr/Control) ratios  -1 were 

considered early-generated while peptides with log2 (DigDeAPr/Control) ratios  1 were 

considered later-generated. 



Quantitative characterization of tryptic motifs.  Our previous database search 

considered an unlimited number of internal missed cleavages for each peptide 

candidate up to 6 kDa in length.  Identified peptides were aligned to tryptic or missed 

cleaved lysine and arginine residues with Motif-x,28, 29 then represented as motifs with 

iceLogo.30  Positive data sets for iceLogo analyses were aligned tryptic ends of HEK 

and yeast peptides on depleted, early-generated peptides (considered fast cleavage 

sites) and enriched, later-generated peptides (considered slow cleavage sites).  Missed 

cleavage sites within depleted, early-generated peptides were also considered fast 

cleavage sites.  Peptides with -1 < log2 (DigDeAPr/Control) ratios < 1 were considered 

unchanged and used as the negative set of aligned sites for tryptic and missed 

cleavage motif extraction for HEK peptides.  The regional-sampled UniProt yeast 

protein database was used as the negative set of sites for yeast peptide motif analyses. 
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