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Supplementary Text S1 for “Cross-population Joint Analysis of

eQTLs: Fine Mapping and Functional Annotation”

S.1 MCMC Algorithm for Mapping Multiple cis-eQTLs

We implemented a Metropolis-Hastings algorithm to perform posterior sampling based on equation (2.3)

in the main text. The algorithm is mostly straightforward. To help the Markov chain achieve fast mixing,

we implemented a novel proposal distribution based on the result of conditional analysis of multiple cis-

eQTLs.

We propose two types of simple “local” moves in the MCMC simulations:

1. Change a γj value for SNP j

2. Swap the values of γj and γk, for SNPs j and k

where each SNP j is proposed according to a pre-calculated weight wj . The novelty of the proposal distri-

bution is that we construct the weights wj ’s based on the conditional analysis results. More specifically,

we start by computing Bayes factors for each cis-SNP in a single SNP analysis, and compute a quantity

p
(1)
j =

BFj∑p
j BFj

. (.1)

(Note that p
(1)
j is proportional to the PIP for SNP j assuming only one eQTL in the cis region and a

uniform prior inclusion probability). We then find the SNP with the maximum p
(1)
j value, say SNP k. In

the next round, we control for the genotype of SNP k and repeat the single SNP analysis to obtain p
(2)
j ,

which mimics the conditional analysis of secondary cis-eQTL signals. Note that SNP k and the SNPs in

LD will have single SNP Bayes factor close to 1 in this round. We again add the SNP with the maximum

p
(2)
j value into the control set. We repeat this procedure, with one additional SNP added into the control

set in each round, until the maximum single SNP Bayes factor falls below a pre-defined threshold (we

use 10 in practice). Suppose that the procedure ends in t iterations, we then compute the weight for each

SNP using

wj =

t∑
r=1

θrp
(r)
j + θt+1

1

p
, (.2)

where the sequence θ1, ..., θt+1 forms a decreasing geometric series summing up to 1. The trailing 1
p term
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in the weight calculation represents a uniform distribution on candidate cis-SNPs.

This particular proposal distribution is an extension of what is used in [1], and should be credited

to Matthew Stephens (personal communication). Its theoretical backend is related to sure-independence

screening proposed by [2] in variable selection context.

S.2 Maximum Likelihood Inference of Enrichment Parameters

This section gives the technical details of MCMC-within-EM algorithm. Given the hierarchical model

described in the main text, we are interested in performing maximum likelihood inference of enrichment

parameter α. Treating {Γ1, ...Γq} across all q genes as missing data, the complete data likelihood can be

written as

P ({Y g}, {Γg} | {Gg}, {Dg},α) =

q∏
g=1

P (Γg |Dg,α) ·
q∏
g=1

P (Y g|Γg,Gg). (.3)

We apply an EM algorithm to find the MLE of α. Because vector γgj only takes values in {0,1}, using a

loose notation, we represent vectors 0 and 1 with the corresponding binary scalar values. It then follows

that

P (Γg |Dg,α) =
∏
j

( exp(α′δgj )

1 + exp(α′δgj )

)γg
j
(

1

1 + exp(α′δgj )

)1−γg
j

 . (.4)

The complete data log-likelihood is given by

logL(α; {Y g}, {Γg}, {Gg}, {Dg}) =

q∑
g=1

pg∑
j=1

γgj (α
′δgj )−

q∑
g=1

pg∑
j=1

log[1 + exp(α′δgj )]

+

q∑
g=1

log[P (Y g|Γg,Gg)]

(.5)

The EM algorithm initiates by an arbitrary value of α, namely, α(1). In the E-step of t-th iteration, we

compute

E[logL(α ; {Y g}, {Γg}, {Gg}, {Dg}) | {Y g}, {Gg},α(t)] =

q∑
g=1

pg∑
j=1

E
(
γgj |Y

g,Gg,α(t)
)

(α′δgj )

−
q∑
g=1

pg∑
j=1

log[1 + exp(α′δgj )] +

q∑
g=1

E
(

log[P (Y g|Γg,Gg)] | Y g,Gg,α(t)
) (.6)
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Note that the last term does not contain parameter α. In the M-step of the t-th iteration, we find

α(t+1) = arg max
α

 q∑
g=1

pg∑
j=1

E
(
γgj |Y

g,Gg,α(t)
)

(α′δgj )−
q∑
g=1

pg∑
j=1

log[1 + exp(α′δgj )]

 (.7)

The objective function in (.7) coincides with the log-likelihood function of a logsitic regression model

treating each gene-SNP pair as an independent observation, however with the usual binary response vari-

able replaced by the conditional expectations. By this connection, the maximization step can be carried

out by fitting the corresponding modified logistic regression model treating conditional expectations as

responses (i.e., via an iterative re-weighted least square algorithm). This also implies that in the E-step,

it is only required to compute E(
(
γgj |Y

g,Gg,α(t)
)

= Pr(γgj = 1 |Y g,Gg,α(t)), i.e., the PIP for each

gene-SNP pair, which we obtain from the MCMC sampling.

To summarize, we outline the procedure of the MCMC-within-EM algorithm based on the above

derivation as follows

1. At t = 1, initiate α = α(1)

2. Compute prior Pr(Γg | Dg,α(t)), and run MCMC algorithm for multiple cis-eQTL analysis for

each gene g

3. Compute Pr(γgj = 1 |Y g,Gg,α(t)) for each gene-SNP pair from the posterior samples

4. Find α(t+1) by fitting a logistic regression model treating Pr(γgj = 1 |Y g,Gg,α(t)) as response

variable and {Dg} as observed covariates

5. Repeat 2 to 4 until convergence

S.3 Single Base-pair Resolution Annotation of Genetic Variants Predicted to

Affect Transcription Factor Binding

The approach and validation of the annotation are detailed in [3] and here we provide a summary

for the annotation method. The method used to develop the annotation is based on the CENTIPEDE

approach that can predict TF activity from integrating sequence motifs together with functional genomics

data. This approach gains the most information from high-resolution data such as DNase-seq or ATAC-

seq [4]. In the original CENTIPEDE approach, the sequence models are pre-determined; e.g, k-mers
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or previously defined position weight matrix (PWM) models from databases such as TRANSFAC and

JASPAR. However, many motif models were created with very few sample sequences obtained from known

TF binding sites and do not represent the full spectrum of sequence variation that can be tolerated without

affecting binding. To better capture this range, it is necessary to include motif instances that may not

be a perfect match to the original PWM, but have evidence of binding in the human genome. In [3] ,

we introduced a novel approach extending CENTIPEDE to re-adjust the sequence model for TF binding

using only DNase-seq data in two steps:

Step 1: Initial CENTIPEDE scan and motif recalibration. After scanning the genome for motif matches

(using 1949 seed motifs), we extracted DNase-seq data at these sites using 653 samples publicly available

from the ENCODE and Roadmap Epigenomics projects. For each motif and only for this initial step, we

used a reduced subset of motif matches that include the top 5,000 instances on the human genome; and

up to 10,000 additional sequences in the human genome that do not have a high score. The low scoring

motif instances were chosen from human sequences that have orthologous high scoring motif instances in

the chimp or rhesus genome. We then applied the CENTIPEDE model to survey TF activity for each

1,272,697 tissue-TF pair. For each pair we then determined that the TF is active if the motifs instances

that exhibit a CENTIPEDE footprint can be predicted from the PWM score (z-score > 5). Using this

criterion, we determined that 1,891 TF motifs are active in at least one tissue. We then recalibrated

the PWM model for each active motif using the sequences of all motif matches that have a DNase-seq

footprint (CENTIPEDE posterior >0.99). Using this procedure, the probabilities of certain bases are

readjusted, but the core part of the motif and its consensus sequence is largely maintained.

Step 2: Full genome CENTIPEDE scan and genetic variant analysis. Using these newly updated

sequence models we scanned the human genome for all possible matches both to the reference and to

alternate alleles from genetic variants cataloged in the 1000 Genomes (1KG) Project [5] and used the

CENTIPEDE algorithm to assess the probability that each motif instance is bound by a TF. In this second

step, we included all high and low scoring PWM matches down to a CENTIPEDE prior probability of

binding of 10%. In this paper we focus only on SNPs found in CENTIPEDE footprints discovered in

LCLs with a posterior probability > 0.99. In total about 600,000 SNPs are in LCL footprints, of which

about half are predicted to strongly affect binding, affecting the prior odds of binding ≥ 20-fold (binding

variants) based on the logistic sequence model hyper prior in the CENTIPEDE model.
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S.4 Automatic Clustering of Independent eQTL Signals from MCMC Output

We designed a hierarchical clustering based algorithm to automatically parse the MCMC output and

recognize potentially multiple independent association signal clusters.

LetM denote the set of posterior models sampled by the MCMC algorithm. For each model mk ∈M ,

we denote its posterior model probability by pmk
. We define a “distance” between SNP i and SNP j by

dij =
∑

mk∈M

pmk
1 {i ∈ mk, j ∈ mk, i 6= j} .

The above definition is the key to the algorithm. Every SNP has distance 0 to itself. For SNPs with

high LD, they are inter-changeable of each other but almost never co-exist in a single posterior model,

and consequently those SNPs have distances ≈ 0 with each other. On the other hand, SNPs representing

independent signals do often co-exist in posterior models and have non-zero distance between each other.

Consider a simple example with 3 SNPs: SNP 1 alone represents an independent signal and appears in all

posterior models, SNP 2 and 3 are in high LD and jointly represent another independent signal. Suppose

that from the posterior sampling, we observe posterior model [1, 2] and [1, 3] 40% and 60% of the time,

respectively. The resulting pair-wise “distance” matrix based on our definition is then given by


0.0 0.4 0.6

0.4 0.0 0.0

0.6 0.0 0.0


We then perform a hierarchical clustering based on the resulting pair-wise “distance” matrix con-

structed from the MCMC samples. By default, we choose the cluster number to be the maximum model

size observed in all the posterior models. Based on the clustering result, we compute a cluster-level PIP

by summing over the SNP-level PIPs within each inferred cluster. In the above toy example, by selecting

cluster number K = 2, SNP 1 forms a cluster with the cluster-level PIP = 1.0 and SNP 2 and 3 form

another cluster with cluster-level PIP = 1.0 as well.

It should be noted that our pair-wise distance measure is very similar to the commonly used Kullback-

Liebler distance in measuring the independence between a pair of SNPs. However, our measure is more

convenient to compute from the posterior model probabilities in the MCMC output. Neither our measure

or the Kullback-Liebler distance is technically a well-defined distance metric. However in practice, the
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clustering algorithm works well with these pseudo distance measures.

We find that this algorithm performs reasonably well in practice. One of the most obvious advantage

is that it automatically groups SNPs in high LD and recognizes clusters with high PIPs at cluster level.

Nevertheless, we still view this algorithm as a heuristic tool to simply aid the post-hoc analysis. In

addition, we find that checking the LD patterns from the genotype data for each inferred cluster can

serve as a useful independent validation.

S.5 Additional Details of Simulation Studies

In this section, we provide additional details on generating and analyzing simulated expression-genotype

data in our simulation studies.

In the main text, we have detailed the procedure to assemble the genotype data from the GUEVADIS

project. For each of the 1,500 simulated genes, we randomly sampled 1, 2, 3 or 4 regions to harbor

a causal eQTL with probabilities 0.40, 0.30, 0.20 and 0.10, respectively. (For example, with probability

0.20, the simulated gene contain 3 independent eQTL signal.) Once the number of independent signals

was determined, we randomly selected a single causal SNP as the causal SNP from each eQTL region

according to a discrete uniform distribution.

For each causal SNP, we simulated its effects in the five populations according to the following scheme.

We first generated a mean effect from β̄ ∼ N(0, 0.62), then the eQTL effect of the causal SNP for

each population was subsequently drawn from the distribution β ∼ N(β̄, β̄
2

100 ). With this procedure,

the resulting eQTL effects are highly correlated across populations however with some low levels of

heterogeneity. It is worth pointing out that this generating model is different from the model that

we used for the Bayesian analysis. Finally, we generated the expression phenotype separately in each

population using the linear model (2.1), with the additional random error vector simulated from N(0, I).

To perform single SNP analysis on the simulated data set, we carried out a fixed effect meta-analysis

procedure. More specifically, for SNP j in population group i, we computed a z-score zi,j = β̂i,j/se(β̂i,j)

by fitting a simple linear regression model. We then computed a fixed effect meta-analysis test statistic

Z̄j =

∑
i wi,jzi,j∑
i wi,j

,



7

where the weight is obtained by wi,j = 1/se(β̂i,j)
2. The variance of Z̄j is calculated by

Var(Z̄j) =
1∑
i wi,j

.

For each SNP, we computed an overall z-value and obtained its corresponding p-value.

The core procedure for the conditional analysis in each round is similar to the above descried single

SNP analysis. However, instead of fitting a simple linear regression model, we fit a multiple regression

model controlling for the top associated SNPs identified from the previous rounds. We started the

procedure with an empty set of SNPs to be controlled for and halted the procedure until the most

significant fixed effect meta-analysis p-value is larger than the pre-defined threshold.
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